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eep Learning (DL), a subset of Machine Learning (ML), has demonstrated 
remarkable success in image recognition and object detection tasks. This study 
presents a deep learning-based approach for offline weapon detection using the 

YOLOv8m architecture. A custom YOLO-formatted dataset was developed, comprising over 
10,000 annotated images spanning two weapon categories: guns (all types of firearms) and 
knives (all types). The model achieved a Mean Average Precision (mAP@0.5) of 0.852. and 
mAP@0.5:0.95 of 0.622, with precision and recall scores of 0.89 and 0.80, respectively. The 
class-wise evaluation revealed strong detection across both weapons, with mAP@0.5 of 0.871 
for knives and 0.831 for guns. Despite occasional false positives and class confusion, the 
system shows promise for offline weapon detection tasks.  
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Introduction: 
Conventional surveillance methods often struggle to detect threats effectively, 

particularly in densely populated or high-risk areas. This is primarily because continuous 
monitoring leads to operator fatigue, and traditional systems lack the advanced analytics and 
intelligence needed to provide timely and accurate threat detection. To overcome these 
limitations Integrating artificial intelligence and deep learning into these systems offers a faster 
and more reliable solution in high-pressure environments [1]. Among these AI-driven 
techniques, Convolutional Neural Networks (CNNs) and transformer hybrids have achieved 
cutting-edge results on benchmarks like ImageNet and COCO. By utilizing large-scale 
pretraining, these models have set new accuracy records [2]. Within this field, the You Only 
Look Once (YOLO) family stands at the forefront of the object detection framework. Its key 
advantage lies in its ability to detect objects in a single execution, balancing speed and accuracy. 
Over successive iterations, YOLO has seen significant advancements. Earlier versions 
introduced improvements in training strategies and backbone designs, while the latest 
iteration, YOLOv8, enables efficient learning and accurate predictions, making it particularly 
suitable for complex scenarios such as identifying weapons in still images [3]. 

Additionally, other object-detection algorithms like Single Shot Detector (SSD) and 
RetinaNet have improved detection speed by utilizing one-forward pass architectures. 
However, the YOLO series advanced this approach further. YOLOv1 introduced single-shot 
regression, YOLOv3 incorporated multi-scale features and anchors, and YOLOv5 optimized 
both the architecture and training pipelines, each version refining the tradeoff between speed 
and accuracy. Building on these innovations, YOLOv8 incorporates a modified 
CSPDarknet53 backbone with Cross-Stage Partial with 2 Conv (C2f) modules, a Spatial 
Pyramid Pooling Fast (SPPF) block, and a decoupled head for independent handling of object, 
classification, and localization tasks, all contributing to improved precision. 

However, its success heavily depends on the quality and relevance of the training data. 
Many existing datasets fall short in this aspect, especially when dealing with diverse weapon 
types and complex backgrounds [4] To address this gap, a high-diversity, custom-built dataset 
comprising 8,000 images of various firearms and knives was developed. This dataset was used 
to fine-tune a pre-trained YOLOv8 model, which significantly boosts detection accuracy. 

As a result, this approach enables a comprehensive evaluation of the model’s 
robustness under diverse conditions, including variations in lighting and weapon orientation. 
While, the current approach focuses on image-based detection rather than real-time 
processing, contributing to deep learning and broader efforts in enhancing security 
infrastructure through AI-driven solutions. 
Objectives: 

• This study aims to develop a deep learning-based object detection model for 
identifying weapons in still images.  

• By fine-tuning YOLOv8 on a diverse, custom-built dataset, the goal is to improve 
detection accuracy across varied weapon types and visual conditions while reducing 
false positives. 

Novelty: 
The novelty of this work lies in the creation of a large, diverse dataset comprising 

10,730 images, featuring a wide range of firearms and knives under varied conditions. The 
inclusion of benign images further improves the model’s ability to distinguish weapons from 
harmless objects. 
Literature Review: 

The shift toward deep learning has transformed image interpretation, leading to 
remarkable progress in both image classification and object detection tasks [5].  Transfer 
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learning has become a powerful approach in domains with limited data such as military or 
surveillance imagery. Instead of training a model from scratch, researchers take models already 
trained on large datasets and finetune them for new, more minor tasks. As demonstrated in 
[6][7], applying transfer learning enhanced the accuracy of military equipment classification, 
particularly when the early layers of the model were kept frozen to retain general visual feature 
representations.  

The use of both deep learning and transfer learning has significantly improved object 
detection. As [8][9][10] provides a brief overview of recent advances in deep learning-based 
object detection while discussing emerging trends like combining Detection Transformer 
(DETR) with CNN models, leveraging large language models, and enhancing robustness using 
Generative Adversarial Networks (GANs). Particular emphasis is placed on minimizing data 
annotation demands by leveraging pre-trained models and weakly supervised learning 
techniques, thereby enhancing the efficiency and practicality of the technology for real-world 
applications [11][12][13][14]. 

In a novel approach, human-pose and weapon-appearance networks were fused to 

increase the system's robustness. However, their two‐stage pipeline struggled with variations 
in lighting, misaligned pose estimates, and missed detections [15]. Furthermore, as noted in 
[16], fine-tuning pre-trained detectors on crime-scene images results in high accuracy within 
the target domain; however, their performance declines significantly on unseen data, 
highlighting a lack of generalizability.  Furthermore, by coupling YOLOv8 with a lightweight 
CNN classifier for live video feeds, in [17], a smooth, high-frame-rate inference was achieved; 
however, this streamlined pipeline offers fewer secondary checks, leading to false positives. 
Moreover, [18] showed that while single-stage detectors like YOLOv8 offer rapid inference, 
they frequently fail to detect small or cluttered weapons, resulting in critical false negatives. 

Ensuring public safety has emerged as a significant concern since armed violence and 
terrorism have escalated steadily over recent years. In 2024, Pakistan experienced a significant 
surge in terrorism-related incidents, with the number of attacks more than doubling from 517 
in 2023 to 1,099 in 2024 [19]. These attacks, frequently involving firearms and explosives, led 
to 1,081 fatalities, representing a 45% increase compared to the previous year [20]. YOLOv8's 
efficiency and accuracy have attracted considerable attention when applied to weapon 
detection. In [20], a Roboflow dataset comprising 10,000 labeled images was finetuned using 
the Yolov8X model. The model was trained for 400 epochs over five categories, achieving a 
confidence of 75% in live video testing. However, limitations included class imbalance, 
particularly the underrepresentation of knives and missiles, and dependence on a single video 
source, affecting robustness in varied environments. According to [21], implementing Yolov8 
on a broad, normalized, resized, and augmented dataset achieved an impressive 94% accuracy 
across varied conditions.  

Although the results are promising, the lack of clarity about the dataset's composition 
especially in terms of class distribution, raises concerns about the model's reliability and 
adaptability in varied and unpredictable real-world environments. Similarly, in [22], Yolov5 
and Yolov8 were compared using a custom dataset of 2,986 images from online platforms. 
When quantized, YOLOv8 yielded a marginally higher mAP of 90.1% and dropped inference 
time by 15% (from 9.0 ms to 7.6 ms). However, this led to a minor accuracy drop to 88.1%, 
illustrating the common compromise between faster model execution and slight losses in 
detection performance. According to [23], a 6,420-image pistol dataset was used to evaluate 
YOLOv5, YOLOv7, and YOLOv8. YOLOv7-E6 led in overall performance (mAP@0.5 of 
93.7%), while YOLOv8-x had the highest precision at 95.6%. Nevertheless, the detection rate 
dropped to as low as 30% in occluded or distant instances, pointing to the dataset's limitations 
and the need for improved training diversity. YOLOv8's integration with weapon detection 
brought several advantages.  
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The current breakthroughs in deep learning have facilitated the development of more 
accurate and efficient weapon detection systems. A significant advancement in this field is 
deploying a YOLOv8m-based deep learning model for offline weapon identification. Despite 
obstacles, including sporadic false positives and class misclassification, the findings highlight 
the model's promise for efficient offline weapon identification, supporting current research 
initiatives to improve public safety through advanced surveillance technologies.  
Methodology: 

 
Figure 1. System Methodology 

Dataset Preparation: 
A custom-made dataset consisting of 10730 images was curated, capturing a wide 

range of weapon categories in diverse environments. The dataset includes two primary classes: 
knives; such as kitchen knives, daggers, swords, and crescent blades; and guns, including 
pistols, revolvers, rifles, and heavy firearms like bazookas, to ensure binary classification. 
Furthermore, a separate class termed Benign was incorporated into the dataset to 
represent non-weapon objects. Incorporating this class assists the model in distinguishing 
between actual weapons and unrelated objects, thus helping minimize false positives 
during detection.  The images were collected from an array of online repositories, open-source 
platforms, and self-captured real-world photographs. This approach ensures diversity in 
lighting conditions, backgrounds, object orientations, and environments, which in turn 
enhances the trained model's ability to generalize effectively across a wide range of real-world 
scenarios.  

 
Figure 2. Diversity of knife types grouped under the unified 'knife' class. 
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Figure 3. Diversity of firearms grouped under the unified 'Guns' Class. 

To maintain data quality and ensure class balance, each class was equally represented 
in the dataset. Data preprocessing was performed manually, involving careful inspection of 
the dataset to remove low-resolution, blurry, and duplicate images. This step ensured that only 
high-quality, distinct images were used for annotation and training. 

Table 1: Image count of different classes in our final dataset 

Classes No. of 
Images 

Guns 3184 

Knife 3184 

Benign 4362 

Total Images 10730 

Data Augmentation: 
After data cleansing, augmentation techniques such as rotation, flipping, scaling, and 

color adjustments were applied to expand the effective dataset size and introduce greater 
variability, thereby improving model robustness. Although the augmentation was not 
automated through code during training, the underlying operations align with well-established 
mathematical transformations used in computer vision. 
Rotation: Image rotation is governed by the following transformation matrix: 

𝑅(𝜃) = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] 

Where 𝜃 denotes the angle of rotation. 
Flipping:  

Horizontal Flipping: mirrors pictures along the vertical axis and is characterized by the 
equation: 

𝐼′ = 𝐹ℎ(𝐼) 
Vertical flipping: mirror pictures along the horizontal axis and represented as: 

𝐼′ = 𝐹𝑣(𝐼) 

Where  𝐹ℎ and 𝐹𝑣  These are the functions for horizontal and vertical flips. 
Color Jittering: is the variations in brightness, contrast, and saturation to simulate 

different lighting conditions: 

𝐼′ = 𝐶(𝐼, 𝑏, 𝑐, 𝑠) 
Where, C is the color jittering function, whereas b, c, and so forth indicate the 

parameters for brightness, contrast, and saturation, respectively. 
The implementation of these techniques simultaneously is represented as follows: 

𝐼′ = 𝑇(𝐼) = 𝑇𝑟 ∘ 𝑇𝑓 ∘ 𝑇𝑐 

where 𝑇𝑟 , 𝑇𝑓 , 𝑇𝑐 Represent the rotation, flipping, and color jittering functions, 

respectively, and ∘ denote function composition. 
All enhanced photos were stored locally and operated during the annotation and 

training phases. These augmentations were carefully applied to strengthen the model’s 
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resilience while ensuring that no artificial patterns or inconsistencies were introduced into the 
data. 

 
Figure 4. Image Augmentation 

Data annotation: 
A manual labeling tool, LabelImg, was utilized to construct exact bounding boxes 

around each weapon instance. The dataset was partitioned into training, testing, and validation 
folders, comprising 89%, 6%, and 5% of the total images respectively as shown in Table 2. 
This allocation is well-suited for object detection tasks on smaller, custom datasets, as it 
improves generalization while ensuring sufficient data for validation and evaluation. 
Afterward, a YAML file was created, facilitating smooth integration into the YOLOv8 training 
process. 

Table 2: splitting of the dataset 

Folders Percentage of the Dataset (%) 

Train 89 

Test 6 

Validation 5 

Model Selection: 
The authors in [3] demonstrated that YOLOv8 delivers superior speed and accuracy 

compared to its earlier versions and two-stage detectors such as Faster R-CNN, primarily due 
to its architectural enhancements and optimized training pipeline.  This performance 
advantage justifies the selection of the YOLOv8 model for the current study. As shown in 
Table 3 from [3], amongst the YOLOV8 family, the “m” model offers substantially higher 
capacity than the lightweight “s” and “n” versions, enabling it to learn more complex feature 
representations while avoiding the computational efficiency and excessive model complexity 
of the larger “l” and “x” variants, making YOLOv8m a suitable tradeoff between speed, 
accuracy, and complexity. 

Table 3. Comparative performance of YOLOv8 variants across key parameters [3]. 

 
Evaluation metrics: 

Employing a diverse set of evaluation metrics provides a comprehensive view of the 
model’s strengths and limitations. The most used metrics include: 
Precision: Quantifies the proportion of correct optimistic predictions. Mathematically, it is 
represented as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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where: 𝑇𝑃 (True Positives) refers to the number of correctly predicted positive cases, while 

𝐹𝑃(False Positives) refers to the number of incorrect positive predictions 
Recall: Measure the model’s capacity to identify relevant instances. It is defined as: 

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Where FN (False Negatives) denotes true positive cases that were erroneously 
classified as negative. 
F1-score: This metric offers a comprehensive evaluation of a model's performance by 
calculating the harmonic mean of precision and recall. 

𝐹1 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Mean Average Precision (mAP): Offers a comprehensive precision assessment across 
various recall criteria. The average precision for each class is derived from the precision-recall 
curve, and these values are subsequently averaged over all classes, characterized by the 
following equation:  

𝑚𝐴𝑃 =
1

𝐶
∑ 𝐴𝑃𝐶

𝑐

𝑐=1

 

Where 𝐶 signifies the classes and 𝐴𝑃𝐶  Is the average precision. 
Results and Discussions: 

The suggested approach correctly identifies weapons and categorizes them as guns or 
knives. The findings demonstrate that the model is proficient in weapon detection but 
deficient in localization. It underwent training for a maximum of 150 epochs. The validation 
dataset was evaluated using typical object detection metrics.  

 
Figure 5. Model’s detection results identifying guns and knives across varied scenarios with 

confidence scores. 
Model performance: 

The model achieved strong performance across multiple evaluation metrics, 
demonstrating its effectiveness for weapon detection. It attained a mAP@0.5 of 85.2%, 
indicating high accuracy in detecting weapons with moderate overlap between predicted and 
ground-truth bounding boxes. Furthermore, the mAP@0.5:0.95 was 62.2%, reflecting the 
model’s robust ability to accurately locate and classify objects under challenging conditions, 
including variations in angles, lighting, and scale. Class-wise analysis showed a slightly better 
detection performance for knives (mAP@0.5 = 0.880) compared to guns 
(mAP@0.5 = 0.824). 

The normalized confusion matrix in Figure 6 indicates that the model exhibits strong 
performance in weapon detection, with 91% accuracy for knives and 83% for firearms. 
Nevertheless, it encounters difficulties in accurately identifying non-weapon cases. 
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Figure 6. Class-wise model performance shows accuracy and misclassification across 

different categories. 

 
Figure 7. Collage of misclassified benign images 

Analysis of the misclassified samples revealed that certain benign objects were 
frequently mistaken for weapons. These included elongated items like light tubes, mechanical 
equipment, metallic tools, and handheld objects such as pens misclassified as knives. Sports 
scenes with equipment or athletic poses also contributed to false detections due to visual 
similarity. These cases highlight the model’s challenge in distinguishing weapons from visually 
similar benign objects, especially under varied backgrounds and lighting conditions. 

 
Figure 8. F1-confidence curve 

Figure (8) presents the F1 Curve, which depicts the trade-off between precision and 
recall, providing insight into the model's performance regarding accuracy (precision) and 
completeness (recall). 
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Figure 9. Recall-Confidence curve 

Figure 9 depicts the Recall Curve (R-Curve), demonstrating the model's capacity to 
identify all pertinent instances and reflecting its effectiveness in detecting true positives. 

 
Figure 10. Precision Confidence curve 

Figure (10) illustrates the Precision Curve, demonstrating the model's performance in 
generating correct predictions during testing and highlighting its capacity to reduce false 
positives.  

 
Figure 11. PR-Curve 

The Precision-Recall (PR) Curve in Fig (11) illustrates the relationship between 
precision and recall across different thresholds, highlighting the model’s capability to balance 
accuracy with completeness in its predictions. 
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Figure 12. loss curves 

Object localization and classification capabilities are correlated with lower training 
losses (box, class loss (cls), and distribution focal loss (DFL), with losses declining and a 
proportional reduction for each box loss. In terms of enhancing detection performance 
robustness, evaluation criteria such as precision, recall, and mAP generally show an upward 
trend. During the training phase, minimal overfitting and training biases were observed, with 
validation losses remaining relatively stable, indicating strong generalization capabilities of the 
model.  

 
Figure 13. Model Performance Metrics 

Discussion: 
To assess the effectiveness of the proposed approach, we compared our results with 

those reported in existing studies. Table 3, included in the Model Selection section, 
summarizes the comparative performance of YOLO variants based on prior work [3], while 
Table 4 presents the results obtained in this study using multiple YOLO versions. The 
performance achieved with YOLOv8 is consistent with previous findings, confirming the 
effectiveness of this architecture for object detection tasks. The similarity in performance 
reinforces the reliability of YOLOv8, particularly when fine-tuned on a diverse, custom-built 
dataset such as the one used in this study. 

Table 4. Comparison of yolov8 variants 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-
Score 

mAP@0.5 
(%) 

Inference 
(ms) 

Speed 
(Total 
ms) 

YOLOv8n 71.5 69.45 63.34 66.25 65.45 12.4 14.1 ms 

YOLOv8s 78.0 80.32 68.79 74.10 74.54 26.8 28.7 ms 

YOLOv8m 85.2 89.23 80.24 84.50 85.20 22.2 24.2 ms 

YOLOv8x 86.5 88.88 79.61 83.99 85.48 50.0 51.5 ms 

Moreover, a comparison of confusion matrices further highlights the improvements 
in our approach. The confusion matrix from [20] indicated notable class confusion, particularly 
between rifles and background, compounded by inconsistent labeling. In contrast, the 
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confusion matrix generated from our approach shows substantially improved detection rates, 
with 91% accuracy for knives and 83% for guns. The normalized format of our matrix also 
provides a clearer representation of model behavior, especially across imbalanced classes. 
While some misclassification of benign objects remains, the improved precision and class 
consistency reflect significant advancement over earlier approaches. These findings 
demonstrate that, with proper dataset preparation and model tuning, YOLOv8 can achieve 
competitive, and in some aspects superior, performance in the context of weapon detection 
in still images. 
Conclusion: 

In this research, we successfully implemented a deep learning-based weapon detection 
system using the YOLOv8m model, achieving strong performance with a mAP@0.5 of 85.2% 
and a mAP@0.5:0.95 of 62.2% on a custom dataset of over 10,000 annotated images. The 
Precision-Recall curve analysis indicates high model confidence, with a maximum precision of 
0.892 and recall of 0.802, and superior detection performance for the knife class, with some 
false positives observed, particularly with non-weapon objects and occasional misclassification 
of knives as guns. While our system operates in a non-real-time environment, it lays a solid 
foundation for future enhancements. 
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