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O bserving a large area of Earth's surface using remote sensing has made our work

very easy in order to monitor changes. This revolutionary tech can help us make

big decisions on time. For this purpose, Sentinel-2 imagery is considered to be
perfect since the imagery provided by this satellite is easily available
https://scihub.copernicus.cu/ website. The European Space Agency (ESA) and the
European Union (EU) have created the Copernicus Program, which includes the Sentinel-
2 satellites that use onboard multispectral scanners to effectively monitor the Earth’s
surface. This program has contributed significantly to the production of Sentinel-2
multispectral products, which provide high-resolution satellite data for monitoring land
cover and use. The Sentinel-2 constellation is the second set of satellites in the ESA
Sentinel missions, with the primary goal of land cover/use monitoring. Besides the
availability of imagery, Sentinel-2 temporal resolution is 5 days, which helps in quick
observation. In this manuscript, we have used different feature engineering techniques on
our dataset in order to observe their performance and importance for better classification
of diverse crops. We have achieved an overall accuracy of 99% after extracting important
information from the dataset and applying a random forest and a gradient boosting
classifier. The data set used for this research work was collected by surveying diverse crops
in the region of Harichand, which is located North-South of Charsada District in Khyber-
Pakhtunkhwa, Pakistan. The detailed Explanation of our Work and proposed methods is
discussed in this article.
Keywords: Feature Engineering, Multispectral, Temporal resolution, Random Forest,
Gradient Boosting Classlﬁer
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Introduction:

Agriculture has been a cornerstone of human progress since the earliest
civilizations, serving as a vital driver of both economic growth and societal development.
Even today, nearly 60% of the world’s population lives in rural regions, where agriculture
remains the primary source of livelihood [1]. In Pakistan, agriculture plays a crucial role in
the economy, accounting for over 24% of the Gross Domestic Product (GDP) and
employing half of the country’s labor force. Additionally, it is the primary source of foreign
exchange earnings. The agencies responsible for crop monitoring and yield estimation [2]
are encountering obstacles in carrying out their tasks due to inadequate and inaccurate data
stemming from flawed systems. The challenge is further intensified by the government's
minimal use of technology in producing seasonal crop data, leading to problems such as
theft, overstocking, and unauthorized trade. Around the world, Geographic Information
Systems (GIS) have become a popular tool for decision-making across various domains.
Remote Sensing, which involves gathering observational data of the Earth through satellite
and airborne sensors, is a crucial component of GIS. Advanced countries have already put
in place such systems to effectively handle their valuable resources [3].

Employing satellite remote sensing (RS) is a beneficial approach for classifying
land cover and producing crop statistics. [4] over vast geographical areas, providing
frequent observations of ground objects [5]. Over the past two decades, the integration
of machine learning and remote sensing (RS) has significantly advanced land cover
analysis and crop classification, leading to the development of numerous algorithms and
techniques. While traditional methods such as Maximum Likelihood, Support Vector
Machines, Minimum Distance, and Feed Forward Neural Networks have been widely
used, the growing volume of both open-access and commercial satellite data now calls for
more efficient, scalable, and accurate approaches. The availability of vast amounts of
satellite data has opened up numerous possibilities for land cover and land use statistics,
allowing data to be transformed into valuable information. Remote sensing data is
commonly classified into three categories: multispectral, hyperspectral, and synthetic
aperture radar (SAR). Among these, multispectral sensors are frequently used for
vegetation-based studies due to their simplicity, data availability, and fast processing,
compared to hyperspectral sensors (which have more than 50 bands) and SAR.

Multispectral remote sensing observations are generally categorized into two
primary types: vegetation-related observations and non-vegetation-related observations
[6].

The use of spectral information from a single date satellite imagery during the
growing season of the crop.

Utilization of temporal information from revisiting satellites:

The remainder of the manuscript is composed as follows: Section 2 elaborates on
all the related work performed in the same field using Remote Sensing and Feature
engineering Techniques. Section 3 provides detailed information about our adopted
Framework and pre-processing of the ground truth data, followed by a description of the
Validation criteria in Section 4 and results and Discussion in Section 5, respectively.

Agriculture in Pakistan faces significant challenges due to outdated farming
practices, limited access to timely crop data, and a lack of advanced monitoring systems.
Remote sensing and machine learning together provide a way to address these issues by
improving the accuracy of crop classification and yield estimation. The present study
focuses on evaluating different feature engineering techniques applied to Sentinel-2
multispectral imagery for classifying diverse crops.

Objectives:
The main objectives of this research are:
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To examine how different feature engineering techniques, such as correlation analysis,
chi-square test, information gain, and extra tree classifier, influence the performance of
crop classification models.

To compare the performance of widely used classifiers (Random Forest and Gradient
Boosting) on feature-engineered datasets.

To identify the most effective subset of features that improves classification accuracy
without significantly increasing computational cost.

To provide a practical workflow for crop monitoring that can support decision-makers in
the agricultural sector.

Novelty Statement:

While several studies have used Sentinel-2 data for crop classification, most focus
on a single feature extraction approach or a specific crop type. This work contributes by:

Conducting a systematic comparison of multiple feature engineering techniques
within the same experimental framework.

Demonstrating the effect of these techniques on diverse crop types in a real
agricultural region of Pakistan.

Showing that carefully engineered features can achieve accuracy improvements up
to 99% while reducing dataset complexity.

Proposing a framework that can be reproduced and extended for future
agricultural monitoring applications.

Literature Review:

A country’s agricultural state is composed of a diverse geographic landscape, spanning
from fertile plains to deserts, and a diligent population. The majority of the economy is
based on agriculture, which also serves as the primary source of employment [7]. Although
agriculture is a vital sector, it has long been overlooked in planning and development efforts, leading
to significant underutilization of its potential each year. According to Aslam et al. [7], this persistent
issue stems from the continued reliance on outdated, centuries-old farming practices, which
contribute to low crop yields and ongoing financial hardships for farmers. Remote sensing
technology can play a vital role in addressing this problem by providing precise information
about crop yields and other relevant parameters. It can also aid in land cover and land use
classification [8] over large spatial areas.

Yan et al. [9] highlighted the potential of LiDAR technology as a powerful asset for
land cover classification, emphasizing its effectiveness in enhancing monitoring and
surveillance capabilities.

Recognizing its importance, it has also been observed that various machine learning
models demonstrate improved performance when trained on carefully filtered and relevant
features. Moreover, the filtered features also help in decreasing the time and model complexity
since the model won’t be fed with the complete dataset. [10] Much appreciation is seen in
different research work for feature extraction using different robust techniques, and the
Pearson correlation method is one of them. The integration of the Principal Component (PC)
method with various machine learning algorithms has demonstrated enhanced performance
in feature selection [11].

Methodology
Our Proposed Framework:

In our proposed framework, we have worked mainly on our dataset in order to
extract maximum features. In total, four setups were created for experimentation.
Furthermore, we have compared our results with a simple random forest and a gradient
boosting classifier. Figure 1 shows the complete flowchart of the proposed methodology.
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Dataset Details:
Dataset Used:

For this study, we utilized a comprehensive dataset primarily composed of multi-
temporal Sentinel-2 satellite imagery, complemented by ground truth data for diverse crop
types. Sentinel-2 imagery was chosen due to its high spatial resolution (10m for visible
and near-infrared bands), frequent revisit time (5 days with two satellites), and a wide
range of spectral bands, which are crucial for detailed agricultural monitoring and crop
discrimination.

Data Acquisition:

Satellite Imagery: Sentinel-2 Level-2A products, which are atmospherically
corrected bottom-of-atmosphere reflectance data, were acquired for the growing season
of [Specify Year(s), e.g., 2023] covering the study area of [Specify Study Area, e.g., a
specific agricultural region in Pakistan]. Images were selected to ensure minimal cloud
cover, and a time series approach was adopted to capture the phenological development
of different crops throughout the season.

Ground Truth Data: Corresponding ground truth data was collected through [Specify
Method, e.g., extensive field surveys, farmer interviews, or high-resolution drone imagery]
during the same growing season. This data included precise geographical coordinates and
the corresponding crop type for numerous sample plots within the study area. The ground
truth dataset comprised [Specify Number| distinct crop classes, including [List examples
of crop types, e.g., wheat, maize, rice, cotton, sugarcane, vegetables, and orchards].
Dataset Characteristics:

Temporal Resolution: Images were collected at approximately [Specify Frequency, e.g.,
10-day or 15-day] intervals, providing a dense time series that allowed for the observation
of crop growth stages and spectral changes over time. This temporal density is critical for
distinguishing between crops with similar spectral signatures but different phenological
cycles.

Spatial Resolution: The primary bands used (Blue, Green, Red, and Near-Infrared) have
a 10-meter spatial resolution, enabling fine-scale mapping of agricultural fields.

Spectral Bands: The Sentinel-2 Multispectral Instrument (MSI) provides 13 spectral
bands, from visible and near-infrared to short-wave infrared. For this study, we primarily
focused on bands relevant for vegetation analysis, including B2 (Blue), B3 (Green), B4
(Red), B5 (Vegetation Red Edge 1), B6 (Vegetation Red Edge 2), B7 (Vegetation Red
Edge 3), B8 (Near-Infrared), BSA (Narrow Near-Infrared), B11 (Short-Wave Infrared 1),
and B12 (Short-Wave Infrared 2).

Dataset Size: The final dataset consisted of [Specify Number, e.g., X gigabytes or Y
images| of Sentinel-2 imagery and [Specify Number, e.g., Z ground truth points or
polygons] for training and validation.

Data Preprocessing:

Before feature engineering and classification, the Sentinel-2 imagery underwent
several preprocessing steps:

Atmospheric Correction: Sentinel-2 Level-2A products were used, which are already
atmospherically corrected, providing surface reflectance values.

Cloud and Cloud Shadow Masking: Pixels affected by clouds and cloud shadows
were identified and masked out using the Scene Classification Layer (SCL) provided with
Sentinel-2 Level-2A products, or through advanced cloud detection algorithms.
Geometric Correction: All images were co-registered to ensure accurate alignment across
different acquisition dates.

Resampling: If necessary, bands with different spatial resolutions (e.g., 20m and 60m
bands) were resampled to a common 10m resolution to ensure consistency across all
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features.
Our Proposed Framework:

In our proposed framework, we have worked mainly on our dataset in order to
extract maximum features. In total, four setups were created for experimentation.
Furthermore, we have compared our results with a simple random forest and a gradient
boosting classifier.

Setup 1:

For this setup, the widely recognized statistical technique, Pearson correlation,
represented by the symbol ‘t’, was utilized.

It ranges from -1.0 to +1.0. The closer r is to +1 or -1, the more closely the two
variables are related.

The entire dataset was processed using this formula to assess the degree of
correlation between the various spectral bands of each satellite image and their
corresponding labels.

Initially, all bands that exhibited negative correlation values were discarded, as
illustrated in Figure 2. All bands with positive values were then further divided into two
sets. In Set 1, all features with a correlation threshold greater than 0.08 were selected, as
shown in Figure 3. In contrast, Set 2 included features with correlation values ranging
between 0.08 and 0.05.

Setup 2:

For Setup 2, the chi-squared test was employed. This statistical method is commonly
used to compare observed outcomes with expected results, helping to determine the
significance of the relationships between variables.

This test was primarily employed to determine whether two variables are
correlated or independent of each other. It can also assess the goodness-of-fit between a

theoretical frequency distribution and an observed frequency distribution.
| o~ (Ok — EW)?

== - (1)
ﬁl",. | E)

i

Were

¢ = Degtrees of freedom
O = Observed Values
E = Expected Values

The chi-square test was applied to identify the K-best features within the entire dataset.
As a result, two feature sets were generated: Set 3, containing the top 10 features, and Set 4,
comprising the top 21 features. The selection of the top 10 features, as used in Set 3, is
supported by several previous studies and has proven to be an effective criterion. For Set 4,
the dataset was divided into four equal parts, and the number of features selected was based on
the size of one-fourth of the dataset, ensuring a proportional and balanced feature selection
approach.

Setup 3:

In this setup, we utilized one of the most widely used filtering techniques, known
as Information Gain. These types of methods offer several advantages, particularly their
computational efficiency, which makes them well-suited for handling high-dimensional
datasets. Additionally, they are known for their speed and simplicity, making them ideal
for initial feature selection.

Filter methods pick up the intrinsic properties of the features measured via
univariate statistics instead of cross-validation performance.

Information gain, as shown in equation (2), is mainly used in decision tree
algorithms to decide whether to split the branch of the tree in two, mainly which feature
among the data set should be used as the root node based on their entropy values, as
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shown in equation (3). The Information Gain method was employed for feature selection
by evaluating the relationship between each variable and the target label, helping to
identify the most relevant features for the model.
Gain(S,4) = E(S) Y. ‘|S| C_E(Sv) (2
ve(A4)

Were
Entropy(S) = %Z —Pi.log2.Pi (3)

i=1
Methodological Workflow:

To make the experimental design clearer, a complete methodological workflow has
been added. The workflow begins with data acquisition from Sentinel-2 imagery, followed by
preprocessing steps such as cloud removal, resampling, and normalization. After this stage,
four different feature engineering techniques are applied (correlation analysis, chi-square test,
information gain, and extra tree classifier). Fach resulting feature set is then evaluated using
Random Forest and Gradient Boosting classifiers. Finally, classification results are validated
using multiple metrics and statistical significance tests.

\G'°“C";’u£cr§§;1”a‘aj—>| JSON __ |—>[DataCleansing—>{  KML __|—>{ Shape Files }T

v

Training Data

I
! ! | }

Correlation Chi Square Info Gain Extra Tree
Classifier

v v
\Set1\/Selt2/ \saa\/sm/ /%57 sete /

Standardized Data, Data Without
Standardization

Accuracy Assessment

Figure 1. Methodological Workflow.
Data Acquisition: Sentinel-2 multispectral imagery collection and ground truth survey data.
Preprocessing: cloud and shadow masking, band resampling, and normalization.
Feature Engineering: generation of feature subsets using Pearson correlation, Chi-square
test, Information Gain, and Extra Tree Classifier.
Model Training: classification using Random Forest and Gradient Boosting algorithms.
Validation & Analysis: performance evaluation using accuracy, precision, recall, Fl-score,
and significance tests (t-test/ ANOVA).
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Figure 3. Greater than 0.8
Setup 4:

This is the last setup for our experimental purpose. In this setup, we have used an
ensemble learning technique, which matches the outcomes of multiple decorrelated
decision trees collected in a forest for classification, called an extremely randomized tree
or extra tree classifier. The Extra Trees Forest algorithm builds each decision tree using
the original training sample. At each test node, a random subset of k features is provided
to each tree, and the best feature is chosen based on certain mathematical criteria to split
the data.

By utilizing this random sample of features, the algorithm generates multiple
decision trees that are decorrelated from each other. To carry out feature selection using
the forest-based structure, the normalized total reduction in the splitting criterion (such
as the Gini Index, if used) is calculated for each feature during the construction of the
forest. This reduction reflects the importance of each feature in the decision-making
process across all trees in the ensemble. This value is called the Gini Importance of the
teature.

EEE LRI BEEEEE i EPANEE 2 EE

Figure 4. Using the Information gair; threshold set to greater than 0.5
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Trained Classifier:

After processing the complete dataset and creating various subsets, we are now
prepared to proceed with the experimental phase and evaluate the performance of each
selected feature set. In order to check the accuracy of sub-datasets, random forest and
gradient boosting classifiers were selected, which were then fit on the proposed models,
respectively, to check their results. Random Forest was employed with a total of 100
estimators, which determines the number of decision trees used within the classifier.
Other parameters, such as maximum depth and splitting criterion, were kept at their
default settings. On the other hand gradient boosting classifier was used with parameters
of 100 estimators. Learning rate was set to 0.5. Maxdepth was used 20 with a null random
state.

Validation Criteria:

Given the complexity of this aspect, a comprehensive understanding of the data is
essential, and relying solely on overall accuracy is inadequate for validating the credibility of
the classifier.

Therefore, various parameters were evaluated to assess its validity, which are
outlined below;

Precision:

Precision measures the accuracy of the classifier by determining the ratio of true

positives to the sum of true positives and false positives.
True Positive

Precision = — —
True Positive+False Positive

Recall:
Recall assesses the effectiveness of the classifier by indicating its ability to identify
all relevant instances. It is calculated as the ratio of true positives to the sum of true

positives and false negatives for each class.
True Positive
Recall =

True Positive+False Negative

F1-Score:
It is the weighted harmonic mean of precision and recall, ranging from 1.0 to 0.0,
where 1.0 is a good F1 score and 0.0 is the worst case.
(Recall*Precision)
F1Score =2 *

(Recall+Precision)
Overall-Accuracy:
It is the ratio of the sum of all correctly classified training data pixels to the total

number of training data pixels.
Number of all correctly classified Pixels

*100

Overall Accuracy =

Results And Discussion
Based on our defined validation criteria, we evaluated the performance of each of
the different data subsets to assess their effectiveness and reliability. It was observed that

Total Number of Pixels
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feature engineering techniques have a great impact on our results. Furthermore, the
normalized data has further improved our accuracy. Table 1 and Table 2 present the
detailed classification reports generated by applying the complete dataset—without any
feature extraction—to the Random Forest and Gradient Boosting classifiers, respectively.
The models achieved overall accuracies of 89% for Random Forest and 91% for Gradient
Boosting.

Table 1. Results Complete Data with Random Forest.

Precision | recall | fl-score | vupport
Cucumber 0.88 0.91 0.88 3918
G.irlic 0.91 0.89 0.91 1978
Melon 0.89 0.89 0.89 2527
Lychcc 0.88 0.90 0.88 13061
Other Vegetation 0.89 0.89 0.87 4931
Sugarcane 0.9! 0.87 0.90 2722
Tobacco 0.91 0.86 0.90 4406
Tomato 0.88 0.88 089 2098
Urban 0.89 0.89 0.88 3340
Water Canals 0.91 0.88 0.98 327
Wheat 0.88 0.90 0.89 4762
Accuracy 0.89 32370
Macro Avg 0.91 0.91 0.91 32370
Weighted Avg 0.91 0.91 0.91 32370

Table 2. Results of Complete Data with Gradient Boosting,.

Precision | recall | fl-score | support
Cucumber 0.90 091 0.89 3918
Gatlic 091 0.86 0.83 1978
Melon 0.89 0.84 091 2527
Lychee 0.86 0.89 091 1361
Other Vegetation 0.95 0.95 0.96 4931
Sugarcane 092 090 | 093 2722
Tobacco 0.95 0.86 0.84 4406
Tomato 0.84 091 0.92 2098
Utban 091 0.92 0.93 3340
Water Canals 0.96 0.95 0.95 327
Wheat 091 0.93 0.92 4762
Accuracy 091 | 32370
Macro Avg 091 0.89 092 | 32370
Weighted Avg 0.89 0.86 091 32370

Tables 3 and 4 illustrate information regarding our proposed idea. A detailed
classification table in these two tables can be seen, where the comparison of different sub-
datasets can be seen. Among all the feature sets, set 1 demonstrated the highest accuracy
across both classifiers. This set was generated using the Pearson correlation method,
highlighting its effectiveness in selecting the most relevant features for classification.
Opverall, accuracy can be seen as improved when the algorithms were applied on different
subsets, which has proved that featuring is a great art and can show remarkable progress
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Table 3. Random Forest Classifier Results with All Sets.

0 1 2 3 4 5 6 7 8 9 10 Acc M-Avg W-Avg
Presision | Set1 |0.99 | 0.99 0.99 0.99 10.99 0.99 0.99 0.99 10.99 0.99 |0.99 0.96 0.96
Set2 |0.94 |0.92 0.97 1093 |0.97 0.97 0.91 0.98 |0.94 0.89 | 0.98 0.89 0.94
Set3 | 094 |0.95 098 1094 097 0.96 0.95 0.98 |0.97 0.89 | 0.96 0.91 0.95
Set4 |0.95 |0.96 0.96 |0.95 |094 0.93 0.95 0.94 |0.96 0.92 |0.95 0.94 0.94
Set5 |0.95 |0.94 0.95 0.96 | 094 0.94 0.95 0.93 10.93 091 |0.94 0.93 0.95
Set6 | 092 |0.93 0.92 1093 |0.93 0.92 0.94 0.94 10.95 0.88 |0.93 0.96 0.96
Recall Set1 ]0.98 |0.98 0.99 0.99 10.99 0.97 0.98 0.99 10.99 0.99 |0.98 0.94 0.96
Set2 |0.98 |0.95 0.93 0.95 |0.97 0.97 0.92 0.94 ]0.92 0.93 |0.92 0.92 0.94
Set3 | 0.96 | 0.96 0.95 0.95 |0.94 0.94 0.9 0.93 1092 091 |0.93 0.94 0.94
Set4 |0.93 |0.94 0.93 0.95 10.96 0.98 0.95 0.93 |0.91 0.93 |0.96 0.91 0.94
Set5 | 0.95 |0.96 096 |096 |09 0.94 0.98 0.96 |0.97 0.95 | 0.96 0.91 0.95
Set6 | 0.93 |0.94 0.91 0.93 |0.97 0.98 0.98 0.93 |0.91 0.92 | 0.94 0.95 0.96
F1 Scote |Set1 | 0.98 | 0.96 0.98 1098 |0.96 0.99 0.99 0.97 10.99 0.99 |0.99 0.99 0.96 0.98
Set2 |0.93 |0.96 0.96 094 |0.96 0.94 0.93 0.96 |0.99 0.98 | 0.92 0.95 0.92 0.94
Set3 |0.98 |0.95 096 093 |094 0.93 0.92 0.93 ]0.95 0.97 |0.92 0.96 0.93 0.95
Set4 |0.96 | 0.95 0.95 0.94 10.96 0.96 0.94 0.95 |0.94 0.96 | 0.94 0.95 0.92 0.94
Set5 093 |09 0.94 | 0.91 0.93 0.97 0.98 0.98 |0.93 091 |0.92 0.94 0.91 0.94
Set6 093 |09 094 092 |094 0.94 0.93 0.95 |0.94 0.92 | 0.94 0.93 0.89 0.93
Support Set1 | 3918 | 1973 | 2576 | 1437 | 4771 | 2735 | 4463 | 2173 | 3322 | 354 | 4663 | 32370 | 32370 32370
Set2 |3918 | 1973 | 2576 | 1437 | 4771 | 2735 | 4463 | 2173 | 3322 | 354 | 4663 | 32370 | 323 32370
Set3 | 3918 | 1973 | 2576 | 1437 | 477 2735 | 4463 | 2173 | 3322 | 354 | 4663 | 32370 | 32370 32370
Set4 | 3918 | 1973 | 2576 | 1437 | 4771 | 2735 | 4463 | 2173 | 3322 | 354 | 4663 | 32370 | 32370 32370
Set5 | 3918 | 1973 | 2576 | 1437 | 4771 | 2735 | 4463 | 2173 | 3322 | 354 | 4663 | 32370 | 32370 32370
Set6 | 3918 | 1973 | 2576 | 1437 | 4771 | 2735 | 4463 | 2173 | 3322 | 354 | 4663 | 32370 | 32370 32370
Table 4. Gradient Boosting Classifier Results with All Sets
0 1 2 3 4 5 6 7 8 9 10 Acc | M-Avg | W-Avg
Precision
Set 1 0.94 0.95 0.95 0.98 094 | 097 | 096 | 095 | 098 | 091 | 0.99 0.96 0.96
Set 2 0.94 0.92 0.94 0.96 094 | 094 | 096 | 094 | 097 | 0.35 | 0.97 0.89 0.94
Set 3 0.94 0.94 0.92 0.97 0.93 0.97 | 097 | 091 | 098 | 0.48 | 0.98 0.91 0.95
Set 4 0.91 0.93 0.94 0.95 0.86 0.99 | 096 | 0.96 | 0.85 | 0.94 0.94 0.94
Set 5 0.96 0.94 0.93 0.96 094 | 098 | 094 | 094 | 097 | 0.67 | 0.98 0.93 0.95
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0.95 0.97 0.93 0.98 0.95 098 | 095 | 096 | 098 | 0.94 | 0.97 0.96 0.96
Recall
Set 1 0.97 0.94 0.95 0.98 0.95 0.97 | 096 | 093 | 0.96 | 0.71 | 0.99 0.94 0.96
Set 2 0.98 0.92 0.96 0.96 0.94 0.96 | 093 | 0.92 | 0.83 0.8 0.98 0.92 0.94
Set 3 0.96 0.93 0.95 0.95 0.93 0.97 | 095 | 0.86 | 0.93 | 0.88 | 0.98 0.94 0.94
Set 4 0.97 0.92 0.92 0.86 0.94 092 | 095 0.89 | 096 | 0.71 | 0.97 0.91 0.94
Set 5 0.97 0.95 0.95 0.96 0.94 0.97 | 096 | 0.88 | 0.96 | 0.42 | 0.99 0.91 0.95
Set 6 0.97 0.94 0.95 0.95 0.94 096 | 098 | 091 | 0.97 | 0.94 | 0.99 0.95 0.96

F1 Score

Set 1 0.95 0.95 0.95 0.98 0.94 0.97 | 096 | 0.94 | 0.98 0.8 0.99 | 0.96 0.95 0.96
Set 2 0.96 0.92 0.95 0.96 0.94 095 | 094 | 093 | 0.89 | 0.49 | 0.98 | 0.94 0.9 0.94

Set 3 0.95 0.93 0.93 0.96 093 | 097 | 096 | 0.88 | 0.95 | 0.62 | 0.98 | 0.94 0.92 0.95

Set 4 0.94 093 | 093 0.9 0.9 096 | 097 1092 | 096 | 0.77 | 0.96 | 0.94 0.92 0.94

Set 5 0.96 0.95 0.94 0.96 094 | 097 | 095| 091 | 096 | 0.52 | 0.98 | 0.95 0.91 0.95

Set 6 0.96 095 |1 094 | 097 | 094 | 097 | 096 | 094 | 098 | 0.94 | 098 | 0.96 0.96 0.96
Support
Set 1 3903 1973 | 2576 | 1437 | 4771 | 2735 | 4463 | 2173 | 3322 | 354 | 4663 | 32370 | 32370 | 32370

Set 2 3964 1928 | 2532 | 1401 | 4840 | 2810 | 4328 | 2217 | 3313 | 323 | 4714 | 32370 | 32370 | 32370

Set 3 3929 1962 | 2540 | 1448 | 4860 | 2676 | 4332 | 2166 | 3322 | 312 | 4823 | 32370 | 32370 | 32370

Set 4 3922 2002 | 2572 | 1407 | 4842 | 2705 | 4426 | 2162 | 3251 | 350 | 4731 | 32370 | 32370 | 32370

Set 5 3918 2004 | 2510 | 1456 | 4738 | 2868 | 4492 | 2176 | 3234 | 328 | 4646 | 32370 | 32370 | 32370

Set 6 3918 1973 | 2576 | 1437 | 4771 | 2735 | 4463 | 2173 | 3322 | 354 | 4663 | 32370 | 32370 | 32370
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Conclusion:

Remote sensing has shown great progress in the field of land cover and land use
classification over the years. Machine learning techniques like random forests and
boosting methods have been proven to be of worth in the classification of remotely sensed
datasets, but in order to take the full advantage of remote sensing and machine learning,
we need to do some feature engineering and hand-pick some features from the
multispectral data provided by the satellite. Some of the important features of engineering
techniques are used in the manuscript.

The purpose of this research was to explore the importance of feature engineering
and feature selection.
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