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rban flooding poses considerable challenges for metropolitan areas, contributing to 
rapid urbanization and significant climatic change. This research develops a machine 
learning-based Urban Flood Management System (UFMS) to predict and manage 

flood risks, incorporating an enhanced risk warning system for rapidly urbanizing areas. The 
mitigation of urban flooding parameters, such as rainfall intensity, humidity, temperature, soil 
moisture, land use, and drainage network capacity, is analyzed in the UFMS. The system 
employs the artificial intelligence model Support Vector Machine (SVM), in conjunction with 
ARIMA modeling, achieving a high accuracy rate of 99.99% in flood prediction to forecast 
flood events. The model undergoes training with two decades of historical meteorological data 
to augment its predictive prowess and guarantee robust performance. Results show that SVM 
outperforms other machine learning algorithms in handling complex, multidimensional flood 
data. This hybrid methodology provides real-time and highly accurate prediction of upcoming 
floods that leads to actionable insights for urban planners and emergency response teams. 
Future improvements may involve the utilization of real-time data obtained from Internet of 
Things (IoT) nodes combined with an advanced deep learning model to improve forecast 
accuracy, scalability, and reduce response time, ultimately contributing to reduced flood-
related damage. 
Keywords: Flood Prediction, Flash Flood Risk, Natural Disaster Pre-Planning, Flood 
Management System. 
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Introduction: 
Flood events inflict extensive damage on infrastructure, agricultural production, and 

human settlements, leading to severe economic losses and human distress. According to the 
World Bank, floods account for 43% of all natural disasters globally, affecting over 2 billion 
people in the last two decades, as shown in Figure 1. Center for Disaster Philanthropy (CDP) 
reported that from June to August 2024, there were at least 250 deaths in India, 200 in Nepal, 
200 in Bangladesh, and 300 deaths in Pakistan, among which half were children [1]. Urban 
areas are particularly vulnerable due to high population densities and impermeable surfaces, 
which intensify runoff. Floods have long posed serious challenges for Pakistan, often leaving 
behind a trail of destruction. One of the worst examples was the 2010 flood, which displaced 
more than 20 million people and caused an estimated US$10 billion in damages. Along with 
economic loss, such disasters bring heartbreaking human consequences, widespread 
displacement, outbreaks of waterborne diseases, and tragic loss of life. 

 
Figure 1. Comparison of disaster occurrences in 2022 with the annual average from the past 

decade. 

 
Figure 2. Route guide of Pakistan’s river flow, including flood-prone areas. 

https://www.globalissues.org/news/2024/08/29/37525
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The situation repeated on an even larger scale in 2022, when heavy monsoon rains led 
to catastrophic flooding between June and September. According to a report by NASA’s Earth 
Observatory (earthobservatory.nasa.gov), Sindh province alone experienced a staggering 
500% increase in rainfall during July and August, contributing to widespread flash floods. 
Nationwide, the Emergency Events Database (EM-DAT) reported that over 33 million people 
were affected. 1,739 lives were lost, and damages soared to US$15 billion. The floods also 
destroyed more than 1.46 million buildings, killed over 736,000 livestock, and resulted in an 
additional 1,290 confirmed human casualties [2][3]. Major cities like Khairpur, Larkana, Dadu, 
Karachi, Mirpur-Khas, and Umer-Kot suffered severe flooding due to prolonged rain, 
outdated dams, poor drainage mechanisms, and ineffective green infrastructure (GI) as shown 
in Figure 2 [4]. This study suggests a hybrid AI-driven framework to improve early flood 
prediction and response because floods are happening more often in Pakistan, and traditional 
forecasting techniques have their limits. The paper is structured as follows: Section I 
introduces the background and objectives. Section II presents the proposed UFMS 
framework. Section III outlines the results and discussion. Section IV concludes the work and 
presents future directions. 
Objectives and Novel Contribution: 

The primary objective of this study is to develop an AI-powered Urban Flood 
Management System (UFMS) capable of accurately predicting flood events in rapidly 
urbanizing regions of Pakistan. The study also uses worldwide flood management principles 
to provide a more robust and adaptable solution for local situations. 
Designing a hybrid forecasting model that integrates real-time IoT sensor data with Support 
Vector Machines (SVM) and ARIMA techniques to improve the accuracy of urban flood 
prediction. 
Evaluating the model’s performance using key statistical metrics such as accuracy, precision, 
recall, F1-score, and MAPE, while analyzing its effectiveness under extreme conditions. 
Implementing an integrated web and mobile platform that delivers early flood warnings, 
evacuation routes, real-time monitoring, and supports local authorities in damage estimation 
and relief planning. 
Adapting global flood resilience strategies, such as risk-based land use planning into a 
localized, intelligent system capable of guiding future improvements through the inclusion of 
regional hydrological data. 
Related Work: 

Modern flood management prioritizes a risk-based approach, integrating hydrological, 
hydraulic, economic, social, and ecological factors to address flood risks effectively. This risk-
based method emphasizes tailored solutions for unique floodplain characteristics, with 
strategies undergoing detailed risk assessments to ensure combined effectiveness. Land use 
policy is critical for flood mitigation, guiding spatial planning to reduce risks and improve 
flood-prone areas. Global frameworks, such as the Hyogo Framework and Sendai Framework 
[5], underscore the importance of sustainable urbanization and adaptive land allocation. By 
aligning risk-based management with land use policies, the integrated approach enhances 
resilience, reduces vulnerabilities, and fosters sustainable development while addressing socio-
economic and environmental constraints [6][7]. 

There are many different types of urban floods, including pluvial floods, coastal floods, 
fluvial floods, flash flooding, sewer flooding, and groundwater flooding [8]. Effective flood 
management integrates engineered techniques and GI to reduce risks while promoting 
sustainability. Techniques like rain harvesting, reforestation, soil conservation, and 
groundwater recharging manage excess water by capturing runoff, enhancing absorption, and 
replenishing aquifers, as shown in Figure 3. Storage systems, such as reservoirs, and structural 
defenses, like dikes and floodwalls, mitigate peak flows and protect urban areas, while flow 
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diversion and river re-profiling improve water conveyance and capacity during floods [9]. 
Complementing these strategies, GI mimics natural hydrological processes using vegetation, 
permeable surfaces, and soils to control urban flooding. Beyond flood mitigation, GI delivers 
co-benefits, including improved air quality, temperature regulation, biodiversity enhancement, 
and drought resilience [10]. Globally, countries like China and the UK emphasize GI’s role in 
sustainable urbanization and climate adaptation. GI encompasses a range of features, from 
green roofs and gardens to wetlands and forests, designed to deliver ecosystem services such 
as flood protection, water purification, and climate resilience. Integrating green infrastructure 
(GI) into urban planning and adopting proactive, co-designed strategies enables cities to 
evolve into resilient, multifunctional systems that promote well-being, strengthen the green 
economy, and support long-term sustainability in the face of climate change [11]. 

 
Figure 3. Shows structural design for GI-based rainwater harvesting technique. 
In a study [12], the authors proposed a unique approach for areas where flooding is a 

recurring risk. This approach is a part of flood-resilient building design, by elevating the 
primary living spaces above potential flood levels. With this technique, property damage is 
highly reduced, and recovery after a flood becomes easier and less costly. Moreover, intense 
urbanization has intensified groundwater consumption and reduced permeable surfaces, 
exacerbating flood risks. The authors in paper [13] proposed a solution to mitigate these effects 
by integrating rooftop Rainwater Harvesting (RWH) along with Managed Aquifer Recharge 
(MAR) for densely populated areas. The results demonstrated efficient rainwater preservation, 
minimization of peak flow, and an annual average aquifer recharge rate of 57–255 m³ from 
2004 to 2019 in northeast Brazil. 

Artificial Intelligence (AI) algorithms, such as machine learning and data mining 
techniques, have become indispensable tools for flood prediction. By analyzing historical and 
real-time meteorological data, these algorithms can identify hidden patterns and trends, 
enabling accurate rainfall and flood forecasts. This capability is critical for implementing 
proactive measures to mitigate flood risks, protect infrastructure, and ensure public safety. AI 
models for flood mitigation utilize diverse inputs categorized into five key types: topographical 
data (elevation, slope, aspect), meteorological data (rainfall distribution and 
frequency), geological data (soil properties like lithology and soil type), geographical data (land 
use, vegetation indices from remote sensing), and anthropogenic data (proximity to artificial 
structures such as roads). Among these, topographical inputs are the most frequently used 
random parameters, while factors like slope, land use, aspect, terrain curvature, and distance 
from rivers are fixed parameters that can vary depending on the location. 

A study in [14] demonstrated the effectiveness of k-Nearest Neighbor (kNN) and 
Decision Trees in rainfall prediction, achieving high accuracy and recall despite climatic 
variability. This underscores the potential of AI-driven approaches for improving flood 
forecasting and risk mitigation. This study [15] investigates flood susceptibility in Ibaraki 
Prefecture, Japan, using a Random Forest (RF) regression model and GIS. Using eleven 
environmental variables and data from 224 locations, both flooded and non-flooded. The 
model demonstrated exceptional performance, achieving a 99.56% validation accuracy and a 
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high Area Under the Curve (AUC) on the ROC curve. The resulting Flood Susceptibility Map 
(FSM) categorized approximately one-fifth of the region as high to very high flood risk, 
providing policymakers with a critical tool for spatial planning and flood mitigation strategies. 
In paper [16] author highlights an SVM ML algorithm that shows superior performance over 
benchmarking models like Naïve Bayes and decision tree, incorporating some challenges of 
over-fitting and parameter selection for flood forecasting. The author investigates that both 
linear and nonlinear kernels (e.g., RBF) can achieve high accuracy under varying conditions, 
with SVM exhibiting robust performance even under extreme rainfall inputs. Given the 
temporal and seasonal complexity of flood-related parameters, hybrid models such as SVM 
and ARIMA offer complementary strengths in pattern recognition and forecasting accuracy. 
These models are individually described in the subsections. 
Proposed UFMS Framework: 

This section outlines the development process of the Urban Flood Management 
System (UFMS), including data acquisition, model design, implementation, and system 
integration. Based on what we learned about how to reduce the danger of flooding around the 
world and AI-driven methods we looked at in the last part, we suggest a customized UFMS 
for urban areas in Pakistan. Figure 4 illustrates the flowchart of the proposed UFMS 
framework. This diagram provides a visual summary of the system’s working, starting from 
real-time sensor data collection to flood prediction using AI models and alert dissemination 
via web and mobile platforms. The framework integrates IoT-based data acquisition, ARIMA 
and SVM-based forecasting, threshold-based alert generation, and digital communication 
channels to enhance flood preparedness and management. 

 
Figure 4. Flow chart of proposed UFM framework. 

Data Collection: 
To ensure the safety of citizens in flood-prone areas, UFMS relies on a combination 

of real-time and historical environmental data. IoT-based sensors are deployed to measure 
parameters such as water level (ultrasonic sensors), temperature, pH, pressure, wind speed, 

rainfall intensity, CO₂ levels, and both soil and atmospheric humidity. These devices form IoT 
nodes that continuously collect environmental data used for flood risk detection. In addition, 
historical meteorological data is obtained from regional departments for flood-prone areas. 
This dataset includes long-term records of weather patterns, flood incidents, and 
topographical features, enabling robust training of forecasting models. 
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The dataset from the Pakistan Meteorological Department (PMD), though only 
updated daily, is supplemented by data from similar geographic regions, such as Spain’s coastal 
city of Malaga. Parameters considered include humidity, precipitation, and temperature. The 
data is averaged every 30 minutes, providing 48 readings per day from 2001 to 2021, and is 
preprocessed for monthly modeling.  
Data Preprocessing and Feature Engineering: 

The data is preprocessed to handle inconsistencies, normalize readings, and convert it 
into a time-series format suitable for analysis. A large dataset required segmentation and scaling 
to be manageable for model training. Feature engineering plays a significant role in ensuring 
model accuracy. Appropriate kernel selection and hyperparameter tuning are essential for 
SVM, while lag selection and differencing are key for ARIMA. Figures 5 and 6 represent the 
data distribution and quantile behavior from 2001 to 2021, reflecting trends and variability 
essential for forecasting. 

 
Figure 5. Distribution of humidity, precipitation, and temperature data from 2001 to 2021 

   
Figure 6. Data representations for the quantiles from 2001 to 2021. 

Forecasting Model Design: 
ARIMA Modeling: 

ARIMA (AutoRegressive Integrated Moving Average) was used to model the temporal 
behavior of humidity, precipitation, and temperature data in the historical dataset. The 
modeling process involved selecting appropriate autoregressive (AR) and moving average 
(MA) components, denoted as (P, Q), and applying the Dickey-Fuller Test to verify the 
stationarity of the time series. The statistical evaluation and model selection criteria for 
ARIMA are detailed in the Results Section Tables 3–5. 
Support Vector Machines (SVM): 

Support Vector Machines (SVM) are used for both classification and regression tasks. 
They construct a hyperplane decision boundary using support vectors. Kernel functions like 
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Linear, Polynomial, RBF, and Sigmoid enable SVM to manage non-linearly separable data. 
The foundational equations of SVM used in this study are: 

Decision Boundary: ωTx + b = 0 (1) 

Margin: 
1

||ω||
  (2) 

Objective Function: minω,b
1

2
||ω||2 (3) 

Soft Margin Objective Function: minω,b,ξ
1

2
||ω||2 + C ∑ ξi

n
i=1  (4) 

Accuracy assesses the overall correctness of forecasts using equation (5), while 
precision quantifies the percentage of accurately anticipated positive instances among all 
positive predictions as depicted in equation (6). The study finds recall measures using equation 
(7), which evaluates the model's capacity to precisely identify positive cases from all real 
positive instances. Whereas using equation (8), the F1-score offers a single metric for model 
evaluation by striking a compromise between recall and precision. Support gives the evaluation 
metrics context by displaying the total number of instances of each class. When combined, 
these measures provide a thorough grasp of a model's categorization performance and help 
with decision-making throughout the analytical process. The study used several performance 
metrics to evaluate the classification performance of our model. These metrics include True-
Negative (T-N), True-Positive (T-P), False-Negative (F-N), and False-Positive (F-P). The 
model's performance is further evaluated in the results section using precision, recall, and F1-
score. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦: 
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
  (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛: 
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (6) 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦): 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (7) 

𝐹1 𝑆𝑐𝑜𝑟𝑒: 
𝑃×𝑅

𝑃+𝑅
 (8) 

System Integration: 
The historical dataset spanning past decades should include multiple critical factors 

such as rainfall frequency and intensity, water flow and pressure of incoming streams, historical 
flood records, and the topography of the region. This comprehensive dataset is used to train 
an optimized AI algorithm.   Once trained, the algorithm utilizes real-time data collected from 
IoT nodes to predict the likelihood of an impending flood.  If the probability exceeds 40%, 
an alert message is automatically generated and disseminated by the National Disaster 
Management Authority and local administration. Additionally, flood predictions are displayed 
on a dedicated web application for public awareness and timely response. This application 
provides weather-related information such as humidity, cloud coverage, and expected rainfall, 
similar to commercial weather apps like AccuWeather. Additionally, the application displays 
the predicted flood probability as a percentage. If the probability exceeds 50%, the app 
suggests nearby safe locations for evacuation based on the user's locality. 
Web and Mobile Application: 

The mobile application supports several key functions, including real-time water level 
monitoring, flood warnings, detection of affected areas, suggested evacuation routes, and 
timely alert notifications for all users, as illustrated in Figure 7. The corresponding web 
application offers the same features and extends additional functionality for disaster 
management, such as estimating the number of victims and calculating relief requirements to 
support food distribution and recovery planning. Figure 8 presents a use case diagram for the 
UFMS online portal, highlighting the roles of users, system processes, and data flow. The 
system administrator is responsible for reviewing and approving weather data submitted by 
the Pakistan Meteorological Department (PMD). Using this data, the system calculates a risk 
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ratio to determine the likelihood of flooding in a specific region. Finally, if the predicted flood 
risk ratio is too high, the administrator permits the transmission of an alert message to local 
government authorities and residents, allowing prompt and appropriate action to be taken. 
End users of the application can access an interactive map displaying all data collection 
stations. For any selected location, users can view both current and historical rainfall data, 
along with the system’s percentage-based flood risk forecast. 

 
Figure 7. Digitalization framework of the UFMS mobile and web platforms. 
The next step involves collecting historical meteorological data from the relevant 

regional departments, especially from areas identified as flood-prone. This historical dataset 
includes past weather patterns, records of flood events, and topographical details of each 
region. The AI model is trained using this historical data alongside real-time data from the 
sensors. This enables the system to predict flood events with higher accuracy. Once the flood 
probability is calculated, alerts are automatically transmitted to the UFMS dashboard and 
forwarded to local authorities and affected communities. This timely warning gives people a 
chance to take precautionary actions. The entire system operates in real time, offering 
continuous monitoring and early warning capabilities for urban areas that face increasing flood 
threats due to rapid urbanization and climate change. 

 
Figure 8. Use case diagram of an UFMS dashboard. 
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Results and Discussions: 
To assess the effectiveness of the SVM model in classifying rainfall intensity, the 

dataset was divided into four categories: No-Rain (N-R), Low-Rain (L-R), Moderate-Rain (M-
R), and Heavy-Rain (H-R). There have been 378720 readings in all. The complete dataset is 
divided into training and testing groups. Training and testing make up 80% and 20% of the 
total, respectively. The confusion matrix in Table 1 illustrates the model’s classification 
accuracy across the four rainfall categories. NR = 10553, LR = 6988, MR = 23131, and HR = 
33072. The trained model correctly predicted NR out of 10553 NR readings with 100% 
accuracy, LR with 99.92% accuracy, MR and HR with 99.99% and 100% accuracy, 
respectively. In contrast, Table 2 shows the SVM-based model's performance parameters. 
These results demonstrate the reliability of the SVM model in accurately classifying rainfall 
intensities. The high values of Precision and Recall confirm minimal false positives and 
negatives, which is crucial for flood risk categorization. The high F1-scores further suggest a 
balanced performance across all categories. 

Table 1. Confusion matrix of the model trained using SVM. 
 N-R L-R M-R H-R 

N-R 1053 0 0 0 

L-R 5 6983 0 0 

M-R 0 0 25130 1 

H-R 0 0 0 33072 

Table 2. Performance Table of SVM Model 

S No. Precision Accuracy Recall F1-Score Support 

N-R 1 0.99992 0.99952 0.99976 10553 

L-R 1 0.99993 0.99929 0.99964 6988 

M-R 0.99996 0.99998 1.00000 1.00000 25131 

H-R 1 0.99998 0.99997 0.99997 33072 

Table 3 presents the statistical parameters for the humidity models, derived using the 
ARIMA model with various (P, Q) values and the Dickey-Fuller Test. This test is a statistical 
method used to determine whether a given time series is stationary. The idea of stationarity 
holds great importance in time series analysis. Differentiating data to attain stationarity may 
be necessary for non-stationary data. Within ARIMA models, the notation (P, Q) denotes the 
magnitude of the moving average (MA) and autoregressive (AR) components, respectively. It 
appears that a variety of (P, Q) combinations were explored in the experimentation of the 
humidity, precipitation, and temperature models. The percentage of the dependent variable's 
variance that the independent variables in a regression model account for is expressed 
statistically as adjusted R-squared. The number of predictors in the model is considered by the 
modified R-squared. In Table 3, the Figures show the percentage of variability described by 
the models and vary from 0.023 to 0.501. A statistical model's relative quality is gauged by its 
Akaike's Information Criterion (AIC), and its values range from 5.842 to 5.894. It considers 
the model's simplicity (in terms of the number of parameters) as well as its good fitness. A 
better model is indicated by lower AIC values. Schwarz Criterion (SC) or Bayesian information 
criterion (BIC) is used for model selection in a manner like AIC. SC values range from 5.845 
to 5.868. It rewards simpler models that provide a clear explanation of the data and penalizes 
models with more parameters. The regression standard error represents the regression model's 
accuracy. It shows the residuals' standard deviation, or the variation between the values that 
were anticipated and those that were observed. In this case, the values range from 4.489 to 
4.606. 

The model utilizing (4, 4) as the (P, Q) values achieves the highest adjusted R-squared 
value of 0.501, indicating that it explains a significant portion of the variability in the data. In 
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terms of simplicity and goodness of fit, the models with (1, 4), (4, 1), and (4, 4) have 
comparatively lower. 

The AIC and SC values indicate that they might be chosen. The ARIMA (1, 4) model 
demonstrates the lowest AIC (value) and SC (value) among the tested configurations, 
indicating a more optimal balance between model complexity and predictive accuracy.  

Table 3. Humidity statistical parameters with Dickey–Fuller Test Equation 

(P, Q) Adjusted R-squared AIC SC S.E. of regression 

(1,1) 0.023 5.894 5.897 4.606 

(1,4) 0.072 5.842 5.845 4.489 

(4,1) 0.068 5.845 5.845 4.497 

(4,4) 0.501 5.865 5.868 4.54 

The row highlighted above shows that the best fit equation for the model is (1, 4). 

(1,4) → 𝑦(𝑡) = 9.14 × 10−6 + 0.28𝑎 − 0.2𝑏(9) 
In this case, presented in Table 4 for precipitation, the differences in the models' 

Adjusted R- squared, AIC, SC, and Standard Error of Regression measurements are incredibly 
small. When the differences between models are minimal, it becomes challenging to 
definitively determine which one is the best fit based solely on these metrics.  However, the 
model (1, 3) in Equation (9) demonstrates the highest adjusted R-squared value, along with 
the lowest AIC and SC values, indicating its superior performance among the evaluated 
models. Furthermore, in comparison to the remaining models, it possesses a slightly elevated 
Standard Error of Regression. 

Table 4. Precipitation statistical parameters with Dickey–Fuller Test Equation 

(P, Q) Adjusted R-squared AIC SC S.E. of regression 

(1,1) 0.000295 0.388166 0.391647 0.293727 

(1,2) 0.000298 0.388169 0.391650 0.294727 

(1,3) 0.000319 0.388190 0.391671 0.29731 

The row highlighted above shows that the best fit equation for the model is (1, 3). 

(1, 3) → 𝑦(𝑡) = −1.3 × 10−3 + 0.007𝑎 + 0.002𝑏 (10) 
The coefficients (-1.3e-3, 0.007, 0.002) in equation (10) give information on the 

strength and direction of the relationship between the variables. Table 5 shows that the 
ARIMA (1, 2) model has a higher adjusted R-squared and an F-statistic of 1.629033, indicating 
a better goodness of fit. This model also yields the most favorable values for both AIC and 
SC, further supporting its performance. Based on these criteria, the ARIMA (1, 2) model 
appears to be the most suitable choice. ARIMA (1, 2) demonstrates a higher explanatory 
power, lower AIC and SC values, and a Durbin-Watson statistic of 2.000254, which is 
comparable to other evaluated models. 

Table 5. Temperature statistical parameters with Dickey–Fuller Test Equation 

(P, Q) Adjusted R-squared AIC SC S.E. of Regression 

(1,1) 0.000132 -3.952801 -3.949310 0.033521 

(1,2) 0.000236 -3.952905 -3.949414 0.033519 

(1,3) 0.000168 -3.952837 -3.949345 0.033520 

The row highlighted above shows that the best fit equation for the model is (1, 2). 

(1, 2) → 𝑦(𝑡) = 3.36 × 10−6 + 0.019𝑎 + 0.014𝑏 (11) 
Equation (11) represents the precise coefficients (3.36e-6, 0.019, 0.014) signify the 

magnitude and orientation of the correlation between the variables. 
Figure 9 sums up. The ARIMA model (1, 4) that was utilized to predict humidity shows 

a relatively low Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean 
Absolute Percentage Error (MAPE), which indicates a respectable degree of forecast accuracy. 
However, the bias ratio suggests the presence of systematic errors, indicating that exploring 
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the underlying causes of this bias would be beneficial for enhancing the model's performance.  
Furthermore, the Theil Inequality Coefficient offers a thorough assessment of forecast 
accuracy by accounting for bias and dispersion, resulting in a full assessment of the model's 
predictive skills.  

 
Figure 9. Forecast for humidity from 2001 to 2022. 

Figure 10 represents the average deviation between the predicted and actual 
precipitation values, according to the RMSE and MAE, which are 1.206061 units and 1.533678 
units, respectively. The anticipated values are, on average, more than twice as high as the actual 
values in percentage terms, according to the MAPE of 227.4200%, which shows a substantial 
percentage inaccuracy. Additionally, the Theil Inequality Coefficient is 0.839525, indicating 
substantial forecast deviation requiring model refinement. 

 
Figure 10. Forecast for the precipitation from 2001 to 2022. 

Figure 11 presents the RMSE and MAE, indicating that, on average, the predicted 
temperature values differ from the actual values by 0.622916 and 0.529304 units, respectively. 
The MAPE value of 16.43767% denotes a moderate percentage error, signifying that the 
predicted values deviate from the actual values by approximately 16.44% on average. The Theil 
Inequality Coefficient of 0.111944 suggests a relatively low level of forecast inequality, 
implying a reasonably accurate forecast. A significant portion of bias is evident in the 
prediction error breakdown, indicating that systematic errors contribute substantially to the 
overall forecast inaccuracy. This suggests that the model may encounter challenges in 
capturing specific systematic patterns in the temperature data. In conclusion, although the 
model offers predictions, the comparatively large bias ratio suggests the existence of systematic 
inaccuracies that warrant additional scrutiny or refinement of the model. Exploring alternative 
models, fine-tuning parameters, or incorporating additional factors may prove beneficial in 
improving the accuracy of temperature forecasts. 
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Figure 11. Forecast for the temperature from 2001 to 2022. 

Conclusion and Future Work: 
The paper presents a novel AI-powered UFMS for real-time flood prediction that can 

be employed by the flood control departments of several states and countries, particularly in 
Pakistan's lower Indus region, for pre-flood prediction. The research reveals the potential for 
better UFMS. The proposed framework comprises extensive literature surveys and different 
flood prevention techniques, such as AI-based algorithms for the prediction and forecasting 
of incoming floods. The data is classified into four classes, such as nil, low, moderate, and 
heavy rainfall for humidity, precipitation, and temperature, respectively. Regression analysis 
and machine learning techniques are evaluated to understand the stochastic behavior of the 
unpredictable data. ARIMA modeling is applied to evaluate the best fit model for the flood 
prediction based on the stochastic parameters such as AIC, SC, and Standard Error squared. 
The data is also trained using an SVM model to predict floods based on the classification of 
the data. The SVM algorithm performs with almost 99% accuracy on the training dataset. 
Future work will focus on deep learning integration and extending this system to more cities 
with varying topographical challenges 
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