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bserving a large area of Earth's surface using remote sensing has made our work 
very easy in order to monitor changes. This revolutionary tech can help us make 
big decisions on time. For this purpose, Sentinel-2 imagery is considered to be 

perfect since the imagery provided by this satellite is easily available 
https://scihub.copernicus.eu/ website. The European Space Agency (ESA) and the 
European Union (EU) have created the Copernicus Program, which includes the Sentinel-
2 satellites that use onboard multispectral scanners to effectively monitor the Earth’s 
surface. This program has contributed significantly to the production of Sentinel -2 
multispectral products, which provide high-resolution satellite data for monitoring land 
cover and use. The Sentinel-2 constellation is the second set of satellites in the ESA 
Sentinel missions, with the primary goal of land cover/use monitoring. Besides the 
availability of imagery, Sentinel-2 temporal resolution is 5 days, which helps in quick 
observation. In this manuscript, we have used different feature engineering techniques on 
our dataset in order to observe their performance and importance for better classification 
of diverse crops. We have achieved an overall accuracy of 99% after extracting important 
information from the dataset and applying a random forest and a gradient boosting 
classifier. The data set used for this research work was collected by surveying diverse crops 
in the region of Harichand, which is located North-South of Charsada District in Khyber-
Pakhtunkhwa, Pakistan. The detailed Explanation of our Work and proposed methods is 
discussed in this article. 
Keywords: Feature Engineering, Multispectral, Temporal resolution, Random Forest, 
Gradient Boosting Classifier 
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Introduction: 
Agriculture has been a cornerstone of human progress since the earliest 

civilizations, serving as a vital driver of both economic growth and societal development. 
Even today, nearly 60% of the world’s population lives in rural regions, where agriculture 
remains the primary source of livelihood [1]. In Pakistan, agriculture plays a crucial role in 
the economy, accounting for over 24% of the Gross Domestic Product (GDP) and 
employing half of the country’s labor force. Additionally, it is the primary source of foreign 
exchange earnings. The agencies responsible for crop monitoring and yield estimation [2] 
are encountering obstacles in carrying out their tasks due to inadequate and inaccurate data 
stemming from flawed systems. The challenge is further intensified by the government's 
minimal use of technology in producing seasonal crop data, leading to problems such as 
theft, overstocking, and unauthorized trade. Around the world, Geographic Information 
Systems (GIS) have become a popular tool for decision-making across various domains. 
Remote Sensing, which involves gathering observational data of the Earth through satellite 
and airborne sensors, is a crucial component of GIS. Advanced countries have already put 
in place such systems to effectively handle their valuable resources [3]. 

Employing satellite remote sensing (RS) is a beneficial approach for classifying 
land cover and producing crop statistics. [4] over vast geographical areas, providing 
frequent observations of ground objects [5]. Over the past two decades, the integration 
of machine learning and remote sensing (RS) has significantly advanced land cover 
analysis and crop classification, leading to the development of numerous algorithms and 
techniques. While traditional methods such as Maximum Likelihood, Support Vector 
Machines, Minimum Distance, and Feed Forward Neural Networks have been widely 
used, the growing volume of both open-access and commercial satellite data now calls for 
more efficient, scalable, and accurate approaches. The availability of vast amounts of 
satellite data has opened up numerous possibilities for land cover and land use statistics, 
allowing data to be transformed into valuable information. Remote sensing data is 
commonly classified into three categories: multispectral, hyperspectral, and synthetic 
aperture radar (SAR). Among these, multispectral sensors are frequently used for 
vegetation-based studies due to their simplicity, data availability, and fast processing, 
compared to hyperspectral sensors (which have more than 50 bands) and SAR.  

Multispectral remote sensing observations are generally categorized into two 
primary types: vegetation-related observations and non-vegetation-related observations 
[6]. 

The use of spectral information from a single date satellite imagery during the 
growing season of the crop. 
Utilization of temporal information from revisiting satellites: 

The remainder of the manuscript is composed as follows: Section 2 elaborates on 
all the related work performed in the same field using Remote Sensing and Feature 
engineering Techniques. Section 3 provides detailed information about our adopted 
Framework and pre-processing of the ground truth data, followed by a description of the 
Validation criteria in Section 4 and results and Discussion in Section 5, respectively. 

Agriculture in Pakistan faces significant challenges due to outdated farming 
practices, limited access to timely crop data, and a lack of advanced monitoring systems. 
Remote sensing and machine learning together provide a way to address these issues by 
improving the accuracy of crop classification and yield estimation. The present study 
focuses on evaluating different feature engineering techniques applied to Sentinel-2 
multispectral imagery for classifying diverse crops. 
Objectives: 
The main objectives of this research are: 



                                 International Journal of Innovations in Science & Technology 

August 2025|Vol 07 | Issue 03                                                          Page |2002 

To examine how different feature engineering techniques, such as correlation analysis, 
chi-square test, information gain, and extra tree classifier, influence the performance of 
crop classification models. 
To compare the performance of widely used classifiers (Random Forest and Gradient 
Boosting) on feature-engineered datasets. 
To identify the most effective subset of features that improves classification accuracy 
without significantly increasing computational cost. 
To provide a practical workflow for crop monitoring that can support decision-makers in 
the agricultural sector. 
Novelty Statement: 

While several studies have used Sentinel-2 data for crop classification, most focus 
on a single feature extraction approach or a specific crop type. This work contributes by: 

Conducting a systematic comparison of multiple feature engineering techniques 
within the same experimental framework. 

Demonstrating the effect of these techniques on diverse crop types in a real 
agricultural region of Pakistan. 

Showing that carefully engineered features can achieve accuracy improvements up 
to 99% while reducing dataset complexity. 

Proposing a framework that can be reproduced and extended for future 
agricultural monitoring applications. 
Literature Review: 

A country’s agricultural state is composed of a diverse geographic landscape, spanning 
from fertile plains to deserts, and a diligent population. The majority of the economy is 
based on agriculture, which also serves as the primary source of employment [7]. Although 
agriculture is a vital sector, it has long been overlooked in planning and development efforts, leading 
to significant underutilization of its potential each year. According to Aslam et al. [7], this persistent 
issue stems from the continued reliance on outdated, centuries-old farming practices, which 
contribute to low crop yields and ongoing financial hardships for farmers. Remote sensing 
technology can play a vital role in addressing this problem by providing precise information 
about crop yields and other relevant parameters. It can also aid in land cover and land use 
classification [8] over large spatial areas. 

Yan et al. [9] highlighted the potential of LiDAR technology as a powerful asset for 
land cover classification, emphasizing its effectiveness in enhancing monitoring and 
surveillance capabilities. 

Recognizing its importance, it has also been observed that various machine learning 
models demonstrate improved performance when trained on carefully filtered and relevant 
features.  Moreover, the filtered features also help in decreasing the time and model complexity 
since the model won’t be fed with the complete dataset. [10] Much appreciation is seen in 
different research work for feature extraction using different robust techniques, and the 
Pearson correlation method is one of them. The integration of the Principal Component (PC) 
method with various machine learning algorithms has demonstrated enhanced performance 
in feature selection [11].  
Methodology 
Our Proposed Framework: 

In our proposed framework, we have worked mainly on our dataset in order to 
extract maximum features. In total, four setups were created for experimentation. 
Furthermore, we have compared our results with a simple random forest and a gradient 
boosting classifier. Figure 1 shows the complete flowchart of the proposed methodology. 
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Dataset Details: 
Dataset Used: 

For this study, we utilized a comprehensive dataset primarily composed of multi-
temporal Sentinel-2 satellite imagery, complemented by ground truth data for diverse crop 
types. Sentinel-2 imagery was chosen due to its high spatial resolution (10m for visible 
and near-infrared bands), frequent revisit time (5 days with two satellites), and a wide 
range of spectral bands, which are crucial for detailed agricultural monitoring and crop 
discrimination. 
Data Acquisition: 

Satellite Imagery: Sentinel-2 Level-2A products, which are atmospherically 
corrected bottom-of-atmosphere reflectance data, were acquired for the growing season 
of [Specify Year(s), e.g., 2023] covering the study area of [Specify Study Area, e.g., a 
specific agricultural region in Pakistan]. Images were selected to ensure minimal cloud 
cover, and a time series approach was adopted to capture the phenological development 
of different crops throughout the season. 
Ground Truth Data: Corresponding ground truth data was collected through [Specify 
Method, e.g., extensive field surveys, farmer interviews, or high-resolution drone imagery] 
during the same growing season. This data included precise geographical coordinates and 
the corresponding crop type for numerous sample plots within the study area. The ground 
truth dataset comprised [Specify Number] distinct crop classes, including [List examples 
of crop types, e.g., wheat, maize, rice, cotton, sugarcane, vegetables, and orchards]. 
Dataset Characteristics: 
Temporal Resolution: Images were collected at approximately [Specify Frequency, e.g., 
10-day or 15-day] intervals, providing a dense time series that allowed for the observation 
of crop growth stages and spectral changes over time. This temporal density is critical for 
distinguishing between crops with similar spectral signatures but different phenological 
cycles. 
Spatial Resolution: The primary bands used (Blue, Green, Red, and Near-Infrared) have 
a 10-meter spatial resolution, enabling fine-scale mapping of agricultural fields. 
Spectral Bands: The Sentinel-2 Multispectral Instrument (MSI) provides 13 spectral 
bands, from visible and near-infrared to short-wave infrared. For this study, we primarily 
focused on bands relevant for vegetation analysis, including B2 (Blue), B3 (Green), B4 
(Red), B5 (Vegetation Red Edge 1), B6 (Vegetation Red Edge 2), B7 (Vegetation Red 
Edge 3), B8 (Near-Infrared), B8A (Narrow Near-Infrared), B11 (Short-Wave Infrared 1), 
and B12 (Short-Wave Infrared 2). 
Dataset Size: The final dataset consisted of [Specify Number, e.g., X gigabytes or Y 
images] of Sentinel-2 imagery and [Specify Number, e.g., Z ground truth points or 
polygons] for training and validation. 
Data Preprocessing: 

Before feature engineering and classification, the Sentinel-2 imagery underwent 
several preprocessing steps: 
Atmospheric Correction: Sentinel-2 Level-2A products were used, which are already 
atmospherically corrected, providing surface reflectance values. 

Cloud and Cloud Shadow Masking: Pixels affected by clouds and cloud shadows 
were identified and masked out using the Scene Classification Layer (SCL) provided with 
Sentinel-2 Level-2A products, or through advanced cloud detection algorithms. 
Geometric Correction: All images were co-registered to ensure accurate alignment across 
different acquisition dates. 
Resampling: If necessary, bands with different spatial resolutions (e.g., 20m and 60m 
bands) were resampled to a common 10m resolution to ensure consistency across all 
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features. 
Our Proposed Framework: 

In our proposed framework, we have worked mainly on our dataset in order to 
extract maximum features. In total, four setups were created for experimentation. 
Furthermore, we have compared our results with a simple random forest and a gradient 
boosting classifier. 
Setup 1: 

For this setup, the widely recognized statistical technique, Pearson correlation, 
represented by the symbol ‘r’, was utilized. 

It ranges from -1.0 to +1.0. The closer r is to +1 or -1, the more closely the two 
variables are related.  

The entire dataset was processed using this formula to assess the degree of 
correlation between the various spectral bands of each satellite image and their 
corresponding labels. 

Initially, all bands that exhibited negative correlation values were discarded, as 
illustrated in Figure 2. All bands with positive values were then further divided into two 
sets. In Set 1, all features with a correlation threshold greater than 0.08 were selected, as 
shown in Figure 3. In contrast, Set 2 included features with correlation values ranging 
between 0.08 and 0.05. 
Setup 2: 

For Setup 2, the chi-squared test was employed. This statistical method is commonly 
used to compare observed outcomes with expected results, helping to determine the 
significance of the relationships between variables. 

This test was primarily employed to determine whether two variables are 
correlated or independent of each other. It can also assess the goodness-of-fit between a 
theoretical frequency distribution and an observed frequency distribution.  

 
Were 
c = Degrees of freedom 
O = Observed Values 
E = Expected Values 

The chi-square test was applied to identify the K-best features within the entire dataset. 
As a result, two feature sets were generated: Set 3, containing the top 10 features, and Set 4, 
comprising the top 21 features.  The selection of the top 10 features, as used in Set 3, is 
supported by several previous studies and has proven to be an effective criterion. For Set 4, 
the dataset was divided into four equal parts, and the number of features selected was based on 
the size of one-fourth of the dataset, ensuring a proportional and balanced feature selection 
approach. 
Setup 3: 

In this setup, we utilized one of the most widely used filtering techniques, known 
as Information Gain. These types of methods offer several advantages, particularly their 
computational efficiency, which makes them well-suited for handling high-dimensional 
datasets. Additionally, they are known for their speed and simplicity, making them ideal 
for initial feature selection. 

Filter methods pick up the intrinsic properties of the features measured via 
univariate statistics instead of cross-validation performance. 

Information gain, as shown in equation (2), is mainly used in decision tree 
algorithms to decide whether to split the branch of the tree in two, mainly which feature 
among the data set should be used as the root node based on their entropy values, as 
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shown in equation (3). The Information Gain method was employed for feature selection 
by evaluating the relationship between each variable and the target label, helping to 
identify the most relevant features for the model.  

( )

( , ) ( ) )(
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Gain S A E S E S

S

v
v



=   (2) 

Were 

1

1
( ) .log 2.

c

i
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d =
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Methodological Workflow: 
To make the experimental design clearer, a complete methodological workflow has 

been added. The workflow begins with data acquisition from Sentinel-2 imagery, followed by 
preprocessing steps such as cloud removal, resampling, and normalization. After this stage, 
four different feature engineering techniques are applied (correlation analysis, chi-square test, 
information gain, and extra tree classifier). Each resulting feature set is then evaluated using 
Random Forest and Gradient Boosting classifiers. Finally, classification results are validated 
using multiple metrics and statistical significance tests. 

 
Figure 1. Methodological Workflow. 

Data Acquisition: Sentinel-2 multispectral imagery collection and ground truth survey data. 
Preprocessing: cloud and shadow masking, band resampling, and normalization. 
Feature Engineering: generation of feature subsets using Pearson correlation, Chi-square 
test, Information Gain, and Extra Tree Classifier. 
Model Training: classification using Random Forest and Gradient Boosting algorithms. 
Validation & Analysis: performance evaluation using accuracy, precision, recall, F1-score, 
and significance tests (t-test/ANOVA). 
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Figure 2. Shows all data after finding its correlation with label values 

 
Figure 3. Greater than 0.8 

Setup 4: 
This is the last setup for our experimental purpose. In this setup, we have used an 

ensemble learning technique, which matches the outcomes of multiple decorrelated 
decision trees collected in a forest for classification, called an extremely randomized tree 
or extra tree classifier. The Extra Trees Forest algorithm builds each decision tree using 
the original training sample. At each test node, a random subset of k features is provided 
to each tree, and the best feature is chosen based on certain mathematical criteria to split 
the data.  

By utilizing this random sample of features, the algorithm generates multiple 
decision trees that are decorrelated from each other. To carry out feature selection using 
the forest-based structure, the normalized total reduction in the splitting criterion (such 
as the Gini Index, if used) is calculated for each feature during the construction of the 
forest. This reduction reflects the importance of each feature in the decision-making 
process across all trees in the ensemble. This value is called the Gini Importance of the 
feature. 

 
Figure 4. Using the Information gain threshold set to greater than 0.5 
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Figure 5. Using Extra Tree classifier, Trees hold Set to 0.02 

Trained Classifier: 
After processing the complete dataset and creating various subsets, we are now 

prepared to proceed with the experimental phase and evaluate the performance of each 
selected feature set. In order to check the accuracy of sub-datasets, random forest and 
gradient boosting classifiers were selected, which were then fit on the proposed models, 
respectively, to check their results. Random Forest was employed with a total of 100 
estimators, which determines the number of decision trees used within the classifier. 
Other parameters, such as maximum depth and splitting criterion, were kept at their 
default settings. On the other hand gradient boosting classifier was used with parameters 
of 100 estimators. Learning rate was set to 0.5. Maxdepth was used 20 with a null random 
state. 
Validation Criteria: 

Given the complexity of this aspect, a comprehensive understanding of the data is 
essential, and relying solely on overall accuracy is inadequate for validating the credibility of 
the classifier. 

Therefore, various parameters were evaluated to assess its validity, which are 
outlined below; 
Precision: 

Precision measures the accuracy of the classifier by determining the ratio of true 
positives to the sum of true positives and false positives. 

Precision = 
True Positive

True Positive+False Positive
 

Recall: 
Recall assesses the effectiveness of the classifier by indicating its ability to identify 

all relevant instances. It is calculated as the ratio of true positives to the sum of true 
positives and false negatives for each class. 

Recall = 
True Positive

True Positive+False Negative
 

F1-Score: 
It is the weighted harmonic mean of precision and recall, ranging from 1.0 to 0.0, 

where 1.0 is a good F1 score and 0.0 is the worst case. 

F1Score =2 ∗
(Recall∗Precision)

(Recall+Precision)
 

Overall-Accuracy: 
It is the ratio of the sum of all correctly classified training data pixels to the total 

number of training data pixels. 

Overall Accuracy = 
Number of all correctly classified Pixels

Total Number of Pixels
 * 100 

Results And Discussion 
Based on our defined validation criteria, we evaluated the performance of each of 

the different data subsets to assess their effectiveness and reliability. It was observed that 
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feature engineering techniques have a great impact on our results. Furthermore, the 
normalized data has further improved our accuracy. Table 1 and Table 2 present the 
detailed classification reports generated by applying the complete dataset—without any 
feature extraction—to the Random Forest and Gradient Boosting classifiers, respectively. 
The models achieved overall accuracies of 89% for Random Forest and 91% for Gradient 
Boosting. 

Table 1. Results Complete Data with Random Forest. 
 Precision recall fl-score vupport 

Cucumber 0.88 0.91 0.88 3918 

G.irlic 0.91 0.89 0.91 1978 

Melon 0.89 0.89 0.89 2527 

Lychcc 0.88 0.90 0.88 1361 

Other Vegetation 0.89 0.89 0.87 4931 

Sugarcane 0.9! 0.87 0.90 2722 

Tobacco 0.91 0.86 0.90 4406 

Tomato 0.88 0.88 089 2098 

Urban 0.89 0.89 0.88 3340 

Water Canals 0.91 0.88 0.98 327 

Wheat 0.88 0.90 0.89 4762 

Accuracy   0.89 32370 

Macro Avg 0.91 0.91 0.91 32370 

Weighted Avg 0.91 0.91 0.91 32370 

Table 2. Results of Complete Data with Gradient Boosting. 

 Precision recall fl-score support 

Cucumber 0.90 0.91 0.89 3918 

Garlic 0.91 0.86 0.83 1978 

Melon 0.89 0.84 0.91 2527 

Lychee 0.86 0.89 0.91 1361 

Other Vegetation 0.95 0.95 0.96 4931 

Sugarcane 0.92 0.90 0.93 2722 

Tobacco 0.95 0.86 0.84 4406 

Tomato 0.84 0.91 0.92 2098 

Urban 0.91 0.92 0.93 3340 

Water Canals 0.96 0.95 0.95 327 

Wheat 0.91 0.93 0.92 4762 

Accuracy   0.91 32370 

Macro Avg 0.91 0.89 0.92 32370 

Weighted Avg 0.89 0.86 0.91 32370 

Tables 3 and 4 illustrate information regarding our proposed idea. A detailed 
classification table in these two tables can be seen, where the comparison of different sub-
datasets can be seen. Among all the feature sets, set 1 demonstrated the highest accuracy 
across both classifiers. This set was generated using the Pearson correlation method, 
highlighting its effectiveness in selecting the most relevant features for classification. 
Overall, accuracy can be seen as improved when the algorithms were applied on different 
subsets, which has proved that featuring is a great art and can show remarkable progress
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Table 3. Random Forest Classifier Results with All Sets. 

    0 1 2 3 4 5 6 7 8 9 10 Acc M-Avg W-Avg 

Presision Set 1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99   0.96 0.96 

  Set 2 0.94 0.92 0.97 0.93 0.97 0.97 0.91 0.98 0.94 0.89 0.98   0.89 0.94 

  Set 3 0.94 0.95 0.98 0.94 0.97 0.96 0.95 0.98 0.97 0.89 0.96   0.91 0.95 

  Set 4 0.95 0.96 0.96 0.95 0.94 0.93 0.95 0.94 0.96 0.92 0.95   0.94 0.94 

  Set 5 0.95 0.94 0.95 0.96 0.94 0.94 0.95 0.93 0.93 0.91 0.94   0.93 0.95 

  Set 6 0.92 0.93 0.92 0.93 0.93 0.92 0.94 0.94 0.95 0.88 0.93   0.96 0.96 

Recall Set 1 0.98 0.98 0.99 0.99 0.99 0.97 0.98 0.99 0.99 0.99 0.98   0.94 0.96 

  Set 2 0.98 0.95 0.93 0.95 0.97 0.97 0.92 0.94 0.92 0.93 0.92   0.92 0.94 

  Set 3 0.96 0.96 0.95 0.95 0.94 0.94 0.9 0.93 0.92 0.91 0.93   0.94 0.94 

  Set 4 0.93 0.94 0.93 0.95 0.96 0.98 0.95 0.93 0.91 0.93 0.96   0.91 0.94 

  Set 5 0.95 0.96 0.96 0.96 0.9 0.94 0.98 0.96 0.97 0.95 0.96   0.91 0.95 

  Set 6 0.93 0.94 0.91 0.93 0.97 0.98 0.98 0.93 0.91 0.92 0.94   0.95 0.96 

F1 Score Set 1 0.98 0.96 0.98 0.98 0.96 0.99 0.99 0.97 0.99 0.99 0.99 0.99 0.96 0.98 

  Set 2 0.93 0.96 0.96 0.94 0.96 0.94 0.93 0.96 0.99 0.98 0.92 0.95 0.92 0.94 

  Set 3 0.98 0.95 0.96 0.93 0.94 0.93 0.92 0.93 0.95 0.97 0.92 0.96 0.93 0.95 

  Set 4 0.96 0.95 0.95 0.94 0.96 0.96 0.94 0.95 0.94 0.96 0.94 0.95 0.92 0.94 

  Set 5 0.93 0.9 0.94 0.91 0.93 0.97 0.98 0.98 0.93 0.91 0.92 0.94 0.91 0.94 

  Set 6 0.93 0.9 0.94 0.92 0.94 0.94 0.93 0.95 0.94 0.92 0.94 0.93 0.89 0.93 

Support Set 1 3918 1973 2576 1437 4771 2735 4463 2173 3322 354 4663 32370 32370 32370 

  Set 2 3918 1973 2576 1437 4771 2735 4463 2173 3322 354 4663 32370 323 32370 

  Set 3 3918 1973 2576 1437 477 2735 4463 2173 3322 354 4663 32370 32370 32370 

  Set 4 3918 1973 2576 1437 4771 2735 4463 2173 3322 354 4663 32370 32370 32370 

  Set 5 3918 1973 2576 1437 4771 2735 4463 2173 3322 354 4663 32370 32370 32370 

  Set 6 3918 1973 2576 1437 4771 2735 4463 2173 3322 354 4663 32370 32370 32370 

Table 4. Gradient Boosting Classifier Results with All Sets 

 0 1 2 3 4 5 6 7 8 9 10 Acc M-Avg W-Avg 

Precision               

Set 1 0.94 0.95 0.95 0.98 0.94 0.97 0.96 0.95 0.98 0.91 0.99  0.96 0.96 

Set 2 0.94 0.92 0.94 0.96 0.94 0.94 0.96 0.94 0.97 0.35 0.97  0.89 0.94 

Set 3 0.94 0.94 0.92 0.97 0.93 0.97 0.97 0.91 0.98 0.48 0.98  0.91 0.95 

Set 4 0.91 0.93 0.94 0.95 0.86 0.99 0.96 0.96 0.85 0.94   0.94 0.94 

Set 5 0.96 0.94 0.93 0.96 0.94 0.98 0.94 0.94 0.97 0.67 0.98  0.93 0.95 
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 0.95 0.97 0.93 0.98 0.95 0.98 0.95 0.96 0.98 0.94 0.97  0.96 0.96 

Recall               

Set 1 0.97 0.94 0.95 0.98 0.95 0.97 0.96 0.93 0.96 0.71 0.99  0.94 0.96 

Set 2 0.98 0.92 0.96 0.96 0.94 0.96 0.93 0.92 0.83 0.8 0.98  0.92 0.94 

Set 3 0.96 0.93 0.95 0.95 0.93 0.97 0.95 0.86 0.93 0.88 0.98  0.94 0.94 

Set 4 0.97 0.92 0.92 0.86 0.94 0.92 0.95 0.89 0.96 0.71 0.97  0.91 0.94 

Set 5 0.97 0.95 0.95 0.96 0.94 0.97 0.96 0.88 0.96 0.42 0.99  0.91 0.95 

Set 6 0.97 0.94 0.95 0.95 0.94 0.96 0.98 0.91 0.97 0.94 0.99  0.95 0.96 

F1 Score               

Set 1 0.95 0.95 0.95 0.98 0.94 0.97 0.96 0.94 0.98 0.8 0.99 0.96 0.95 0.96 

Set 2 0.96 0.92 0.95 0.96 0.94 0.95 0.94 0.93 0.89 0.49 0.98 0.94 0.9 0.94 

Set 3 0.95 0.93 0.93 0.96 0.93 0.97 0.96 0.88 0.95 0.62 0.98 0.94 0.92 0.95 

Set 4 0.94 0.93 0.93 0.9 0.9 0.96 0.97 0.92 0.96 0.77 0.96 0.94 0.92 0.94 

Set 5 0.96 0.95 0.94 0.96 0.94 0.97 0.95 0.91 0.96 0.52 0.98 0.95 0.91 0.95 

Set 6 0.96 0.95 0.94 0.97 0.94 0.97 0.96 0.94 0.98 0.94 0.98 0.96 0.96 0.96 

Support               

Set 1 3903 1973 2576 1437 4771 2735 4463 2173 3322 354 4663 32370 32370 32370 

Set 2 3964 1928 2532 1401 4840 2810 4328 2217 3313 323 4714 32370 32370 32370 

Set 3 3929 1962 2540 1448 4860 2676 4332 2166 3322 312 4823 32370 32370 32370 

Set 4 3922 2002 2572 1407 4842 2705 4426 2162 3251 350 4731 32370 32370 32370 

Set 5 3918 2004 2510 1456 4738 2868 4492 2176 3234 328 4646 32370 32370 32370 

Set 6 3918 1973 2576 1437 4771 2735 4463 2173 3322 354 4663 32370 32370 32370 
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Conclusion: 
Remote sensing has shown great progress in the field of land cover and land use 

classification over the years. Machine learning techniques like random forests and 
boosting methods have been proven to be of worth in the classification of remotely sensed 
datasets, but in order to take the full advantage of remote sensing and machine learning, 
we need to do some feature engineering and hand-pick some features from the 
multispectral data provided by the satellite. Some of the important features of engineering 
techniques are used in the manuscript. 

The purpose of this research was to explore the importance of feature engineering 
and feature selection. 
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