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heumatoid Arthritis (RA) is a chronic disease that causes disability in movement. RA 
classification is critical for effective diagnosis and treatment planning. This work 
explores the application of the EfficientNetB6 architecture using transfer learning to 

classify RA severity into three categories: Healthy, Moderate, and Severe. Medical imaging 
dataset containing X-Ray images, enhanced with contrast-limited adaptive histogram 
equalization (CLAHE), data augmentation techniques, and fine-tuning of hyperparameters 
was applied in this work. We compared EfficientNetB6 with all the models of the EfficientNet 
family and all other state-of-the-art models. When we combined EfficientNetB6 with 
CLAHE, we achieved the highest accuracy of 96.06%. Without using CLAHE, accuracy 
dropped by 4% to 5% for all the models. For a healthy class model, we achieved precision, 
recall, and F1-score of 99.36%,97.81%,98.58% respectively, showing robustness in identifying 
healthy cases. Moderate class yielded precision, recall, and F1-score of 89.45%,95.07%,92.17% 
respectively, demonstrating the model’s effectiveness in identifying moderate cases with 
minimal false negatives. The Severe class presented more challenges with a precision, recall, 
and F1-score of 85.11%,78.43%, 81.63% highlighting the need for improved recall value. To 
further improve results, we suggest enhancements such as advanced data augmentation and 
synthetic data generation, particularly for the Severe class, consequently aiding clinicians in the 
identification of RA. 
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Introduction: 
Rheumatoid Arthritis (RA) is a long-term autoimmune disorder characterized by 

persistent inflammation and progressive damage to the joints, resulting in pain, joint stiffness, 
and reduced mobility [1]. The knee is one of the joints most commonly affected by 
Rheumatoid Arthritis (RA), and it can suffer severe damage if the condition is not identified 
and managed promptly. Traditional diagnostic methods for detecting RA in the knee generally 
involve clinical assessments alongside imaging techniques such as X-rays and magnetic 
resonance imaging (MRI) [2]. However, these methods often face challenges related to 
accuracy and cost-effectiveness. As a result, there is a pressing need for a more efficient and 
accurate method to detect RA in the knee. Recently, deep learning techniques for medical 
image analysis have garnered significant attention. Models like Convolutional Neural 
Networks (CNNs) have demonstrated promising outcomes in various medical imaging tasks, 
such as detecting and classifying diseases like breast cancer [3], lung cancer [4], and diabetic 
retinopathy [5]. However, to the best of our knowledge, there is limited research focused on 
the application of deep learning techniques for detecting Rheumatoid Arthritis (RA) 
specifically in the knee joint. Therefore, the proposed study aims to address this gap in existing 
literature by investigating the feasibility of utilizing deep learning techniques for the detection 
of Rheumatoid Arthritis (RA) in the knee joint. In Rheumatoid Arthritis (RA) patients, the 
synovial membrane surrounding the knee joint becomes inflamed, leading to the breakdown of 
cartilage and bone in the joint.  

This inflammation can also lead to the formation of scar tissue and the accumulation 
of excess fluid in the joint, resulting in pain, stiffness, and limited range of motion. Over time, 
the cartilage and bone damage can cause deformities in the knee joint and surrounding 
structures, which can further exacerbate pain and functional impairment. Effective treatment 
of RA in the knee typically involves a combination of medications, physical therapy, and 
lifestyle modifications. In some cases, surgery may be necessary to repair or replace damaged 
joint structures. Early diagnosis and treatment are crucial in preventing joint damage and 
improving long-term outcomes for RA patients.  
Literature Review: 

Diagnosing RA, particularly in its early stages, remains a complex and challenging task 
due to subtle clinical signs and overlapping symptoms with other joint disorders. A variety of 
methods, including deep convolutional neural networks (CNNs), machine learning, and deep 
learning algorithms, have been proposed to tackle various issues related to Rheumatoid 
Arthritis data. In clinical research, magnetic resonance imaging (MRI) serves as a primary tool 
for diagnosing Rheumatoid Arthritis and is utilized for tasks such as feature extraction [6]. 
Before the rise of deep learning, machine learning techniques have been employed since 2000, 
often paired with manually engineered features, necessitating the expertise of domain 
specialists to achieve high accuracy and optimal performance. Since 2013, new architectures 
featuring deeper models have become increasingly popular, particularly in the realm of medical 
image processing [7]. Numerous deep learning algorithms have been employed to detect 
Rheumatoid Arthritis in patients, including the use of support vector machines on weighted 
MRI images and random forest classifiers for multimodal classification [8].  

Shamir et al. [9] present a computer-aided diagnostic (CAD) system designed to detect 
osteoarthritis (OA) in knee X-ray images. Their approach initially extracts features using 
discrete wavelet transform (DWT) and gray level co-occurrence matrix (GLCM) techniques. 
These features are subsequently classified with a support vector machine (SVM) to ascertain if 
the knee joint is normal or impacted by OA. The proposed method achieves a high accuracy 
rate of 93.75% in detecting OA in knee X-ray images. However, one limitation of this method 
is that it only focuses on detecting OA in the knee joint, and no other types of arthritis that 
can affect other joints in the body. Additionally, the proposed method relies on the accuracy 
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of the feature extraction techniques and the SVM classifier, which may not perform optimally 
in cases where the X-ray images are of poor quality or contain artifacts. Zeng et al. [10] 
provided a comprehensive review of studies that have used deep learning approaches for 
discovering imaging features related to the diagnosis and prognosis of knee osteoarthritis (OA). 
Zeng et al. first provided an overview of knee OA disease and its diagnostic imaging 
modalities, such as X-ray, MRI, and CT scans. They then reviewed various manual imaging 
grading systems for knee OA, including Kellgren- Lawrence (K-L) grading and OARSI Atlas 
grading, and discussed their limitations in terms of reproducibility and sensitivity. 
Subsequently, the authors explored machine learning- based approaches for discovering knee 
OA imaging features using computer vision and deep learning techniques. They discussed 
various studies that used machine learning for automated knee OA diagnosis and prediction, 
such as the use of convolutional neural networks (CNNs) and support vector machines 
(SVMs).  

Zeng et al. concluded that while manual imaging grading systems are widely used in 
clinical settings, they are subjective and prone to inter-observer variability. On the other hand, 
machine learning techniques have shown good results in detection of image features and 
classification of Knee OA. For instance, Alexopoulos et al. [11] employed a deep learning 
approach using convolutional neural networks (CNNs) for the early detection of knee OA. 
Their model utilized CNNs to extract relevant image features and was trained on a large dataset 
of MRI scans, achieving an accuracy of 90.5% in distinguishing healthy knees from those 
affected by OA. This study has some limitations which included not using the new images but 
instead using the already available images that were quite old, and they did not consider the 
broader perspective but specific population. Their adaptability to the results remains unknown 
to other populations. Alexopoulos et al. also acknowledge that the interpretability of their 
system is very limited in identifying which image feature contributed to the system’s 
classification decision. Guan et al. [12] focused on identifying the severity of Knee OA. Instead 
of relying on subjective interpretation of Knee Images, they used a deep learning approach 
where they trained a deep CNN model on Knee radiographs consisting of Knee OA severity. 
Their findings suggest that the proposed method outperforms traditional techniques in terms 
of both accuracy and overall performance. However, their approach has certain limitations, 
which include evaluating the performance of their CNN model using only radiographs but not 
considering the other image modalities to see the broader perspective in identifying the severity 
of knee OA. Also, their study was limited by the use of a relatively small dataset that did not 
represent a broader population. Additionally, their approach focused exclusively on knee OA, 
without considering other joints that can also be significantly affected by osteoarthritis. 

Murakami et al. [13] proposed a new approach to identify bone erosion from 
Rheumatoid Arthritis using hand radiographs with convolutional neural networks. They used 
a dataset consisting of 825 hand radiographs with a two-stage training strategy to improve the 
classification performance of their model. They obtained specificity of 95.6% and sensitivity 
of 93.8% in detection of erosion caused by Rheumatoid Arthritis. Although they achieved 
overall promising results, their study had several limitations. It relied solely on hand 
radiographs, excluding other imaging modalities such as MRI or X-ray, which could provide 
more comprehensive insights. Furthermore, the study did not incorporate critical diagnostic 
features such as joint space narrowing, which play a significant role in the detection of 
Rheumatoid Arthritis. Another notable drawback of their study is the lack of comparison with 
other state-of-the-art methods, which limits the ability to evaluate the true effectiveness and 
competitiveness of their proposed approach. Wang et al. [14] used a deep learning approach 
for detection of Rheumatoid Arthritis in hand X-ray images. They used 7000 X-ray images for 
training the model and then used another dataset consisting of 156 images for testing the model, 
which limits the generalizability of results. Their system attained a specificity and sensitivity of 
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92.9% and 87.5% respectively, with a correlation coefficient of 0.797. Their approach showed 
promising results in identifying joint space narrowing and erosion. Despite its promising results, 
the approach had several limitations, including—but not limited to—the exclusion of 
important patient data such as demographics and disease activity. Additionally, the study relied 
solely on hand X-ray images, without incorporating other imaging modalities that could 
enhance diagnostic accuracy. They used a small dataset consisting of 156 images only and not 
including the greater population.  

Salmeron et al. [15] proposed a novel-based approach using Fuzzy C-Means (FCM) 
clustering and Particle Swarm Optimization (PSO) for detection of Rheumatoid Arthritis. The 
system uses a limited number of features to identify if a patient has Rheumatoid Arthritis (RA) 
positive or not, but it uses a very limited number of input images that include 50 images from 
RA-positive cases and 50 from healthy cases, which is very low for machine learning 
algorithms. In terms of accuracy, specificity, sensitivity, and F1-Score, their system 
outperformed traditional methods but with some limitations that include using very small data 
for training and testing. Another major drawback is that their process requires manual feature 
selection before applying PSOFCM for classification, which is subjective and prone to errors. 
Lastly, they did not compare their approach with other machine learning or deep learning 
methods to find out the true potential of their method. Dziekan et al. [16] used Fluorescence 
Time Correlation Spectroscopy (TCS) for detection of RA, which is non-invasive method to 
measure the mobility of fluorescence label molecules in cells. This method helps to find the 
mobility of synovial fluid in joints of patients suffering from RA. The study shows a significant 
difference in mobility for RA patients than those of healthy individuals, showing that it can be 
used for diagnosis of RA. Despite the fact that it can be used for early detection of RA, this 
study has few limitations. First, they used a very small dataset where they used 15 samples 
from RA patients and 10 healthy individuals, affecting generalizability of their results. Second, 
they did not compare the TCS approach with other diagnostic methods, including X-ray and 
MRI, raising questions mark of how this approach compares with other state-of-the-art 
methods available.  

Ebert et al. [17] conducted a study that explored the use of a fluorescent imaging agent 
designed to bind specifically to inflamed synovial tissue in patients with Rheumatoid Arthritis 
(RA). This approach aimed to enhance the visualization of inflammation, potentially 
improving the accuracy of RA detection and assessment. This is non-invasive and injected into 
a vein. Then, fluorescence imaging system is analyzed to check the inflamed tissue, indicating 
the presence of RA in the patient under observation. The imaging agent they used is called V-
pyridoxyl-5-methyltryptophan (V-PMT). In this study, they used 10 RA patients and obtained 
sensitivity of 90% and specificity of 100%. The authors also showed that this system is able to 
identify RA in patients where traditional methods like X-ray and MRI showed false negative 
results. This approach has some major drawbacks, including insertion of non-invasive imaging 
agent into patient veins and then analyzing that agent with a specific imaging analysis technique, 
which requires experts and special equipment. The dataset used is very small, which requires 
further analysis to find the generalizability and robustness of the proposed approach.  

Frize et al. [18] employed a non-invasive technique for the detection of Rheumatoid 
Arthritis (RA) using infrared imaging. This method aimed to identify temperature variations 
associated with inflammation, offering a radiation-free alternative for assessing RA-related 
joint activity. By analyzing the temperature distribution of joints, authors claimed infrared 
imaging technique can help to early detect the presence of RA early in patients. Their data 
includes 28 RA patients and 28 healthy subjects. They used thermal cameras to capture the 
infrared images and then used statistical methods to find the temperature distribution of joints. 
Results showed the temperature distribution of joints for RA patients was significantly 
different than that of healthy subjects. The authors also used a conventional machine learning 



                                 International Journal of Innovations in Science & Technology 

July 2025|Vol 07 | Issue 03                                                                 Page |1634 

approach using Support Vector Machine to classify infrared images either as RA positive or 
as healthy individuals with an accuracy of 89.3%. Their study has several limitations, including 
using a very small amount of data, which affects the adaptability of results. They only focused 
on knee joints and not the other joints that can be affected by RA. The most important one is 
that their study focused only on temperature distribution, which can easily be affected by 
certain conditions like skin temperature and surrounding temperature. Therefore, further 
research is necessary to assess the effectiveness of the proposed method in a larger sample size, 
for various joints, and under different environmental conditions. After doing an extensive 
literature review, the proposed study selected Kumar and Goswami [19] as the base paper as 
it has state-of-the-art accuracy of 91.03%, % highest amongst all the existing approaches based 
on deep learning, used same evaluation parameters, state-of-the-art image processing 
techniques and recent publication which made it more suitable for comparison with our work. 

The rest of the manuscript is structured as follows: The objectives and novelty section 
contain the objectives and novelty statement. Materials and Methods presents our research 
methodology and tools utilized. Results and Discussions contain experimental results and 
performance comparison. 
Objectives and Novelty: 

The main purpose of this study is to develop a robust and accurate deep learning-
based classification system for early detection and prevention of Rheumatoid Arthritis (RA) 
in knee joint radiographs, using advanced image preprocessing techniques and state-of-the-art 
convolutional neural network architectures.  
Contributions of this research are listed as follows: 
We fine-tuned a robust deep learning model, EfficientNetB6, using state-of-the-art Image 
processing techniques (CLAHE) for accurate classification of Rheumatoid Arthritis in Knee. 
We performed the balancing and augmentation of data using Image Data 
Augmentation to mitigate bias and enhance the generalizability of results. 
We compared the performance of selected models with other state-of-the-art models in 
family, which we also trained on the same dataset for identification of robust solutions. 
We developed an efficient tool for rheumatologists and radiologists for accurate 
diagnosis of Rheumatoid Arthritis in knee joint radiographs. 

We fine-tuned a deep learning model, EfficientNetB6, on the OAI dataset, consisting 
of X-ray images of Knee with KL grade assigned to each image, utilizing Contrast Limited 
Adaptive Histogram Equalization, for accurate diagnosis of Rheumatoid Arthritis in knee Joint 
Radiographs. CLAHE works by enhancing contrast and reducing noise amplification while 
maintaining the global structure of the image. CLAHE helped preserve bone texture 
information and joint space visibility while maintaining diagnostic quality. By incorporating 
CLAHE in our data preprocessing step and using an advanced deep learning model, our 
approach aims to improve classification performance for early detection and prevention of RA 
in Knee radiographs. 
Material and Methods: 

This section discusses details of the working mechanism for the detection of 
Rheumatoid Arthritis using EfficientNetB6. Furthermore, the working mechanism consists of 
three main steps: data preprocessing, model training, and validation. We performed class 
balancing, data augmentation, contrast-limited adaptive histogram equalization (CLAHE), and 
color changing of black and white into RGB for a deep learning model. Next, with the help of 
transfer learning, we used the EfficientB6 model trained on ImageNet data, fine-tuned the 
EfficientNetB6 model, and finally, validated the model for accurate detection of Rheumatoid 
Arthritis. The details of the preprocessing and the architecture of the proposed system are 
discussed in the following sections. Figure. 1 displays the working mechanism of this work, 
while Figure. 2 shows the flow diagram of the methodology.  
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Figure 1. Working mechanism. 

 
Figure 2. Flow Diagram of methodology. 

Data Description: 
The dataset used in this study was obtained from the Osteoarthritis Initiative (OAI), a 

large-scale project aimed at advancing research in osteoarthritis. It includes X-ray images of 
both the left and right knees; each annotated with Kellgren-Lawrence (KL) grades to indicate 
the severity of osteoarthritis. The images were in different dimensions ranging from 384x384 
pixels to 512x512 pixels. Images were taken from approximately 4796 subjects. The images 
contained all the factors, including coronal, sagittal, and axial views, which provided a clear 
picture of joint cartilage of the knee, consequently aiding in early diagnosis and detection of 
disease [23]. The original dataset consisted of five classes, Grade 0 (Healthy), Grade 1 
(Minimal), Grade 2 (Doubtful), Grade 3 (Moderate), and Grade 4 (Severe). In our work, we 
consolidated the three classes (Minimal, Doubtful, and Moderate) into one class, Moderate, as 
these three classes (Minimal, Doubtful, and Moderate) had overlapping radiographic features, 
which included inflammatory properties, progressive joint space narrowing, and erosive 
pattern changes. In this study, Rheumatoid Arthritis (RA) was classified into three categories—
Healthy, Moderate, and Severe—to reflect the progression of the disease and support 
appropriate clinical decision-making. This categorization enabled more targeted management 
strategies: Healthy cases did not require intervention, Moderate cases were considered suitable 
for medical treatment to manage inflammation and prevent progression, and Severe cases 
often required more intensive therapies, including surgical intervention. Besides just image 
data, the dataset also contained metadata for each subject like their age, gender, race, and clinical 
data, which included subject physical examination, body index, and pain scores. This 
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comprehensive collection of images and clinical data has been an invaluable source for 
researchers and scientists in overcoming the progression of osteoarthritis and in early 
detection and diagnosis by developing predictive models using deep learning and machine 
learning approaches. 

 
Figure 3. Images from Knee Osteoarthritis Dataset. 

Data Balancing using Trimming and Augmentation: 
Balancing the dataset forces the model to pay equal attention to all classes, thereby 

enhancing its ability to make accurate predictions across the board. The original dataset had 
significant imbalance with 2286 healthy, 757 moderate, and only 173 severe x-ray images, 
respectively. If we fed this directly to our model, we would get biased results; the model's 
performance and accuracy would be biased towards the healthy class, thus giving false results. 
To address these class imbalance issues, first, we trimmed all the classes to have a maximum 
of 1000 samples and a minimum of 173 samples, as severe class only contains 173 samples. 
Then we used image data augmentation on classes that had samples less than 1000 (Moderate 
and Severe). We used ImageDataGenerator from the Keras library for real-time data 
augmentation, and parameters we used were rotation, height/width shift, horizontal flip, and 
zoom. We generated 263 images for moderate class and 827 for severe class. After trimming 
and applying data augmentation techniques, we obtained 1,000 images for each class—
Healthy, Moderate, and Severe. This process not only ensured class balance but also 
introduced variability through different image transformations, thereby improving the model’s 
robustness and its ability to generalize across diverse data. 
Image enhancement using Contrast Limited Adaptive Histogram Equalization 
(CLAHE): 

After applying data balancing using augmentation, conversion of images to RGB, 
image enhancement using OpenCV library, and sharpening using different kernel values, we 
applied different models, and with EfficientNetB6, we were able to achieve the highest accuracy 
of 91.13 %, more than our base paper [19], which is 91.02%. This minor improvement led 
towards further experimentations. We analyzed that X-ray images in our dataset had varying 
contrast and noise, due to which the model faced difficulties in learning all the patterns in the 
data, and consequently, our results were not getting much better [24]. Following the evaluation 
of various data preprocessing methods and the optimization of hyperparameters, we applied 
CLAHE (Contrast Limited Adaptive Histogram Equalization) to our dataset to enhance image 
contrast and feature visibility. CLAHE is an extension of the traditional histogram equalization 
technique where all the intensity values of images are evenly distributed across the entire 
histogram. It works by operating on small tiles in an image, making each detail in a small region 
more visible. Traditional Histogram Equalization methods work by applying enhancement 
globally on images, resulting in over-enhancement and loss of local details. Adaptive 
Histogram Equalization causes over-amplification of noise and can create artificial edges, and 
is computationally intensive. CLAHE helps by limiting the contrast and helping alleviate the 
noise amplification. CLAHE preserves bone texture information and joint space visibility, 
maintaining diagnostic quality. While experimenting with CLAHE, we used different values 
of clip size and grid size. We got the highest accuracy of 96.06% when we used a clip size of 



                                 International Journal of Innovations in Science & Technology 

July 2025|Vol 07 | Issue 03                                                                 Page |1637 

2.0 and a grid size of 8x8 with EfficientNetB6. Upon trying higher values of clip size, we 
noticed over-amplification of noise and loss of important radiographic features in images, 
resulting in degradation in performance of models. After experimenting with different grid 
sizes, we found that a grid size of 8x8 provides the balance between maintaining the global 
image characteristics and enhancing the local image features. By enhancing the contrast, the 
bones in X-ray images became more visible and clearer, thus helping the model to better 
capture the visual features and enhancing the learning pattern of joint identification. 

 
Figure 4. Images from original dataset without applying CALHE

 
Figure 5. Shows enhanced images after applying CALHE. 

System Architecture: 
For the model selection phase, we experimented with several state-of-the-art image 

classification models, including InceptionResNetV2—as used in our base paper—as well as 
all variants of the EfficientNet family. Our results showed that the EfficientNet models 
outperformed the others, largely due to their advanced architecture, which offers a balanced 
trade-off between accuracy and computational efficiency. Figure 6 shows the image taken from 
the official EfficientNet paper. 

 
Figure 6. Model size vs ImageNet Accuracy. 

In the image, the x-axis shows accuracy of models on ImageNet dataset, and the y-axis 
represents the number of parameters (size) of each model. As we can see, the EfficientNet 
family outperformed all the other state-of-the-art models. EfficientNetB7 achieved the highest 
accuracy of 84.3% amongst all on ImageNet, with 8.4 times smaller and 6.1 times faster than 
GPipe. One of the key reasons for selecting the EfficientNet family in our transfer learning 
approach was its ability to effectively balance model size, computational efficiency, accuracy, 
and feature extraction. These strengths made it well-suited for fine-tuning on our dataset, 
resulting in a more reliable and robust classification performance. EfficientNet family’s models 
are based on compound scaling techniques, which uniformly scale the network width, depth, 
and resolution based on scaling coefficients. Because of this uniform scaling and balance 
between all the dimensions, they outperformed other models in computational efficiency and 
performance. We initialized the EfficientNetB6 model pretrained on ImageNet data and 
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removed its top layer, and added a max pooling layer for down-sampling. Unlike the common 
practice, we kept the base model trainable to achieve better results. EfficientNetB6 
architecture is divided into different components, including compound scaling, Mobile 
inverted bottleneck convolution blocks, convolution blocks, batch normalization, L1 and L2 
regularizations, and dense layers. Compound scaling is represented in equation 1. 

Width = 𝛽𝑤, Depth = 𝛼𝑑 , Resolution = 𝛾𝑟  (1) 
Where w, d, and r represent the scaling values for width, depth, and resolution, 

respectively, and α, β, and γ are the constants. EfficientNetB6 uses the same baseline 
architecture as EfficientNetB0 but with larger dimensions. Next, EfficientNetB6 uses a series 
of convolutions to extract features from the input images. In addition, MBConv Blocks are 
Mobile Inverted Bottleneck Convolutional blocks, which are highly efficient in terms of 
computational cost and memory usage. Batch normalization layers were incorporated 
following each convolutional layer to normalize the inputs of each layer. This helped in 
stabilizing and speeding up the training process. 

BN (x) = 𝛾 ((𝑥 − 𝑈 ∕ √𝜎2 + 𝜀) + 𝛽) (2) 

where μ and 𝜎² represent the mean and variance of the input, respectively, and ϵ is a 
small constant to avoid division by zero. Additionally, γ and β are trainable parameters. 
EfficientNetB6 primarily uses the Swish activation function, which improves performance 

over 𝑅𝑒𝐿𝑈 in many cases 

Swish(x) = x.σ(x) =x 

1+ⅇ−x (3)  
For pooling, the architecture utilized global average pooling to decrease the spatial 

dimensions of the feature maps before the final dense layers. We performed batch 
normalization on the output of the base model, which helped in stabilizing and speeding up 
the training process. This was followed by a dense layer with 256 units, regularized using L2 
regularization (l2 = 0.016) and L1 activity and bias regularization (l1 = 0.006), and activated 
using the Swish function. A dropout layer with a dropout rate of 0.4 was used to mitigate 
overfitting, randomly deactivating a portion of input units during training by setting them to 

zero. The final output layer used a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation function to produce probability 
distributions over the class labels, which made it suitable for multi-class classification. For 
optimizer, we used Adamax with a learning rate of 0.001. The loss function chosen is 
categorical cross-entropy, suitable for multi-class classification problems, and for evaluation 
metric, we used accuracy. In addition, L1 regularization, L2 regularization, and dropout layer 
are represented by equations 4,5, and 6, respectively. Specifically, the L2 regularization is 
represented by Eq. 4 

𝐿2(𝑤) = 𝜆 ∑ 𝑤2 (4) 
where λ is the regularization strength and w^2 are the weights. Equation 5 represents 

the L1 regularization. 

𝐿1(𝑤) = 𝜆 ∑|𝑤𝑖| (5) 

Where w represents the weights and 𝜆 represents the regularization strength. 
Equation 6 represents the dropout layer. 

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑖𝑡𝑦 𝑝 

𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝑥) = {𝑥⁄1 – 𝑝 𝑒𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝 (6) 

In the above equation, 𝑝 represents the dropout rate. By using data augmentation for 
balancing the data and CALHE for enhancing the images and then feeding it to a sophisticated 
neural network, opted with appropriate regularization and hyper-parameter optimization, our 
classification model was able to perform accurate and robust classification for early detection 
of Rheumatoid Arthritis. 
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Results and Discussion. 
This section highlights the performance outcomes of all EfficientNet family models. 

We created Table 1 listing the results of all EfficientNet family models that we used for 
experimentation with CLAHE applied. For EfficientNetB6, we provided separate detailed 
tables (Tables 2 and 3) using key metrics such as accuracy, precision, recall, and F1-score, both 
with and without using CLAHE. 
Performance on all EfficientNet Models: 

Table 1. EfficientNet Classification Results Summary 

Model Total Accuracy 

EfficientNetB0 93.32% 
EfficientNetB1 87.26% 
EfficientNetB2 93.98% 
EfficientNetB3 93.76% 
EfficientNetB4 94.90% 
EfficientNetB5 93.76% 
EfficientNetB6 96.06% 
EfficientNetB7 94.85% 

Performance on EfficientNetB6: 
Table 2. Classification Report on EfficientNetB6 with CLAHE (Accuracy 96.06%) 

 precision recall F1-score support 

Healthy 0.9936 0.9781 0.9858 639 

Moderate 0.8949 0.9507 0.9217 223 

Severe 0.8511 0.8843 0.8163 51 

Macro Average 0.9131 0.9044 0.908 913 

Weighted Average 0.9615 0.9606 0.9607 913 

 
Figure 7. Confusion Matrix for EfficientNetB6 with CLAHE. 

Table 3. Classification Report on EfficientNetB6 without CLAHE Accuracy (91.13%) 

 precision recall F1-score support 

Healthy 0.9900 0.9280 0.9580 639 

Moderate 0.8863 0.8386 0.8618 223 

Severe 0.4330 0.8235 0.5676 51 

Macro Average 0.7769 0.8783 0.8070 913 

Weighted Average 0.9388 0.9113 0.9209 913 
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Figure 8. Training and Validation accuracy on EfficientNetB6 with CLAHE. 

 
Figure 9. Training and Validation loss on EfficientB6 with CLAHE. 

 
Figure 10. Confusion Matrix for EfficientNetB6 without CLAHE. 

 
Figure 11. Training and Validation accuracy on EfficientNetB6 without CLAHE 
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Figure 12. Training and Validation loss on EfficientNetB6 without CLAHE. 

Performance Comparison: 
Table 1 and graph in Figure 13 collectively illustrate the effectiveness of each model 

in terms of overall accuracy. Table 2 and Table 3 with detailed values of all evaluation metrics 
show that EfficientNetB6 outperformed all other models, achieving the highest scores across 
all evaluation metrics. Figure 14 presents a comparative analysis of the various approaches 
used for classifying Rheumatoid Arthritis, with particular emphasis on the superior 
performance of EfficientNetB6. The graph in Figure. 14 shows that our approach with 
EfficientNetB6 achieved the highest accuracy of 96.06% higher than our base paper, which is 
91.02%. All the accuracy values in the graph range from 63.04% to 91.02% which are 
comparatively lower than our approach. Which clearly states that EfficientNetB6, due to its 
compound scaling method coupled with optimized hyperparameter tuning, effective use of 
transfer learning, robust regularization, and enhanced image processing technique using 
CLAHE, delivers higher performance. 

 
Figure 13. Performance Comparison amongst all EfficientNet Models. 

Discussion and Analysis: 
As shown on the graph in Figure 14, Antony et.al [12] achieved a lowest accuracy of 

63.4% compare to all other studies, This could be due to several factors including use of less 
advanced image preprocessing techniques, not using sophisticated model architecture, using 
smaller dataset and using traditional machine learning approaches which were best at their 
time but now has been surpassed by more advanced architectures like EfficientNet family. 
Chen et.al [20] achieved slightly Higher accuracy of 67.71% compared to Antony et.al due to 
certain improvements, including but not limited to adaptation of more advanced image 
processing techniques and using deeper neural network architecture. Lim et.al [21] achieved 
an accuracy of 75.82, higher than Antony et.al and Chen et.al, but not higher than our base 
paper and Efficient Net Family.  From all the past studies on RA detection, Tiulpan et.al [22] 
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achieved the highest accuracy of 80% due to the use of a more robust approach, potentially 
incorporating convolution neural networks (CNNs). Their results were still significantly lower 
than our base paper, which indicates the use of less optimized architecture, not using data 
augmentation, and insufficient regularization techniques. Base paper achieved superior results 
compared to other approaches, primarily due to the use of advanced image processing 
techniques applied before feeding the data into the model. These preprocessing steps likely 
enhanced feature clarity and contributed to improved model performance. By leveraging more 
advanced image enhancement techniques, we were able to achieve even better results than 
those reported in the base paper, demonstrating the effectiveness of our improved 
preprocessing pipeline.  

Even before applying CLAHE, our model outperformed the base paper, achieving an 
accuracy of 91.13%, a result attributed to the use of a more advanced model and optimized 
hyperparameters. However, after incorporating CLAHE into our preprocessing pipeline, the 
accuracy significantly improved, reaching 96.06. As observed from the confusion matrix of 
EfficientNetB6 before applying CLAHE, the model correctly classified 633 out of 639 Healthy 
images, 192 out of 223 Moderate cases, and 28 out of 52 Severe cases. These results indicate 
strong performance, particularly for the Healthy class, even before contrast enhancement was 
introduced. After applying CLAHE we got more balanced results among all the classes where 
we have now 625 correctly predicted out of 639 for healthy, 212 out of 223 for moderate and 
42 out of 52 for severe showing that after applying CHALE model was able to learn all the 
complex features in images and identify all the classes correctly because of improved image 
contrast and lesser noise. Moreover, the model’s balanced performance across all the classes 
and subtle difference between training and validation loss at the end of training shows the 
model did not overfit. Lower values of evaluation matrices for severe class is due the fact that 
samples for severe class in original dataset were very low compared to other classes and we 
performed huge amount of augmentation for severe class, the values of precision, recall and 
f1-score for severe class can be further enhanced by using more advanced data augmentation 
techniques such as elastic transformation, color jittering and random cropping. Techniques 
like SMOTE (Synthetic Minority Over Sampling) for generating synthetic samples can be used 
along with data augmentation to achieve more balanced data. EfficientNetB6 demonstrates 
robust performance for classification of Rheumatoid Arthritis severity and can be used as an 
asset for medical image classification, increasing the patient’s outcomes and advancing the 
field of medical diagnosis. 

 
Figure 14. Comparative Analysis. 

Conclusion: 
In this work, we utilized a transfer learning approach using the EfficientNet family that 

was already trained on ImageNet data with higher results compared to other Models for Image 
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classification. We used the X-ray images as input and first performed all the data 
preprocessing, including data balancing using Augmentation, and then enhancing the images 
using Contrast Limited Adaptive Histogram Equalization, which caused significant 
improvements in the results. We performed intensive hyper-parameter optimization and 
added robust regularizations. We performed experiments on all the EfficientNet Family 
models along with other state-of-the-art models for Rheumatoid Arthritis classification. 
EfficientNetB6 demonstrated robust performance in early detection and diagnosis of 
Rheumatoid Arthritis into three distinct classes: Healthy, Moderate, and Severe, with a total 
accuracy of 96.06% surpassing other approaches for classification of Rheumatoid Arthritis. 

Higher values of all the evaluation matrices have shown that it can be used as a reliable 
tool in hospitals for early detection of RA by rheumatologists and radiologists. Healthcare 
facilities, especially in remote and rural areas, lack specialists like radiologists and 
rheumatologists. In these settings, the proposed system can be very helpful. Even a general 
physician using our system can easily diagnose with the help of just X-ray whether the patient 
has RA, and if yes, then what is the severity and type of intervention needed. For expert 
radiologists and rheumatologists, it can aid in their decision-making process [25] for accurate 
diagnosis. Lower value of evaluation matrices for severe class, especially f1-score, shows more 
room for improvement using more advanced data augmentation techniques and generating 
synthetic data using SMOTE, so the proposed work can be extended further to incorporate 
this aspect. 
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