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This paper presents a real-time system for translating gestures from American Sign

NOISIAI

Language (ASL) using an IoT-enabled smart glove. The glove is equipped with five flex

sensors and an MPU-6050 gyroscope to capture finger movements and wrist
otientation, processed by an Arduino Nano. Sensor data is transmitted via a Bluetooth module
to a mobile application, where a Random Forest machine learning model with 97% accuracy
classifies the gestures. The recognized gestures are displayed as text and vocalized through a
speaker. Moreover, the app has a feature that allows users to see ASL signs with their
corresponding vocabulary, thus enabling accessibility and making language more accessible to
learn. It enhances the communication between the deaf and the hearing community since it
offers an accurate, portable, and interactive sign recognition application.
Keywords Sign Language (SL), American Sign Language (ASL) Machine Learning (ML)
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Introduction:

The deaf and speech-impaired community represents a substantial segment of the global
population, with an estimated 430 million people, about 5% of the world's population,
experiencing some form of disabling hearing loss [1]. In Pakistan alone, there are approximately
244,196 individuals who are either deaf or have speech impairments [2]. Such individuals, like
other members of the community, possess unique abilities and talents that contribute immensely
to social value. The lack of adequate means of communication has been a barrier, restricting
them from society and its opportunities.

Sign language plays a vital role in the lives of deaf and mute individuals, serving as their
primary mode of communication. It enables them to convey their thoughts, emotions, and needs
through gestures and expressions, fostering independence and interaction [3][4]. However, the
lack of knowledge of sign language among the general population exacerbates communication
challenges, creating a gap that hinders inclusivity and mutual understanding.

In the last few years, IoT has made tremendous progress and has created new
opportunities to bridge this communication gap [5]. Solutions derived from IoT are equipping
individuals with disabilities by providing intelligent devices and supportive technologies that
improve their overall quality of life. IoT technologies have opened new avenues for the deaf and
speech-impaired community by enabling real-time translation, smart wearables, and mobile apps
that support smooth and accessible communication [6].

One of the innovations that gained significant popularity for translating sign language
into text or speech is sign language gloves. These gloves have gone through significant evolution
from sensors to machine learning techniques to effectively recognizing and interpreting gestures
[6]. These systems using wearable technology avoid the problems of visual recognition, such as
variability in lighting and dependency on camera functionality.

The objective of this study is to design a novel IoT-enabled smart glove that can translate
both static and dynamic American Sign Language (ASL) gestures into real-time text and speech
using a Random Forest machine learning model. Thus, it connects the world of the deaf with its
counterpart by integrating flex sensors, MPU-6050 gyroscope, and their incorporation into
machine learning-based algorithms. By offering a portable, low-latency, and intuitive
communication tool, the system seeks to increase accessibility for deaf and speech-impaired
people. Unlike previous works, it offers instant feedback through a Bluetooth-connected mobile
app that converts gestures into speech and text, while also providing a learning module for non-
signers. Its key innovation lies in delivering a low-cost mobile solution that bridges the
communication gap between the deaf and hearing communities.

Related Work:

The development of real-time sign language translation through IoT-enabled assistive
gloves is the next big leap in communication technology for the hearing-impaired community.
This comparative study discusses how such research projects make use of sensor technologies
and machine learning algorithms to further enhance the accuracy and efficiency of sign language
recognition. We critically reviewed these works to determine their key findings, their limitations,
and how our project builds on those foundations to offer improved functionality and user
experience.

Based on comparative analyses, the following important details emerge: Several projects
effectively work with flex sensors along with motion detection technologies while frequently
facing problems concerning accurate gesture recognition and the capability of user in relation to

adaptability.
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Table 1. A Comparative Analysis of Existing Sign Language Recognition Systems and the Proposed IoT-Enabled Assistive Glove

References

Key Findings

Limitations

How our Proposed Solution Improves Upon It

American Sign Language
using Hand Gloves [7]

Used flex sensors to recognize
ASL gestures with reasonable

accuracy. Focused on static
gestures.

Limited to static gestures.

Supports both static and dynamic gestures with
MPUG6050 and machine learning for real-time
processing.

Matiwade & Dixit, (2016)
8]

Created an electronic glove
for basic sign language
interpretation.

Focused on limited
vocabulary; no mobile app
integration.

Mobile app allows scalability with a broader
vocabulary and additional learning features.

Dalal et al., 2022 [9]

Combines flex sensors and
deep learning models for

improved gesture recognition

and translation capabilities.

Requires extensive training
data.

Our Proposed Solution leverages a more efficient
ML approach (Random Forest), which requires
less training data while maintaining accuracy.

Ambar et al. (2018) [10]

Designed a glove with flex
sensors to identify gestures
and transmit data wirelessly.

Did not handle dynamic
gestures effectively; limited
range for data
transmission.

Enhances data transmission range with Bluetooth
and processes dynamic gestures with the
gyroscope.

Amin et al. (2023) [11]

Explored wearable IoT
solutions for gesture-based
communication.

IoT implementation lacked
real-time feedback for
users.

Ensures real-time feedback through a mobile app
with text and vocalized outputs.

A Wearable Smart Glove
and Its Application of
Pose and Gesture
Detection to Sign

Language Classification
(2022) [12]

Used machine learning for
gesture recognition in sign
language.

Relied heavily on training
dataset size; lacked
gyroscope integration for
dynamic gestures.

Optimized Random Forest model performs well
even with limited training data; includes gyroscope
for dynamic gesture support.

Amin et al. (2022) [13]

Comprehensive review of
various sensor- and vision-
based methods.

Discussed limitations of
individual methods but did
not present a unified
solution.

Combines the best of sensor-based systems with
real-time IoT capabilities for a unified approach.
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Study Contributions:

Examples of such illustrative works include those whose primary focus is on basic sign
interpretation; however, our project is based on a Random Forest machine learning architecture,
which has promising results in the sense that it achieves superior predictive accuracy for various
signing patterns. In addition, most commercial products available today do not support real-
time feedback.

Our proposed solution fills this gap by providing instant voice output of interpreted
signs through an application. This study, therefore, calls for continuous improvements in
assistive technologies to adequately address the needs of the deaf community.

Methodology:
System Architecture Overview:

Display
Result
JDY 31SPP ) Data | ML Model
,~— Bluetooth —— Device Figure (5)
Figure (4)
Data t
Data
Result
VCC/RXD/TXD Arduino App
UART (RX/TX)
Serial Clock 12C
Arduino Nano Figure (6)
Power Supply ——
5V Figure (1) Serial Data
Analog input MPUéOSO
i |
: Gyroscope
Analog input l Figure (3)

5X flex sensor
Figure (2)

Figure 1. Block Diagram

The IoT-enabled assistive glove system is developed on an interconnected architecture
integrating sensors, microcontrollers, and communication modules for real-time gesture
recognition and translation. The system comprises three layers: data acquisition, where hand
gestures and orientation are captured with embedded sensors; five flex sensors attached to the
fingers of the glove for bending angle detection, and an MPU-6050 module measuring wrist
orientation and dynamic hand motions. Using the available Bluetooth technology, the
transmitted data is received by the mobile application and, using a Random Forest machine
learning model, the signs are classified into their related ASL vocabulary with accuracy as high
as 97%. It uses a Bluetooth module in the communication layer to enable real-time interaction
with the mobile application. It translates identified gestures to text and voices through its text-
to-speech capability while also providing features such as word-to-sign mapping for educational
purposes. The process flow involves collecting data from sensors, preprocessing it, transmitting
it to the mobile application, recognizing gestures, and delivering feedback through the user
interface.
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Hardware Design:

SO

Figure 2. Circuit Diagram

Components Used:

Arduino Nano: The Arduino Nano served as the primary microcontroller, responsible for
processing data received from the flex sensor and the MPU-6050 module. It also facilitated
communication with the Bluetooth module for data transmission to the mobile app.

Figure 3. Arduino Nano
Table 2. Arduino Nano Specifications

Parameter Specification

Type Microcontroller
Specifications ATmega328P, 8-bit, 32 KB Flash

p memory, 16 MHz clock speed
Power Supply External power or USB
Operating Voltage 5V
Current Consumption | 19 mA in active mode
Interface UART, SPI, 12C

Flex Sensors: The flex sensors are designed to detect finger bending by tracking resistance
changes, allowing the system to capture static hand gestures that are important to ASL
recognition.

Figure 4. Flex Sensor
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Table 3. Flex Sensor Specifications

Parameter Specification

Type Sensor (Variable Resistor)

Specificati Length: 2.2 inches, Resistance: ~10 kQ (flat) to
pecthications ~30-40 kQ (bent), Response Time: Fast (<1 ms)

Power Supply Passive

Operating Voltage None

Current Consumption | None

Interface Voltage divider output to analog input

MPU-6050: The MPU-6050 incorporates a gyroscope and accelerometer for measuring wrist
orientation and dynamic hand movements, hence making it possible to clearly distinguish both
static and dynamic ASL gestures.

Figure 5. MPU 6050 Module
Table 4. Gyroscope Specifications

Parameter Specification
Type Sensor (6-axis IMU: Gyroscope + Accelerometer)
. . Gyro range: £250°/s to £2000°/s, Accelerometer
Specifications raiflge: iZgg to i16g/ /
Power Supply External 3.3V/5V power
Operating Voltage 3.3V to 5V
Current Consumption | ~3.9 mA
Interface 12C (SDA, SCL)

Bluetooth Module: This module enables wireless transmission of sensor data from the Arduino
Nano to the mobile application so that there will be seamless real-time interaction and feedback.

Figure 6. Bluetooth Module
Sensor Placement: The Flex Sensors are strategically placed along the length of each finger on
the glove to measure the bend angles accurately during gestures. The Flex Sensors detect
resistance variations to determine finger motion, while static gestures are detected. On the back
of the hand, the MP-6050 module is mounted and has a gyroscope and accelerometer. This
placement allows for the data from both static and dynamic gestures to be collected extensively
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so that accurate American Sign Language (ASL) translations can be made. The ergonomic
positioning of these sensors ensures comfort and reliability during prolonged use.
Table 5. Bluetooth Specifications

Parameter Specification

Type Wireless Communication Module

Specifications Bluetooth v4.0, Transmission range: ~30 m
Power Supply External 3.3V /5V power

Operating Voltage 3.6V to 5V

Current Consumption | ~10 mA in standby, ~40 mA during transmission
Interface UART (RX, TX)

Data Acquisition: The data acquisition process for the IoT-enabled assistive glove was based
on collecting signals from two types of sensors: flex sensors and an inertial measurement unit
(IMU). The flex sensors measured resistance changes caused by finger bending and were
positioned along each finger. The MPUG6050 IMU, which consists of a gyroscope and an
accelerometer, captured angular velocity and linear acceleration to detect wrist movement and
hand orientation. Each flex sensor was connected to the analog pins of an Arduino Nano
microcontroller. The resistances of the flex sensors fluctuate as a result of each uset's finger
bend. These changes are in an analog signal that Arduino captures with the analogRead()
function to give raw values.

The MPUG6050 sensor was initialized using the Adafruit MPUG050 library, which enabled
real-time motion data acquisition. The captured motion data included angular velocity along the
X, Y, and Z axes, and linear acceleration along the Ax, Ay, and Az directions.

All the processed data was transmitted via a Bluetooth module and accessed on a mobile
application, which displayed the recognized gestures in real time.

Data from the IMU was accessed using the MPU.getEvent() function, which performed
auto-calibration during initialization to minimize sensor drift and variations in installation. Flex
sensors were calibrated using their minimum and maximum values during a steady-state phase.
The gyroscope was calibrated by averaging several initial readings to determine offset, reducing
sensor noise. Signal preprocessing consisted of two main steps. First, the raw values from flex
sensors were scaled between 0 and 1023 using the map () function to normalize inputs for the
machine learning model. Second, values were averaged to improve precision and reduce random
fluctuations. Gyroscope data was bias-corrected by subtracting offset values to reduce drift over
time.

Machine Learning Model:

Model Selection: In this study, the Random Forest algorithm was employed as the
machine learning model. Simple, real-time applicable, and very effective, it was chosen for this
purpose. This algorithm is very general and is used in all forms of classification and regression
with low computational needs. This is because the ensemble approach that is used in this study,
where multiple decision trees are combined, has been shown to perform well even for small to
medium-sized datasets and thus makes a good choice for the IoT-enabled assistive glove system.
Random Forest was chosen for the reason that it offers a good tradeoff between accuracy and
the time complexity of the algorithm. While other sophisticated models are computationally
intensive, the Random Forest Algorithm works very well with embedded systems. Since the goal
of the project was to make it portable with low latency, the system can run in real time without
the need for a lot of hardware, which is needed for things such as assistive gloves. The built-in
capacity of the algorithm for preventing overfitting made it a good choice. This is because, by
aggregating the predictions from many decision trees, the Random Forest reduces the risk of
model bias but maintains a high degree of generalization. This robustness is particularly useful
in gesture recognition, where data from sensors may be different because of differences in the
movement of the user. It can also deal with mixed data types, for instance, the continuous data
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from accelerometers and the categorical output for gesture labels in this particular application.
Random Forest was trained on a diverse dataset of static and dynamic ASL gestures for the case
of an IoT-enabled glove. The model had an excellent classification accuracy of 97% in the
testing. The level of accuracy is important for gesture detection, which is important for the
correct functioning of the system. Furthermore, since the algorithm has simple installation needs
and low processing requirements, it was well suited to the embedded nature of the glove, which
made it a good match with the Bluetooth module and the mobile application.

S
v\ Start \,
~— =3

Data Collection

Collect the data from
the sensors

l

Data Preprocessing
| Normalize and Adjust
Sensor Data

Data Aggregation

Combine preprocessed data
into a single string format.

l

Model Training

Split data into training and testing datasets,
train Random Forest model.

l

Model Evaluation
Evaluate accuracy and
calculate metrics

l
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real-time gestyre recognition
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Figure 7. Flow Chart for the Testing and Training Stages

Dataset: This dataset was created to support the training and testing of the Random Forest
model for American Sign Language (ASL) gesture recognition. It contained numerous features
from the glove to guarantee the precise classification of both static and dynamic gestures. In this
dataset, we used the assistive glove with five flex sensors and an MPU-6050 that integrated a
gyroscope, an accelerometer, and a timestamp for each measurement to collect gesture data from
5 participants, right-handed males around 18-22 years of age. The recorded attributes include
bend angles that were measured with the help of flex sensors placed on the fingers and motion
data extracted by the accelerometer and the gyroscope on the axes of X, Y, and Z. The axes
signify the movement and orientation of the wrist. The timestamping has been provided to sync
with other records, while every record is assigned its appropriate ASL gesture, which will be
marked as categorical. The dataset contains approximately 14,000 gesture points as well as static
gestures (A through F) and 10 dynamic gestures across frequent words in ASL, such as “hello”
and “sorry”.
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Timestamp Flex1 Flex2 Flex3 Flexd FlexS AccelX Accel AccelZ GyroX GyroY GyroZ label

0 0412-25184759 780 7192 805 T8 TI2 14y 188 1064 057 121 041 a
1 2004-12-25184759 784 784 793 T TH 319 133 1001 029 110 005 a
2 AMA2B184TY TS TIT 18y 76T 769 321 202 956 004 030 003 a
3 AMAZBIATY 2Ty 18 767 767 326 176 942 068 011 032 a

4 MA2-25184759 16 TIe 785 769 768 388 129 948 003 019 00T a
Figure 8. Dataset labels
Before training, the following preprocessing steps were applied to the data. First, we
normalized the readings for accelerometers and gyroscope sensors. Also, time-based features
were obtained through feature engineering in order to improve the ability of the model to
identify dynamic gestures. The dataset was divided into an 80/20 train-test split in order to make
sure that the evaluation was unbiased. This is a strong base to train the Random Forest model,

and it is able to work with different users and gesture variations.
Training vs. Testing Set Proportions
Testing Set

Training Set
Figure 9. Train and Testing Data Split
To ensure effective data exploration, various kinds of visualizations were developed to
represent both the dataset's characteristics and its structural configuration. For instance, Fig. 9
illustrates the proportion of the training and testing sets, clearly showing an 80-20 split.

Distribution of Gestures (Labels)

1200 1

1000

800 A

600 1

Number of Samples

400 -

200 -

& aa_bcg@\o e?%\ v ¢ e v‘P@ ‘_.z&'ébe_p‘(-\ = oep__\z > o
& o &
Gesture
Figure 10. Bar chart showing the label distribution
A bar chart (Fig. 10) was created to demonstrate the distribution of gestures and the

number of each kind of gesture present in the dataset.
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Feature Correlation Heatmap
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Figure 11. Heatmap between the features of the model
To better interpret the dataset, a feature correlation heatmap (Fig. 11) was employed to
highlight the relationships between various input features, including flex sensor values and
gyroscope readings. This approach helps reveal any underlying dependencies or ovetlaps,
which can be valuable for optimizing feature selection and improving model performance.

Boxplot of Numeric Features
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Figure 12. Boxplot between the sensor readings

Boxplots (Fig. 12) for each sensor reading representing variability, median, and outlier
values of flex sensor resistance, accelerometer readings, and gyroscope values were investigated
turther for the statistical properties of numerical features.

Violin plots (Fig. 13) were developed to describe data distribution through a
combination of the box plots with kernel density estimation; this described the overall shape of
the distribution for every feature.
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Figure 13. Violin Plot of the readings
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In addition, pairwise distribution plots (Fig. 14) were generated to illustrate the
interaction between feature pairs, thus helping to detect both linear and non-linear patterns that
might influence model performance.
Training Process: The training process of the Random Forest model is designed to improve
optimal efficiency and robustness of gesture recognition in American Sign Language. The
dataset comprises preprocessed values on different attributes like flex sensor resistance,
accelerometer measurements, and data captured by the gyroscope, which were extracted using
the glove. Normalization helps bring all feature values into a common range to reduce the effects
of features with larger scales, making it easier for the model to search for meaningful patterns.
The dataset was divided into 80% training data and 20% testing data, which gave a good balance
in terms of sufficient training samples and an unbiased evaluation dataset. To improve the
model's performance, Hyperparameter tuning was carried out using GridSearchCV, which is a
systematic process to completely cover the parameter space. Among these parameters, the
number of estimators (the trees in the forest), the maximum depth of the trees, the minimum
number of samples required to split an internal node, and the minimum number of samples at
a leaf node were optimized. This process tested the combinations of the parameters by three-
fold cross-validation to identify the configuration that maximized the model's accuracy while
avoiding overfitting. This ensured that the Random Forest model was accurate and efficient,
and hence could be used for real-time applications. The model achieved a test accuracy of 97%,
indicating strong generalization performance on previously unseen data. The enhanced
performance, in addition to the success of the pipeline used in training, justified the use of the
Random Forest model for gesture recognition.
Mobile Application:
Features: The mobile application of the IoT-enabled assistive glove serves as the means
through which signers or non-signers can reach out to the system effortlessly. It is designed
according to accessibility and usability characteristics and incorporates several key features. For
signers, it provides real-time, gesture-to-text translation and depicts recognized ASL gestures,
presented on the screen as associated text. The app further provides vocalization functionality
that converts the recognized gestures into speech. Therefore, the signers can easily communicate
with people who do not understand ASL. The application for the non-signers has an educational
module where words are assigned to their respective ASL gestures. This enables the user to learn
and practice the language interactively. Therefore, it is inclusive and bridges gaps in
communication.

Home Screen

Home Screen

JDY-31-SPP
1E:20:1B:1E:C8:47

JDY-31-SPP
1E:20:1B:1E:C8:47

Word:
I_Love_You

Speak

Figure 14. User Interface Figure 15. Module for signers
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Integration: The integration of the mobile application with the glove system was designed to
enable real-time functionality and robust performance. Data collected by the glove’s sensors is
transmitted to the app via Bluetooth, ensuring wireless and efficient communication. The app
receives this sensor data and passes it through the embedded Random Forest machine learning
model to classify the gestures through Fast APL. Then the application renders the predicted
gesture to text, voices this text through text-to-speech technologies, or produces visual ASL
references when working within the learning module. This seamless data flow makes sure that
the system reacts rapidly to the inputs provided by the user and is highly engaging and usable.

Communication Screen

(M:

Figure 16. Module for non-signers
Results:
Mobile Output:

The mobile application provided a user-friendly interface that displayed recognized ASL
gestures in real-time, improving accessibility and ease of communication. Once a gesture was
recognized, it was translated into text and then vocalized. Additionally, the application included
a vocabulary section that allowed learners to view ASL signs alongside their corresponding
words, thereby supporting learning and practice.

Classification Report:

The effectiveness of the Random Forest model used for gesture recognition was
evaluated using a classification report, which measured precision, recall, F1-score, and support
for each gesture class. The model achieved an overall accuracy of 97%, with a micro average
precision of 98% and a weighted average F1-score of 98% across all classes.

Table 6. Classification Report

Gesture Precision | Recall | F1-Score | Support
Awkward 1.00 0.96 0.98 140
Bathroom 1.00 1.00 1.00 149
Deaf 1.00 1.00 1.00 136
Goodbye 0.99 1.00 1.00 129
Hello 0.97 0.98 0.98 170
I_Love_You 0.95 0.96 0.95 198
No 0.94 0.95 0.94 202
Now 0.99 0.98 0.98 130
Sorry 1.00 1.00 1.00 132
Yes 0.96 0.98 0.97 231
a 1.00 0.96 0.98 140
b 1.00 1.00 1.00 132
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C 0.99 0.99 0.99 156
d 1.00 1.00 1.00 132
e 1.00 0.99 0.99 153
f 0.99 1.00 1.00 150

Confusion Matrix:

The confusion matrix provided a visual representation of the model’s classification
performance across all gesture classes. Correct predictions were concentrated along the diagonal,
while off-diagonal elements indicated misclassifications. For example, the gesture “No” was
occasionally misclassified as “I_LLove_You,” which was reflected in the corresponding cells of
the matrix. Similarly, slight confusion was observed between gestures “Hello” and “Goodbye,”
though these instances were minimal, as indicated by the high precision and recall values in the
classification report.

Confusion Matrix Heatmap for Gesture Classification
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Figure 17. Confusion Matrix Heatmap for Gesture Classification
Discussion:

Compared to existing studies, our proposed solution achieved superior performance in
both accuracy and functionality. For instance, while the work of Dalal et al. (2022) [9] used deep
learning models requiring extensive training data, our system achieved 97% accuracy using a
Random Forest model that performs well even with less data, making it more efficient for real-
time applications. Similarly, Matiwade & Dixit (2016) [8] and Ambar et al. (2018) [10] relied on
gloves limited to static gestures and offered no mobile app integration. In contrast, our system
supports both static and dynamic gestures using the MPUG050 sensor and provides real-time
feedback via a mobile application with text and voice output.

Amin et al. (2023) [11] proposed a wearable IoT system but did not include real-time
user interaction. Our solution bridges this gap by providing instant recognition and output,
enhancing communication for the deaf and hard-of-hearing community. Furthermore, while the
study "A Wearable Smart Glove..." (2022) [12] employed machine learning, it lacked gyroscope
integration and was heavily dataset-dependent. By incorporating both gyroscope data and an
optimized model, our system offers better support for dynamic gestures with reduced
computational demand.

Limitations:

Incomplete Data Set: While our model is trained to recognize both static and dynamic gestures,
currently, it's only trained to recognize 10 letters and 10 gestures. Furthermore, some hand signs
are quite similar to others, and differentiating between them is difficult.

The system requires a stable internet connection to work: Fast API is used to send data to
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the Python module for predicting the results, and then send data back to the mobile app to be
displayed on screen. This process requires the user to have a stable internet connection, which
may not always be available to users in remote or low-connectivity regions.

Battery requirement: The glove requires power to function. This means that the battery used
to supply power to the glove would need to be replaced every time it runs out, creating an
inconvenience for the user.

The system works only on English and ASL While there are multiple sign languages, our
system is designed to recognize only letters and words in the American Sign Language (ASL).
The system cannot be used to detect signs in other languages. Additionally, regional variations
in hand signs are also not taken into account.

Lack of Contextual Understanding: The system currently focuses solely on recognizing
individual gestures without incorporating contextual understanding of sentence structure,
grammar, or the flow of communication. This limitation prevents the system from accurately
interpreting complete phrases or sentences, especially in cases where meaning depends on the
sequence of gestures or facial expressions commonly used in sign languages. As a result, the
system may misinterpret gestures or fail to provide coherent translations.

Future Improvements:

Dataset Expansion: Use a larger dataset that includes the full alphabet and commonly used
phrases in sign language to train our Machine Learning model. The dataset should represent
diverse users to improve generalization.

Offline Mode Development: Implement on-device sign recognition by integrating lightweight
machine learning models capable of operating on smartphones. This will enable predictions to
be performed locally without internet dependence.

Use of piezoelectric sensors: Since piezoelectric sensors can generate power from hand
movements, by incorporating them into our system, we can reduce the need for batteries as
power sources.

Incorporate more languages into the system: The glove can be expanded to detect different
languages by training the machine learning model to recognize these gestures. However, it is
quite difficult to find data that takes into account the regional sign variations. This data could be
obtained by collaborating with local sign language communities.

Sequential Gesture Recognition: Incorporate advanced natural language processing (NLP)
techniques to understand and translate sequences of gestures into meaningful phrases or
sentences. This would involve training recurrent neural networks (RNNs) or transformer-based
models on gesture sequences to capture context.

Conclusion:

The paper brings a holistic solution to the communication gap between the deaf and
hearing communities by developing an IoT-enabled smart glove. The glove captures both static
and dynamic ASL gestures using flex sensors, an MPU-6050 gyroscope, and an Arduino Nano.
The classification is further ensured by integrating a Random Forest machine learning model
into the glove, while text and voice outputs are produced in real time through the Bluetooth-
enabled mobile application. An educational module further complements the integration of sign
language among non-signers into the community, making people more accessible and inclusive.

The proposed system addresses shortcomings in the current solutions. It is portable,
provides real-time feedback, and supports dynamic gestures, hence making it a powerful tool
for communication and learning. Its scalable design and performance efficiency underline its
potential for widespread adoption and continuous improvement in assistive technologies. This
way, the system helps create a deeper relationship between the deaf and hearing communities,
which, in itself, is a step towards making society more inclusive.
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