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The emergence of revolutionizing technologies such as Artificial Intelligence and the 
Internet of Things, and their integration into the automotive industry has brought 
innovations and made the lives of common people easier and more complacent. 

Leveraging the advanced intelligent services provided by connected and autonomous vehicles, 
the driving experience is much more convenient and effortless. The CAN (Controller Area 
Network) protocol is the most deployed protocol in in-vehicular communications in the ICVs 
(intelligent connected vehicles) environment due to its efficiency and speed. However, it lacks 
basic security mechanisms like encryption and authentication, making it vulnerable to various 
cyber threats. In this article, we have presented a novel, robust, cutting-edge AI-based 
Intrusion detection system for detecting various seen and unseen cyber-attacks in in-vehicular 
networks to ensure security. Two main models deployed in the proposed framework are RNN 
for dealing with temporal dependencies in the CAN traffic and LightGBM for efficient feature 
extraction. The experimental results show that the hybrid of these two models performs better 
in terms of various evaluation metrics, with its accuracy being 94% in classifying the CAN 
traffic into normal and different attack classes. A comparison with the existing state-of-the-art 
approaches shows that our proposed approach is more robust and secure, with it being 
deployed in a Federated Learning FL environment. 
Keywords: Intrusion detection; IDS, IVN; In-vehicular communication; ML; DL; Cyber-
attacks; CAN bus; Federated Learning (FL); Intelligent connected vehicles (ICVs). 
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Introduction: 
Intelligent Transportation Systems (ITSs) have recently become a major focus of 

research, driven by their ability to offer smart and automated solutions within the 
transportation industry. ITSs can address a number of issues that arise during the movement 
of people and commodities, including safety, trip time, and hazardous emissions, by fusing 
wireless devices with sensing technologies and sophisticated information and communication 
technologies (ICTs)[1]. These systems are versatile and can be implemented across various 
modes of transport, including cars, trucks, buses, trains, ships, and aircraft[2]. 

Reliable communication technologies like satellite and cellular networks are essential 
to all ITS deployments[3]. Nowadays, electronics like smartphones and technologies like Wi-
Fi are used to connect cars. 70% of trucks and light-duty vehicles are expected to have internet 
connections by 2023. Electronic control units (ECUs) make driving and traveling easier by 
leveraging their huge usage in automotive networking[4]. Enhancing intelligent services and 
user safety in vehicles often involves increasing the number of Electronic Control Units 
(ECUs). However, this added complexity and connectivity also heightens the risk of security 
vulnerabilities[5]. 

Electronic components have largely taken the role of mechanical ones in connected 
and autonomous vehicles (CAVs) or autonomous vehicles. Numerous Electronic Control 
Units (ECUs) in these cars are connected by a variety of common automotive in-vehicle 
communication protocols, including FlexRay, Local Interconnect Network (LIN), Controller 
Area Network (CAN), and Media Oriented System Transport (MOST). CAN is regarded as 
the de facto protocol for in-vehicle communication among these protocols because of its 
features given as, noise cancellation, convenience to use, and high speed. It was first created 
for industrial machinery, but in-vehicle network communications have now embraced it[6]. 
An effective and dependable connection between ECUs is made possible via the controller 
area network (CAN) bus. The Controller Area Network (CAN), widely adopted as the 
standard for in-vehicle communication, does not include essential security mechanisms like 
message encryption or sender authentication. As a result, receiving nodes on the CAN bus are 
unable to verify the authenticity of incoming messages. As a result, CAN is vulnerable to 
various cyber threats, including isolation, impersonation, and denial-of-service (DoS) attacks 
[5]. A typical CAN network is presented in Figure 1. 

 
Figure 1. A typical CAN Network in a Car connecting various ECUs 

The heavy demand on the vehicle's limited processing resources and the resulting 
increased latency are the primary reasons for not adopting these security measures in in-vehicle 
networks, which may cause a failure to achieve important safety-related deadlines [7][8]. 
Therefore, to ensure ease of implementation, every security mechanism should be lightweight 
[9]. 

Additionally, modern cars' interconnectedness creates attack surfaces that make them 
vulnerable to hackers. It is possible to physically or remotely access the attack surfaces. A USB, 
CD player, onboard diagnostic (OBD)-II port, and other devices can be used to get physical 
access. Furthermore, long-range wireless technologies like Wi-Fi and long-term evolution 
(LTE) as well as short-range wireless technologies like Bluetooth and radio frequency 
identification (RFID) can be used to provide remote access. As a result, the system is 
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susceptible to several types of cyberattacks, which could have serious repercussions, including 
the loss of human life [10][11]. If a hacker gains access to the CAN bus system and transmits 
malicious messages, it can lead to serious consequences. For instance, unauthorized 
interference with critical vehicle functions such as steering, door locks, and braking poses a 
significant safety risk [9]. 

Vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-everything 
(V2X) are the three primary forms of vehicular communication that facilitate road safety 
applications like instantaneous communication for emergency electric brake light warnings, 
lane change warning/blind spot warning, and collision warnings. Technology known as V2X 
makes it easier for cars and other infrastructures to communicate. Vehicle-to-vehicle (V2V) 
communication enables vehicles to exchange information with other vehicles, including 
destinations, velocity, and current location. Information about surrounding moving vehicles 
may also be included in V2V messages sent or received, enabling the driver to quickly identify 
vehicles in their blind spot. Conversely, V2I is a form of two-way communication that allows 
automobiles to communicate and exchange information with outside sources, like speed limits, 
parking spots, bicycles, and traffic lights. Radio communications that report on the 
environment within a few kilometers of a vehicle's location are also included in V2I [7]. 

Alongside these, two new forms of vehicular communications, Vehicle-to-Ecosystem 
(V2E) and Vehicle-to-Surroundings (V2S) have just surfaced. V2E occurs between 
automobiles and outside services, like satellite-based sites. Similar to the Global Positioning 
System (GPS), this service can operate as a one-way communication, or as a two-way 
interaction such as when users request navigation assistance. Vehicles and central control 
systems can communicate in both directions, a process known as V2S [12]. Generally speaking, 
the Internet of Vehicles (IoV) is a broader category that includes all of these distinct forms of 
vehicle interactions [2]. The various types of communications in an IoV environment are 
shown in Figure 2. 

The revolutionary vehicular network concept known as the Internet of Vehicles (IoV) 
has received a lot of attention in literature. IoV is anticipated to be a key architecture for the 
future Cooperative Intelligent Transportation Systems (C-ITSs), combining the advantages of 
the Internet of Things (IoT) and Vehicular Ad-hoc Networks (VANETs), because of the 
growing number of vehicles on the road and the growing need for connected vehicles. The 
Internet of Vehicles (IoV) is expected to deliver high-speed and reliable communication, 
enabled by advanced technologies such as 5G-based cellular V2X and Dedicated Short-Range 
Communication (DSRC) [13]. 

 
Figure 2. Various types of communications in an IoV environment 

Automated vehicles (AVs) and other vehicles on the Internet of Vehicles (IoV) 
ecosystem are outfitted with radio detection and ranging (RADAR), light detection and 
ranging (LiDAR), actuators that regulate the motion of the vehicle to help the driver, and 
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computational image sensors that provide 360-degree surround vision. For vehicles to 
accurately perceive and understand their surrounding road conditions, these numerous sensors 
must function under challenging conditions with ultra-high reliability, approaching 100%. 
Through data collection and exchange between vehicles and infrastructure, these many forms 
of data have the potential to enhance road transportation safety, mobility flow, and 
environmental advantages. Additionally, this would make it possible for many applications 
including corporate fleet management, adaptive cruise control, and travel support [14]. 

However, there are cybersecurity risks associated with the many benefits that IoV 
offers [15][16]. Several types of attacks on vehicles have been reported in the literature. For 
instance, in 2010, author conducted a security evaluation in which they exploited a standard 
diagnostic feature to disable ECU connectivity over the CAN bus. This was a denial-of-service 
attack since the ECU's CAN communication was stopped, breaching the car's security 
features. Fortunately, there is no indication that this method poses an information security 
threat or endangers passenger safety. However, the attack requires physical access via the OBD 
port, and it can lead to inefficient use of vehicle resources, potentially affecting the vehicle’s 
overall lifespan. According to the Common Vulnerability Scoring System (CVSS), the attack 
received a rating of 7.4 [17]. 

One instance of a cybersecurity breach in the automotive sector occurred in [18], 
where two hackers used flaws in a Jeep's system to remotely control the vehicle and carry out 
risky actions, such as turning the steering wheel suddenly and applying the parking brake 
suddenly at high speeds, resulting in disastrous accidents. Similarly, hackers were able to 
remotely take data and obtain unauthorized access by taking advantage of a flaw in a General 
Motors vehicle's infotainment system [19]. In 2018, the Keen Security Lab discovered a 
number of flaws in BMW vehicles that let hackers bypass the central gateway by inserting 
unified diagnostic services (UDS) packets into the CAN network [20]. Additionally, a 2020 
assault on a Toyota Lexus used a Bluetooth vulnerability to cause unexpected physical motions 
in the car [21]. 

IDSs have been revealed to be a successful technique for detecting cyberattacks on in-
vehicle networks. Malicious behavior on the network is tracked and detected by an IDS. The 
IDS is frequently implemented in an ECU and receives and examines incoming network traffic 
in the context of in-vehicle networks. It will alert other ECUs if any unusual messages are 
found. Intrusion detection systems (IDSs) are used in computer network systems to identify 
and stop intrusions. Nevertheless, a lot of traditional network security techniques aren't 
immediately applicable to in-vehicle networks. As a result, an efficient IDS for in-vehicle 
networks is crucial [9]. A general representation of an IDS employed in an in-vehicle network 
is depicted in Figure 3. 

 
Figure 3. IDS employed in an in-vehicle typical CAN network 

Numerous studies have used machine learning (ML) techniques to construct a variety 
of in-vehicle IDSs. However, the deployment environment, restricted computing resources, 
and robustness are three essential components of in-vehicle IDS requirements that are 
neglected by the current methods [9]. This paper aims to address these three key components 
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by proposing a novel machine learning-based Intrusion Detection System (IDS) that is robust, 
lightweight, and easily deployable for detecting cyber-attacks targeting in-vehicle 
communication systems.  
Literature Review: 

In [5], an unsupervised intrusion detection method was introduced for in-vehicle 
communication networks, leveraging the feature extraction efficiency of autoencoders 
alongside the enhanced clustering accuracy of fuzzy C-means (FCM). The proposed method 
is lightweight and requires minimal computational resources. In a comprehensive experiment 
using the ML350 in-vehicle intrusion dataset, it achieved an accurate rate of 75.51%. 
According to experimental results, the suggested approach also performs better for other 
intrusion detection problems, such as network intrusion detection datasets like KDDCup 
(accuracy 60.63%), UNSW_NB15 (73.62%), and Information Security Center of Excellence 
(ISCX) (74.83%), and wireless intrusion detection datasets like WNS-DS (84.05%). When 
training an in-vehicle intrusion detection model, the suggested approach performs better 
overall than the current approaches and keeps out of labeled datasets. The suggested approach 
is robust and generalized in detecting intrusions, and it can be successfully implemented in 
real-time to monitor CAN traffic in vehicles and proactively alert during attacks, according to 
the results of an experiment conducted on a variety of intrusion detection datasets. 

The author in[2] proposed an innovative intrusion detection system specifically 
designed to counter various cyberattacks in the Internet of Vehicles (IoV) environment, 
including denial-of-service (DoS), distributed denial-of-service (DDoS), distributed reflection 
denial-of-service (DRDoS), brute force attacks, botnets, and sniffing. Their approach involves 
a machine learning-based intrusion detection system that monitors network traffic to detect 
unusual patterns and identify abnormal data flows. Through a thorough assessment and 
selection of the best methods for the subsequent stages of the machine learning process, they 
have provided an intrusion detection strategy in the paper: (i) Z-score normalization for data 
preprocessing, which maintains the data distribution for the suggested method and manages 
outliers; (ii) regression model selection for feature selection, which reduces the complexity of 
the model and speeds up execution; and (iii) model selection and training, which includes 
Random Forest, Extreme Gradient Boosting, Categorical Boosting, and Light Gradient 
Boosting Machine, with hyper-parameter optimization to manage behavior during the training 
phase and avoid overfitting. Comprehensive numerical experiments utilizing the well-known 
standard datasets CIC-IDS-2017, CSE-CIC-IDS-2018, and CIC-DDoS-2019, both alone and 
combined, show how effective the suggested method is. The authors demonstrated that the 
suggested intrusion detection system works better than the earlier techniques presented in the 
literature by achieving a high accuracy of over 99.8% in a running time of 46.9 seconds and a 
detection time of 0.24 seconds for the three combined intrusion detection system datasets. 

The author [22], proposed a study that uses Convolutional Neural Networks (CNNs) 
and Long Short Term Memory (LSTM) to offer three deep learning-based misbehavior 
classification algorithms for intrusion detection in IoV networks. The suggested Deep 
Learning Classification Engines (DLCE) use deep learning models installed on the vehicle 
edge servers to perform single or multi-step classification. The three classification systems 
suggested in this study are used to classify the sent vehicle data to the edge server after being 
pre-processed once it has been received by the Road Side Units (RSUs). With F1 scores 
ranging from 95.58% to 96.75%, the suggested classifiers detect 18 distinct forms of vehicular 
behavior, which is significantly higher than the results of the current research. The suggested 
scheme's prediction performance and prediction time comparison are compared with those of 
previous studies by executing the classifiers on testbeds that simulate edge servers. 

A Long Short-Term Memory (LSTM) autoencoder is used in the second stage of the 
proposed intrusion detection system (IDS) by [9] to detect new, undiscovered attacks, while 



                              International Journal of Innovations in Science & Technology 

June 2025|Vol 07 | Issue 02                                                                           Page |1205 

an artificial neural network (ANN) is used in the first stage to detect known attacks. To deploy 
their IDS in a hierarchical federated learning (H-FL) environment, they suggested a theoretical 
framework to comprehend and evaluate various driving behaviors, update the model with the 
most recent attack patterns, and protect data privacy. According to experimental results, their 
IDS achieves a 99.99% detection rate with an F1 score that exceeds 0.99 for seen attacks and 
0.95 for novel assaults. Furthermore, false alerts are minimized by the very low false alarm rate 
(FAR), which stands at 0.016%. Even with the use of DL algorithms, which are well-known 
for their ability to detect complex and zero-day threats, the IDS is nonetheless lightweight, 
guaranteeing its viability for practical implementation. Their model is hence resistant to both 
known and unknown threats. 

Another study [23], suggested a new Dense Random Neural Network (DRNN)-based 
Distributed Self-Supervised Federated Intrusion Detection Algorithm (DISFIDA) with 
Online Self-Supervised Federated Learning. Neuronal weights are shared with Federated 
partners in DISFIDA while learning data is kept private. In DISFIDA, each partner mixes its 
synaptic weights with those it receives from other partners, favoring weights with numerical 
values that are more similar to the weights that it has independently learned. Networks of 
devices (such as body sensors) and connected smart vehicles (such as patient-transporting 
ambulances), DISFIDA for two pertinent IoT healthcare applications is evaluated using three 
publicly available datasets in comparison to five benchmark approaches. These tests 
demonstrate that the DISFIDA approach performs better at detecting attacks, with a 99% 
True Negative Rate comparable to state-of-the-art Federated Learning, for Distributed Denial 
of Service (DDoS) attacks. It also offers a 100% True Positive Rate for attacks, which is one 
percentage point higher than comparable state-of-the-art methods that achieve 99%. 

The method presented in [24] employs Deep Shapley Additive Explanations (SHAP) 
to provide greater transparency, enabling cybersecurity experts to interpret and understand the 
decision-making process more effectively. Furthermore, the model uses hybrid bidirectional 
long-short-term memory with autoencoders (BiLAE) to improve computational efficiency by 
reducing the dimensionality of IoV network traffic. Additionally, it enhances detection 
capabilities without requiring large amounts of labeled data by optimizing the hyper-
parameters of deep learning models like ResNet, Inception, Inception ResNet, and MobileNet 
Convolution neural network-transfer learning architecture (CNN-TL) using Barnacle Mating 
Optimizer (BMO). According to experimental results, the model achieved 99.88% accuracy 
and similarly high metrics in multi-class scenarios for external vehicular networks (N-BaIoT) 
and 100% accuracy, precision, recall, F1-score, and Matthew Correlation Coefficient in binary-
class scenarios for internal vehicular (CAN) networks. The model demonstrated greater 
efficacy in identifying zero-day botnet assaults in comparison to state-of-the-art methods, 
hence decreasing dependence on extensive datasets. 

Utilizing the network message ID's periodicity, a ConvLSTM-based IVN intrusion 
detection technique is suggested by [25]. A federated learning (FL) system with client selection 
is suggested for ConvLSTM model training. The basic FL framework operates in a client-
server configuration. Mobile edge computing (MEC) servers linked to base stations (BSs) act 
as the parameter servers, while ICVs are the local clients. To maximize the model accuracy 
and system overhead of federated ConvLSTM model training, a proximal policy optimization 
(PPO) based federated client selection (FCS) technique is further developed based on the 
framework. Real-world IoV scenario settings and IVN datasets are used to run simulations. 
The findings show that the 95%-beyond detection accuracy is maintained while the model size 
and convergence time are significantly decreased by utilizing ConvLSTM. Additionally, the 
results show that the PPO-based FCS scheme performs better than the benchmarks in terms 
of system overhead, model correctness, and convergence rate. 



                              International Journal of Innovations in Science & Technology 

June 2025|Vol 07 | Issue 02                                                                           Page |1206 

The authors in[26], suggested a new framework for a benchmark system that 
emphasizes the security and dependability of autonomous cars.  To assess and evaluate the 
state-of-the-art technologies currently employed in cyberattacks, the paper proposes a novel 
benchmark framework that focuses on physical and communication-based attacks. It also 
examines several security issues, vulnerabilities, exploitation techniques, and the detrimental 
effects of these on connected autonomous vehicles. 

The authors in [27], investigated the potential for detecting cyberattacks in CAN 
systems using machine learning classifiers. They discussed two classifiers; extreme gradient 
boost and K-nearest neighbor algorithms to get applicability. But as their effectiveness 
depends on choosing the right parameters, a modified metaheuristic optimizer is presented as 
well to address parameter optimization. On a publicly accessible dataset, the suggested method 
is evaluated, and the top-performing models achieve accuracy levels of over 89%. After a 
thorough statistical examination of the optimizer results, the top-performing models were 
examined using explainable AI approaches to ascertain how features affected the top-
performing model. 

Another study [28], introduced an intelligent framework that mimics the intrusion 
detection system (IDS), which distinguishes between harmful and normal data requests from 
autonomous vehicles. To achieve this, the models were trained on a diverse set of attacks and 
simultaneously leveraged for classification using ensemble-based machine learning classifiers 
such as Decision Tree, Random Forest, Extra Trees, XGBoost, K-Nearest Neighbors, and 
Support Vector Machine (SVM). The suggested model is divided into several machine-learning 
stages, such as gathering data, pre-processing, and prediction. Lastly, they assessed the 
ensemble models using a variety of evaluation criteria, including f1-score, recall, accuracy, and 
precision. XGBoost achieved a high detection rate and low computing cost for the AV systems 
at the same time, outperforming other classifiers in terms of accuracy which is 98.57%. 

Another study [29], proposed a Deep Learning Engine (DLE)-based artificial 
intelligence (AI)-based intrusion detection architecture for identifying and categorizing vehicle 
traffic in IoV networks into possible cyberattack categories. Additionally, rather than operating 
on the distant cloud, these DLEs will be installed on Multi-access Edge Computing (MEC) 
servers, taking into account the mobility of the vehicles and the real-time requirements of the 
IoV networks. The efficacy of the suggested system is demonstrated by extensive experimental 
results utilizing common assessment metrics and average prediction time on an MEC testbed. 
Objectives: 
The main objectives of our study are given below: 
• To develop a robust and lightweight AI-based Intrusion Detection System (IDS) for 
in-vehicular communication networks. 
• To leverage RNN for capturing temporal dependencies in CAN traffic data for 
accurate attack detection. 
• To utilize LightGBM for efficient feature extraction from in-vehicle network data. 
• To enhance detection accuracy and performance by combining RNN and LightGBM 
in a hybrid model. 
• To ensure the IDS is deployable in resource-constrained automotive environments. 
• To integrate the IDS into a Federated Learning (FL) framework for privacy-preserving 
and decentralized model training. 
• To validate the proposed model's effectiveness through comparative evaluation 
against existing state-of-the-art IDS approaches. 
Novelty Statement: 

The novelty of this study lies in the development of a hybrid AI-based Intrusion 
Detection System that combines Recurrent Neural Networks (RNN) and LightGBM for 
accurate detection of both known and unknown cyber-attacks in in-vehicle networks. Unlike 
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existing approaches, the proposed system is specifically designed to address the critical 
challenges of deployment feasibility, computational efficiency, and robustness within resource-
constrained automotive environments. Furthermore, its integration into a Federated Learning 
framework ensures secure, privacy-preserving model training across distributed vehicle nodes 
making it a cutting-edge solution for intelligent connected vehicles (ICVs). 
The Proposed Approach: 

This paper introduces an AI-driven approach for in-vehicle intrusion detection, aimed 
at identifying attacks targeting the CAN bus within the environment of Connected 
Autonomous Vehicles (CAVs). The proposed approach was designed using two of the AI-
based models that are the RNN (recurrent neural network) which is a famous deep learning 
algorithm for dealing with sequential data and their interdependencies as well as the ML 
boosting technique called the LightGBM for the extraction of important features. The 
proposed approach is a hybrid deep learning framework, leveraging the strengths of both 
RNN and LightGBM, it was used for multi-classification as it can be used to detect different 
attacks by classifying them into their respective classes. The methodology flow diagram is 
shown in Figure 4 and the different phases of the proposed AI-based IDS framework are 
shown in Figure 5. 

 
Figure 4. Methodology Flow Diagram 

 
Figure 5. Different phases of the proposed AI-based IDS framework 
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Table 1. Literature review of different methods used by researchers for IDS in in-vehicle communication systems 

Published 
Year 

Author name Methods Used Dataset Results Limitations Future Work 

2023 Mohamed et al., Random Forest, Extreme 
Gradient Boosting, 
Categorical Boosting, 
Light Gradient Boosting 
Machine with hyper 
optimization, Z-score 
normalization for data-
preprocessing. 
Regression model for 
feature selection. 

CIC-IDS-2017, CSE-
CIC-IDS-2018, and 
CIC-DDoS-2019 

99.8% accuracy Not mentioned. Focus on different 
datasets, deep 
reinforcement 
learning and 
transfer learning. 

2022 Tejasvi et al., Three deep learning-
based misbehavior 
classification schemes for 
intrusion detection in IoV 
networks using Long 
Short Term Memory 
(LSTM) and 
Convolutional Neural 
Networks (CNNs). single 
or multi-step 
classification done by 
deep learning models 
(deployed on the 
vehicular edge servers) 

VeReMi Extension 
dataset 

F1-scores 
ranging from 
95.58% to 
96.75% 

Inter-classification 
due to similarities.  

More vehicular 
misbehavior types. 

2024 Muzun et al., An artificial neural 
network (ANN) in the 
first stage to detect seen 
attacks, and a Long Short-
Term Memory (LSTM) 
autoencoder in the 
second stage to detect 
new, unseen attacks. IDS 
deployed in a hierarchical 
federated learning (H-FL) 
environment 

Benchmark dataset 
published by Song et al 
(car hacking dataset). 

F1-score: 99% 
(seen attacks) 
95% (novel 
attacks). 
Detection rate of 
99.99%. FAR 
0.016% 

Limited driving 
scenarios, requiring 
extensive datasets.  

A realistic H-FL 
environment, 
adversarial attacks. 

2023 Kabilan et al., Unsupervised method of 
intrusion detection for in-
vehicle communication 

ML350 in-vehicle 
intrusion dataset, WNS-

(75.51, 84.05, 
60.63, 73.62, 
74.83) % 

Not find the type of 
attacks.  

Semi-supervised 
and using 
generative AI. 
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networks. Optimal 
feature extracting ability 
of autoencoders and 
more precise clustering 
using fuzzy C-means 
(FCM) combined. 

DS, KDDCup, 
UNSW_NB15, (ISCX) 

accuracy for 
dataset in order). 

2024 Erol et al., Novel Distributed Self-
Supervised Federated 
Intrusion Detection 
Algorithm (DISFIDA), 
with Online Self-
Supervised Federated 
Learning, that uses Dense 
Random Neural 
Networks (DRNN) 

three open-access 
datasets 

100% TPR, 99% 
TNR 

Not mentioned. A collaborative 
learning system for 
the best IDPS can 
be created by 
combining the 
intrusion 
judgments of 
DISA with a 
mitigation 
algorithm to lessen 
the destructive 
impacts of DoS 
attacks. 

2024 Ykob & Joshua (SHAP) for explaining 
decisions, hybrid 
bidirectional long-short-
term memory with 
autoencoders (BiLAE) to 
reduce the dimensionality 
of IoV network traffic, 
Barnacle Mating 
Optimizer (BMO) for 
hper-parameter 
optimization of DL 
models like, s ResNet, 
Inception, Inception 
ResNet, and MobileNet 
Convolution neural 
network-transfer learning 
architecture (CNN-TL) 

vehicle hacking dataset 
(for in vehicle 
communication),  N-
BaIoT ( for external 
networks 
communication) 

100% accuracy Not mentioned. To improve user 
privacy in the IoV 
network by 
integrating 
blockchain 
technology with 
the suggested 
explainable 
ensemble transfer 
learning model 
IDS architecture. 

2022 Jianfeng et al., ConvLSTM-based IVN 
intrusion detection 
method. a proximal policy 
optimization (PPO)-
based federated client 
selection (FCS) scheme 

IVN datasets 
(attack-free dataset of 
CAN messages 
published by the HCR 
Lab of Korea University) 

95% accuracy Not mentioned. Modeling the IoV 
as a multi-agent 
system to 
formulate the 
complex 
interactions among 



                              International Journal of Innovations in Science & Technology 

June 2025|Vol 07 | Issue 02                                                                           Page |1210 

used for model 
optimization 

multiple ICVs and 
the overall 
environment. 

2020 Khadkha et al., ML and DL methods Dataset created AE 94%, 
RF96% accuracy 

Not mentioned. Not mentioned. 
 

2024 Pavle et al., XGBoost, KNN Publicly available dataset 
“can-dataset” 

89% accuracy No. of experiments 
constrained by the 
data's accessibility 
and updating time. 
Limited no. of 
optimizers in the 
comparative 
analysis due to high 
computational 
requirement 

To look at how the 
modified 
optimizer might be 
used to solve 
problems in 
cybersecurity, 
medicine, and 
forecasting. 

2022 Jay et al., Ensemble ML models: 
DT, RF, extra tree, 
XGBoost, KNN, SVM 

(CAN-intrusion dataset)  
CICIDS2017, Dataset 
Generated. 

98.57% accuracy Not mentioned. Improvise the 
security aspects of 
the proposed 
framework by 
analyzing modern-
day attacks, such as 
malware attacks, 
replay, and Sybil 
attacks. 

Table 2. Dataset features and their descriptions. 

Data Features Description 

TS (Timestamp) The time at which a can message is sent. 

ID1 (CAN Identifier) The ID or the type of the CAN message. 

DL0-DL7 (data length code) The data payload bytes indicate the existence of 
different information between the various 
components of the vehicle. 

target This can either be an attack or normal CAN traffic. 

Table 3. Dataset distribution for the four target classes. 

S.NO Class Label No. of Instances 

1 Attack Free State (0) 3000 

2 DoS Attack (1) 3000 

3 Fuzzy Attack (2) 3000 

4 Impersonation Attack (3) 3000 

  Total instances=12000 
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CAN BUS: 
Electronic control units are the electronic devices that manage the vehicle systems. 

The ECU is the central component of the engine management system, which regulates nearly 
all the electrical systems and operations in automobiles. Engine performance, control comfort, 
security features, airbag deployment, parking assistance, and ignition are some of the electrical 
components. A luxury car can have over 150 ECUs, while a typical car has an average of 40. 
A central bus known as the CAN bus connects these ECUs. ECUs can communicate with one 
another via CAN, a message-based broadcast communication protocol that adheres to the bus 
topology. The following are included in the standard CAN data: CAN ID (128 bits) - SOF 
(Start Of Frame) (1 bit), base identifier (11 bits), substitute remote request (SRR) (1 bit), 
identifier extension bit (IDE) (1 bit), extended identifier (18 bits), remote transmission request 
(RTR) (1 bit), reserved bits (2 bits), data length code (DLC) (4 bits), data (64 bits), cyclic 
redundancy check (CRC) (16 bits), ACK (2 bits), and EOF (7 bits). Inter-frame space (IFS), 
which has at least three consecutive bits, is the space between consecutive messages in a CAN 
bus. A typical Can frame is shown in Figure 6. 

 
Figure 6. A standard CAN frame 

CAN is widely used in most modern vehicles due to its cost-effectiveness and 
reliability. However, it lacks message authentication capabilities because there is limited space 
available to incorporate a message authentication code [30]. Through Bluetooth, Wi-Fi, and 
the On-board Diagnostics-II (OBD-II) port, the CAN messages from the CAN bus can be 
physically accessed. Additionally, this can be accessed remotely via a cellular or wireless 
connection. In their work on thorough experimental assessments of automobile attack 
surfaces, author demonstrate the Bluetooth attack on the CAN bus [31]. Once attackers gain 
access to the vehicle’s network, they can manipulate CAN messages by adding or removing 
data, disrupting vehicle functionality, and executing denial-of-service (DoS) attacks, ultimately 
gaining control over the vehicle. Therefore, this CAN bus is a cost-effective and dependable 
method of package transportation, but it lacks security. A security mechanism must be 
computationally efficient, lightweight, and quick to forecast to be deployed in a CAN system 
[5]. In our proposed approach, the CAN data is extracted and preprocessed for effective ML-
based intrusion detection of various attacks. 
Dataset Description: 

The CAN dataset that we used in this study is obtained from Kaggle 
(https://www.kaggle.com/datasets/bikashkundu/can-hcrl-otids) and is passed through pre-
processing techniques for effective classification tasks done by ML models. The dataset 
basically consists of four target classes these being: DoS Attack (1), Fuzzy Attack (2), 
Impersonation Attack (3), and Attack Free State (0). An impersonation attack is a spoofing 
attack. The dataset comprises a total of 12,000 instances, with 3,000 samples allocated to each 
class as illustrated in Figure 11(a). The balancing of the dataset is done through the SMOTE 
(Synthetic Minority Over-sampling Technique) oversampling technique. There are a total of 
11 features out of which one is the target column or label. The features are TS (Timestamp): 
the time at which a can message is sent, ID1 (CAN Identifier): which represents the ID or the 
type of the CAN message, each CAN message is associated with a specific CAN ID 
corresponding to a specific function of the vehicle, DL0-DL7 (data length code) these are the 
data payload bytes that indicate the existence of different information between the various 
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components of the vehicle. The last column is the target label this can either be an attack or 
normal CAN traffic. These features and their details are listed in Table 2. The importance of 
the features in the dataset is shown in Figure 7. The distribution of the dataset for each class 
along with their no. of instances is shown in Table 3. Another dataset that we have used in 
our proposed approach is created by using a simulation environment known as the ICSim 
simulator. In this environment we have simulated the CAN traffic and conducted a variety of 
attacks on this traffic, these attacks being: Man in the middle attack MiMT, resource starvation, 
and injection. After this, the traffic is captured via the Wireshark tool. This traffic is then 
converted into a comma-separated file CSV containing both malicious and non-malicious 
CAN traffic [28]. This dataset is then passed through the different processes of the 
preprocessing pipeline. This dataset is used to increase the robustness of our proposed method 
of detecting unseen attacks. This dataset will only be used as a test set for testing the 
performance of the proposed framework. The correlation of the DLC features in the CAN 
dataset is shown in Figure 8 (a) and the distribution of the data payload by target classes is 
depicted in Figure 8 (b). Figures 9(a) and 9(b) display the distribution of CAN IDs across 
target classes and a Time Series (TS) versus Attack Classes plot, respectively. Additionally, 
Figure 10 presents a pair plot graph illustrating the relationships among the DLC features. 

 
Figure 7. Dataset Features’ Feature Importance graph. 

 
Figure 8(a). Correlation Heatmap of DLC features (b) Distribution of payload DLC4 by 

target classes. 
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Figure 9(a). CAN IDS distribution by target classes (b) Time vs. Attack classes plot 

Dataset Preprocessing: 
The datasets were preprocessed to remove noise, missing values, and inconsistencies 

in the data and to clean them for further important tasks. The missing values in the data were 
filled by zero. The features were scaled using a Standard Scaler to enhance model performance. 
This process, known as data normalization, ensures that the data is constrained within a 
predefined range, facilitating more efficient and accurate learning by the model. Label 
encoding was employed to convert the categorical labels into numerical ones. The Kaggle 
CAN dataset was split in the ratio of, 60:20:20 that is, sixty percent of the data was used for 
training the models and the remaining forty percent was used for testing and validation twenty 
percent for each process. The dataset splitting ratio for training, validation, and testing sets is 
shown in Figure 11 (b). The training set was used for training the model and making it learn 
the relevant features of the data. The performance of the model was tested by testing it on the 
test set. The model’s validation was done by utilizing the validation set. 

 
Figure 10. Pairplot showing pairwise relationships of DLC features of the CAN dataset 
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Figure 11(a). CAN Dataset distribution of instances for each class (b) CAN Dataset 

distribution for training, validation, and testing sets. 
Feature Scaling using Standard Scaler: 

For each feature (column) 𝑏 in the dataset 𝐷′ : 
Calculate the mean: 

𝜇𝑏 =
1

𝑛
∑𝑖=1
𝑛  𝐷𝑎𝑏

′  (1) 

Where ‘𝑛’ is the number of rows. 
Calculate the standard deviation:  

𝜎𝑏 = √
1

𝑛−1
∑𝑖=1
𝑛  (𝐷𝑎𝑏

′ − 𝜇𝑏)2 (2) 

Create a new dataset 𝐷′′ Where each element is scaled: 

𝐷𝑎𝑏
′′ =

𝐷𝑎𝑏
′ −𝜇𝑏

𝜎𝑏
 (3) 

Attacks Considered in The Study: 
There are mainly three types of attacks that are considered in this article for intrusion 

detection in the proposed AI-based IDS in in-vehicular communications. They are discussed 
below: 

• DoS Attack: A denial-of-service attack aims to use up the CAN bus bandwidth by 
sending a lot of messages, which could cause unexpected system behavior. The attacker sends 
a lot of messages to the CAN bus with identifier = 0 since the identifier sets the message 
priority. The most important message will be this one [32]. 

• Fuzzy Attack: The CAN bus network system is compromised by an attacker who 
inserts random messages that seem like legal traffic. Attacks using frame fuzzification have the 
potential to compromise the ECUs and result in unexpected behavior in the car, such as 
automatic gear shifts, erratic signal light on/off switching, and shaking steering [33]. 

• Impersonation / Spoofing Attack: An unauthorized attacker attempts to inject fake 
messages to control specific functions by targeting specified CAN IDs. System failure results 
from the inability to discern between authentic and fake communications since the CAN IDs 
are spoofs and appear genuine [32]. 
All the above-mentioned three attacks are represented in Figure 12. 
Model Training: 

The proposed approach considers two models: Recurrent Neural Network (RNN) and 
LightGBM. Initially, both models are trained independently on the dataset, and their 
performance is assessed to evaluate their effectiveness. The RNN is used because it is good at 
handling sequential or time-series data which is the common nature of the Can bus data. The 
other model that is used is the LightGBM, it is an ML boosting technique that is good at 
extracting important features and improves performance due to its boosting nature. After this 
the combined strengths of both the models are deployed using a hybrid of the individual 
models and their performance is then evaluated and compared to the performance of the 
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individual models. In the hybrid deep learning framework, the features (output class 
probabilities) selected by the LightGBM boosting technique and the temporal dependencies 
or patterns captured by the RNN are passed as inputs to the hybrid model for better prediction 
or classification results. The combination of the outputs of both these models results in a 
better overall performance of the hybrid deep learning approach. 
RNN: 

To develop a machine learning (ML) model that can generate sequential predictions 
or conclusions based on sequential inputs, a deep neural network known as a recurrent neural 
network, or RNN, is trained on sequential or time series data. Recurrent neural networks 
preserve information from earlier inputs by introducing a method where the output from one 
phase is given back as input to the next. Because of their design, RNNs are ideal for tasks 
where prior step context is crucial. This makes RNN well suited for the CAN data which is 
sequential. The general architecture of RNN is shown in Figure 12. 

 
Figure 12. The architecture of a typical RNN model 

Hidden State Update for RNN: 

ℎ𝑡 = 𝜙(𝑊𝑥ℎ𝑥𝑡 +𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (4) 
Where: 

‘ℎ𝑡 ’ represents the hidden state at time 𝑡, ‘𝑥𝑡’ represents the input at time 𝑡, ‘ℎ𝑡−1’ 

represents the hidden state at the previous time step (𝑡 − 1). Note that ℎ0 is typically 

initialized to a vector of zeros, ‘𝑊𝑥ℎ’ represents the weight matrix connecting the input to the 

hidden state, ‘𝑊ℎℎ’ represents the weight matrix connecting the previous hidden state to the 

current hidden state (the recurrent connection), ‘𝑏ℎ’ represents the bias vector for the hidden 

state and‘𝜙’ is the activation function. 
Output for RNN: 

𝑜𝑡 = 𝑊ℎ𝑜ℎ𝑡 + 𝑏𝑜
𝑦𝑡 = 𝜎(𝑜𝑡)

 (5)(6) 

Where: 

‘𝑜𝑡’ shows the output before activation at time 𝑡, ‘𝑊ℎ𝑜’ shows the weight matrix 

connecting the hidden state to the output, ‘𝑏𝑜’ shows the bias vector for the output, ‘𝑦𝑡’ shows 

the final output at time 𝑡 and ‘𝜎’ shows the activation function for the output. 
Light GBM: 

An ensemble learning framework called LightGBM, more precisely a gradient boosting 
technique, builds a strong learner by gradually adding weak learners in a gradient descent 
fashion. Light Gradient Boosting Machine Classifier is referred to as LGBMClassifier. For 
categorization, ranking, and other machine-learning tasks, it employs decision tree methods. 
The LGBMClassifier employs a novel technique called Exclusive Feature Bundling (EFB) and 
Gradient-based One-Side Sampling (GOSS) to accurately handle massive amounts of data 
while also speeding it up and using less memory. 
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Figure 13. Three main cyber-attacks on the CAN BUS considered in the proposed study 

Objective Function of LightGBM: 

ℒ(𝜃) = ∑  𝑛
𝑖=1 𝑙(𝑦𝑖, �̂�𝑖) + ∑  𝐾

𝑘=1 Ω(𝑓𝑘) (7) 
The Hybrid Model (RNN+LightGBM): 

Our methodology suggests a hybrid deep learning approach where RNN is used to 
model temporal dependencies from sequential CAN traffic data and LightGBM is used to 
extract and classify based on the most relevant features of the CAN traffic. The outputs of 
both models, particularly the class probabilities, are combined to feed a final classifier, thus 
enhancing the predictive power. This fusion or combination basically involves the 
Concatenation of class probability vectors from RNN and LightGBM, which are then fed into 
a meta-classifier (i.e. another LightGBM) for the final prediction. This structure preserves the 
learned temporal and feature-based patterns and enables higher-level abstraction and learning. 
The workflow diagram showing the interaction of RNN and LightGBM is shown in Figure 
14. 

 
Figure 14. Workflow Diagram showing the interaction between RNN and LightGBM 

Model Hyper-parameter Optimization: 
The hyper-parameters of the models are fine-tuned using the GridSearchCV algorithm 

that creates a detailed grid of the most efficient hyper-parameters of a model. Early stopping 
is employed in LightGBM to avoid overfitting. In the case of RNN and the hybrid model 
Batch normalization and Adam optimizer are used to avoid overfitting and optimization. 
Sparse Categorical Cross-entropy is deployed as a Loss Function. The hyper-parameters 
deployed for the three models are given in Table 4. 

Table 4. Hyper-parameters of the deployed three models 

Model LightGBM Model RNN Model Hybrid 
(LightGBM + RNN) 

Hyper-
parameters 

Values Hyper-
parameters 

Values Hyper-
parameters 

Values 
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learning-rate 0.1 epochs 50 Activation 
function 

rel 

num-leaves 31 batch-size 32 optimizer Adam 

boosting-
type 

but Loss 
Function 

sparse_categoric
al_crossentropy 

learning-rate 0.001 

n-estimators 300 optimizer Adam epochs, 
batch-size 

70, 64 

Model Testing: 
The models were tested on the test set in this phase. First, the individual models were 

evaluated separately on the two datasets. Subsequently, the hybrid model was evaluated on 
each dataset individually to highlight its effectiveness and to compare its performance against 
that of the standalone models. If the performance of the pre-trained models on the created 
dataset was nearly equal to their performance on the training set, then it means that the models 
are performing well and are generalizing significantly. This also demonstrates that the models 
were robust in detecting previously unseen attacks, reinforcing the effectiveness and 
significance of the proposed approach.  
Model Evaluation: 

Evaluation metrics are numerical measurements that are used to evaluate a machine 
learning model's efficacy and performance. These metrics aid in comparing various models or 
algorithms and offer insights into how well the model is operating. The performance of the 
models is evaluated on the basis of basic evaluation metrics like confusion matrix, accuracy, 
precision, recall, F1-score, and ROC curve. The detailed explanation of these metrics is as 
follows: 

• Confusion matrix: A table summarizing a classification model's performance. It's 
very helpful for displaying the predicted versus real (genuine) results. True Positives (TP), 
False Positives (FP), True Negatives (TN), and False Negatives (FN) are the four main 
components of the confusion matrix.  

• Accuracy: The proportion of correctly categorized instances among all instances is 
known as accuracy. 

Accuracy = (TP+TN) / (TP+TN+FP+FN) (8) 

• Precision: The precision metric quantifies the percentage of predicted positive 
instances that turn out to be positive. 

Precision = TP / (TP+FP) (9) 

• Recall: The percentage of real positive instances that the model accurately predicts is 
known as recall. 

Recall = TP / (TP+FN) (10) 

• F1-score: The harmonic mean of recall and precision is known as the F1-Score. The 
harmonic mean is more sensitive to low values than a standard average. 

F1 score = (2×Precision×Recall) / (Precision+Recall) (11) 

• ROC curve: A graph showing the performance of a classifier across all potential 
classification thresholds. 
Theoretical Federated Learning Environment Framework for Enhancing Security of 
Data: 

Training a Deep learning model is typically a computationally complex process that 
requires a vast amount of data and resources. The requirements are nearly impossible for an 
individual ICV (intelligent connected vehicle) to meet. The uRLLC in IoV can scarcely be 
assured since wireless data uploading for centralized Deep neural network model training in 
the cloud has the risk of privacy leakage and excessive access latency [34]. Federated learning 
(FL), which offers the benefits of privacy preservation and safe multi-party computation, is 
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regarded as a viable alternative in such a scenario [30][31]. Typically, a FL framework operates 
in either peer-to-peer or client-server mode. The client-server FL paradigm is widely used in 
IoV, with mobile edge computing (MEC) servers linked to base stations (BSs) serving as the 
parameter servers and ICVs as the clients. The clients store their datasets and train the models 
locally within such a framework. The model is transmitted to the parameter server for global 
aggregation following each local training cycle [35]. Model parameters are uploaded in place 
of large amounts of raw data to relieve the strain on communication bandwidth, and FL allows 
ICVs to store their data to prevent leaks. The proposed FL framework is shown in Figure 15 
and works in the following steps: 

• Proposed Hybrid Model Initialization: For every vehicle series, a hybrid model is 
initialized in the cloud as the global model. The global hybrid model is then downloaded to 
the MEC server by the cloud. The server receives FL request data from the candidate vehicles. 

• Federated Client Selection: An acknowledgment is sent in response, to the candidate 
automobiles of the same vehicle series.  The candidates are then downloaded to the global 
hybrid model. Following training, the model parameters of the candidate vehicles are uploaded 
to the MEC server. The required vehicles are subsequently chosen from the candidates by the 
MEC server. The MEC server sends rejection notices to the vehicles that were not chosen and 
acceptance notices to the vehicles that were chosen. 

• Local Model Training: The global hybrid model is downloaded to the chosen vehicle 
clients by the MEC server. Using their datasets, the clients carry out the local training.  The 
clients update the model parameters and send them to the MEC server after local training is 
finished. 

• Global Model Update by Parameter Aggregation: The parameter aggregation at 
the MEC server updates the global model.  After gathering the updated model parameters 
from each of the selected clients, each round of parameter aggregation is carried out. 

• Local Model Update: The vehicles receive the updated global model following the 
global parameter aggregation at the MEC server. With the latest release, automobiles update 
their models. Until the loss function converges or the iteration hits the upper limit, the local 
model training and parameter aggregation process is repeated. Lastly, the authenticated 
vehicles receive the convergent global hybrid model. A copy of the global hybrid model is 
transmitted to the cloud in the meantime. 

 
Figure 15. Proposed Federated Learning Framework for Proposed Hybrid Model Training 

Experimental Setup: 
The training and testing of the AI-based models considered in the proposed approach 

is conducted on Colab (a Google Research web editor that lets users write and execute any 
Python code directly from the browser) using its GPU and the Python language on an Intel(R) 
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Core(TM) i3-4030U CPU @ 1.90GHz computer with an 8.00 GB RAM and 64-bit Windows 
10 OS (operating system). 
Results and Discussion: 

This section presents a discussion of the results obtained from evaluating the three 
models used in the study after their deployment on the datasets. The effectiveness of the 
proposed model is illustrated through visualizations of various evaluation metrics. Figures 
16(a), (b), and (c) display the confusion matrices of the three models: LightGBM, RNN, and 
the proposed deep learning hybrid framework, which combines both models. 

 
(a)                                                      (b)  

 
(c) 

Figure 16(a). confusion matrix for LightGBM (b) confusion matrix for RNN (c) confusion 
matrix for proposed Hybrid Model 

The LightGBM model correctly predicted 551 instances for Attack-free class, 325 
instances for the DoS attack, 608 instances for Fuzzy-attack and 591 instances for the 
Impersonation attack out of a total of 599, 401, 653, and 591 instances for each class 
respectively. The LightGBM model demonstrated strong overall performance; however, it 
showed slightly lower accuracy in distinguishing between the Attack-free and DoS-attack 
classes. RNN model correctly predicted 575 instances for Attack-free class, 309 instances for 
the DoS attack, 464 instances for Fuzzy-attack and 591 instances for the Impersonation attack 
out of a total of 599, 401, 653, and 591 instances for each class respectively. The RNN model 
performed well in classifying the Attack-free and Impersonation-attack classes; however, its 
accuracy declined for the remaining two classes, particularly the Fuzzy-attack class. The hybrid 
model achieved classification accuracies of 91%, 92%, 93%, and 100% across the four 
specified classes. It outperformed the other two models, delivering the highest accuracy in 
each class. 

The training and validation, accuracy, and loss graphs for the RNN model are given in 
Figure 17 (a) and (b). These figures show the overall good performance of the model. 
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Figure 17(a). training and validation accuracy for RNN (b) training and validation loss for 
RNN 

 
Figure 18. Evaluation metrics graph for the proposed Hybrid model 

The significance of the performance of the proposed hybrid model is shown in Figure 
18. The model has amazing accuracy, precision, recall, and F1-score of 0.94. These results 
indicate that the proposed hybrid model is highly effective in classifying CAN traffic into the 
appropriate categories, whether identifying an Attack-free state or detecting specific types of 
attacks outlined in the study. The superior performance of the hybrid model compared to the 
individual models is reflected in the evaluation metrics comparison graphs shown in Figures 
19(a, b) and 20(a, b). 

 
Figure 19(a). Precision comparison graph of three models (b) Accuracy comparison graph 

for three models 
Figures 19(a) and (b) illustrate that the proposed hybrid model outperformed the other 

two models, achieving both precision and accuracy scores of 0.94. In comparison, the 
LightGBM model attained a precision and accuracy of 0.93, while the RNN model lagged with 
a precision of 0.84 and an accuracy of 0.81.  

Figures 20 (a) and (b) show that the proposed model is performing better with a recall 
and an F1-score of 0.94 than the other two models, that is LightGBM which has a recall of 
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0.92 and an F1-score of 0.93 and the RNN model with a recall of 0.81 and an F1-score of 
0.80. 

The superior performance of the proposed hybrid model can be attributed to its ability 
to combine the strengths of both underlying models. This advantage has been validated by 
experimental results. 

 
Figure 20(a). Recall the comparison graph of three models (b) F1-score comparison graph 

for three models 
The various performance evaluation metrics and their values for the three models i.e. 

LightGBM, RNN, and the proposed Hybrid model are given in Table 5 below: 
Table 5. Various Performance Evaluation Metrics for the three models 

Model Accuracy Precision Recall F1-score 

LightGBM 0.93 0.93 0.92 0.93 

RNN 0.81 0.84 0.81 0.80 

Proposed Hybrid Model 0.94 0.94 0.94 0.94 

 
Figure 21. Evaluation metrics comparison of the Proposed Hybrid Model with the existing 

state-of-the-art approaches. 
The proposed hybrid model was compared with existing state-of-the-art approaches 

used by various researchers mentioned in the literature. The result of this comparison is shown 
in Table 6 and in Figure 21. The results indicate that the proposed hybrid model delivers the 
highest accuracy of 94%, outperforming all other compared approaches. 
Table 6. Performance comparison table showing enhanced performance of proposed model 

compared to existing state-of-the-art approaches 

Model Accuracy Precision Recall F1-score 

LSTM and CNN 0.85 0.92 0.75 0.80 

RF, XGBoost 0.92, 0.92 0.92, 0.93 0.92, 0.92 0.92, 0.92 

KNN, SVM 0.85, 0.84 0.85, 0.84 0.85, 0.84 0.85, 0.84 

Proposed Hybrid Model 0.94 0.94 0.94 0.94 



                              International Journal of Innovations in Science & Technology 

June 2025|Vol 07 | Issue 02                                                                           Page |1222 

Conclusion: 
To enhance the security of CAN traffic in in-vehicular networks (IVNs) and protect 

against various cyber threats, we have proposed a novel AI-based intrusion detection system 
(IDS) capable of detecting both known and unknown attacks. The presented deep learning 
hybrid framework leverages the strengths of two AI models: the LightGBM boosting 
technique for efficient feature extraction and the RNN for capturing temporal dependencies 
in CAN data. The models were trained and evaluated on a publicly available CAN dataset from 
Kaggle and further tested on a custom dataset we created to enhance the robustness of our 
approach. Evaluation results demonstrate that the proposed hybrid model outperforms 
individual models, achieving impressive scores of 0.94 for accuracy, precision, recall, and F1-
score. Comparatively, our model surpasses existing state-of-the-art methods, including LSTM 
and CNN (accuracy 0.85), Random Forest and XGBoost (0.92, 0.92), and KNN and SVM 
(0.85, 0.84). To further strengthen the security and privacy of the proposed system, we have 
also outlined a theoretical Federated Learning (FL) framework for the decentralized 
deployment of the hybrid model. However, one limitation is the high resource cost of running 
an AI-based IDS continuously.  
Future recommendations: 
In future work, we aim to address this by implementing an event-triggered monitoring system 
where the IDS remains in a low-power state and activates only upon detecting anomalies via 
a lightweight detection model. Additionally, we plan to incorporate detection of modern attack 
types such as DDoS, malware, Sybil, and replay attacks, and to explore the practical 
deployment of the FL-based framework. 
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