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Introduction: 
The study of fractional integral inequalities holds significant importance in differential 

equations and applied mathematics. Fractional calculus and its extensive range of applications 
have reaped increasing attention in recent years. It has become a critical tool in mathematical 
analysis, optimization, transform theory, and economics. Over the earlier few decades, 
numerous mathematicians have devoted considerable attention to this field, resulting in a 
substantial collection of fractional integral inequalities and their various applications such as 
resources allocation, decision-making processes, in virtual human body representation, 
transfer of thermal energy, deformation-dependent stress response, sequential data 
assessment, electrical pathways, science of substances, transverse waves [1][2][3][4]. For an 
inclusive overview of new developments in this field, readers are referred to [5][6][7]. Among 
the numerous forms of fractional integrals, two in particular have been extensively studied due 
to their practical applications [8][9][10]. In recent eras, many mathematicians have intensive 
on the study of inequalities, particularly in the fields of functional analysis and mathematical 
analysis. Nobody can repudiate its value and consequence, and with time, this area of study 
continues to grow stronger and more extensive. Inequalities have many uses in control theory 
and various forms of entropy-related challenges, computational techniques encompassing 
numerical quadrature, and probabilistic aspects of information theory and statistical problems 
[11]. Authors [6] conducted a study on the foundational elements of fractional calculus and 
fractional differential equations. Authors [10] proposed the fractional integral and derivatives 
theory and application. Some Hadamard-type inequalities were proposed by authors [12]. Later 
on, authors proposed the idea of differential equations and integrals of fractional order. After 
that, authors [13] investigate the non-contiguous convex forms and practical applications. The 
idea of generalized convexity and inequalities proposed by authors [14]. Then authors [4] have 
presented the idea of utilization of fractional calculus in simulating dielectric relaxation 
behavior in polymer-based substances. After that, author [15] has presented the broader forms 
and exactness of the power mean inequality along with applications. The idea of a new 
approach, the generalized fractional integral proposed by author[8]. Authors [7] proposed 
Hermite-Hadamard type inequalities for fractional integrals and derived related results using 
methods from fractional calculus. Later on, by using fractional integrals, authors [9] formulated 
an approach to Hermite-Hadamard type inequalities for convex functions on the coordinate 
axes. Afterward, the concept of Simpson-type inequalities for geometrically relative convex 
functions was presented by authors [11]. Authors [16] proposed the E-convex steps, E-convex 
programming, and E -E-convex functions. Later on, the idea of convex functions and their 
applications was proposed by authors [17]. In [18], authors presented the notion of ∆-
convexity as a broader form of standard convex functions along with the following formal 
definition. 

Convex functions are deeply intertwined with the structure of inequalities. Several 
widely recognized and valuable inequalities arise as repercussions of convex functions. Certain 
fundamental inequalities, such as Jensen’s inequality and Hadamard’s inequality, offer elegant 
interpretations of convex functions. Fractional integral-type inequalities are highly valuable in 
the investigation of both fractional partial and ordinary differential equations. Convex analysis 
and inequalities have developed as an engaging area of study in mathematics, drawing 
significant attention due to their enormous importance and broad applications [15][19]. 

In this paper, a new integral-type inequalities are derived specifically for ∆-convex 
functions. These inequalities may include midpoint, trapezoid, or Simpson-type inequalities 
adapted for ∆convexity. The new bounds are shown to be sharp under certain assumptions. 
Optimality conditions or examples are provided where equality holds or the bounds are tight. 
These also help us to find the solutions to differential or integral equations involving non-
convexity. 
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Objectives of the Study: 
The main objective of this study is to develop new integral inequalities of Hermite-Hadamard 
type within the framework of ∆-convex functions. This class of functions serves as a 
generalized extension of standard convexity and allows the establishment of more flexible and 
inclusive results. The study aims to derive refined bounds for integral expressions involving 
the product of two ∆-convex functions by incorporating both symmetric and cross-evaluated 
function values at the endpoints of the interval. To achieve this, the analysis makes use of 
auxiliary notations such as V_1,W_1,V_1 and W_2, which help represent the boundary 
behavior and interaction of the functions involved. Numerical illustrations and examples are 
also included to demonstrate the sharpness and applicability of the established results. 
Furthermore, the theoretical developments are intended to contribute toward solving integral 
and differential equations where generalized convexity assumptions are required. 
Novelty Statement of the Study: 
The novelty of this research lies in the formulation of a refined class of Hermite-Hadamard 
type inequalities that are specifically constructed for ∆-convex functions. Unlike classical 
inequalities, which focus on standard convexity, the present study introduces inequalities that 
incorporate the transformed structure induced by the function ∆, allowing a broader class of 
functions to be considered. A significant innovation of this work is the inclusion of terms like 
V_2  = (φ,ψ) and W_2  = (φ,ψ), which represent symmetric and mixed-product combinations 
of the function values at the interval endpoints. These terms provide tighter and more 
informative bounds for the integral expressions, which are not available through traditional 
approaches. Moreover, the results achieved are not limited to known cases but represent a true 
extension that contributes new insight into the role of generalized convexity in integral 
inequalities. This study, therefore, opens further possibilities for applying the developed 
inequalities to areas such as fractional differential equations, optimization problems, and 
applied analysis, where precise integral bounds are of central importance. 
Preliminaries and Fundamental Concepts: 

Here, some definitions, results, and notations are given for a better understanding of 
the proposed work. 

Definition 2.1: Let g ∈ P(U) with φ < ψ and g ∈ L1[φ, ψ]  then the imperative result was 
established in ([12], 1893), and it is recognized as the Hermite-Hadamard type inequality in the 
literature. 

( ) ( ) ( )( )
 

( )
2

  2
 2   

 
g g x dx g g





 
 

 

+
  +

−   (1) 

Definition 2.2: A function g: U →ℝ is said to be convex if it satisfies the inequality 

( )( ) ( ) ( ) ( )   1        1   g x y g x g y   + −  + −  (2) 

hold ∀ x, y ∈ U and ς ∈ [0,1]. 

Definition 2.3: A set U ⊂ ℝ is called ∆-convex set concerning a strictly increasing (or 

decreasing) continuous function ∆ if 

𝛥−1((1 −  𝜍) 𝛥(𝑥)  +  𝜍𝛥(𝑦)) ∈ 𝑈 (3) 

for all x, y ∈ U, ς ∈ [0,1]. 
Definition 2.4: A function g: U → ℝ is said to as ∆-convex, if 

𝑔 (𝛥−1((1 −  𝜍) 𝛥(𝑥)  +  𝜍𝛥(𝑦)))  ≤  (1 −  𝜍) 𝑔(𝑥)  +  𝜍 𝑔(𝑦)        (4) 

where ∀ x, y ∈ U, ς ∈ [0,1]. 
Main Results and Numerical Experimentations: 
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Here, some main results of Hadamard’s type inequality in the form of theorems with 
their proofs and some numerical experimentations are demonstrated. 
Theorem 3.1. Let g: U → <ℝ+ is an integrable function that satisfies ∆-convexity with respect 
to the function ∆, then 

(
( ) ( )

( ) ( )
( ) ( )1 4

( )) ( ) ( ) 2( )
2

g g x x dx g g





 
 

 

−
 +

    +
 −   

Proof. As ’g’ satisfies the condition of ∆-convexity, so that 

( 1 ( ) ( )
( )) 2( ( ) ( ))

2

x y
g g x g y−  +
  +  (5) 

Now substituting 𝑥 =  ∆−1((1 − 𝜍) ∆(𝜑) + 𝜍∆(𝜓)) and 𝑦 =  ∆−1(𝜍∆(𝜑) + (1 −
𝜍) ∆(𝜓))  in 5, as a result, we obtain 

(
( ) ( )

( ) ( ) ( ) ( )1 1 1)( )) 2( ( ((1 )) ( ( ( ))))1
2

g g g
 

       − − −
 +

   − + +  −   +  

(6) 
integrating both sides of 6 w.r.t to ς on [0,1] and through simplification, we get 

(
( ) ( )

( ) ( )
1 4
( )) ( ) ( )

2
g g x x dx





 

 

−
 +

  
 −   (7) 

Similarly, by using the definition of ∆-convex function, we have 

𝑔 ( ∆−1  ((1 − 𝜍) 𝛥(𝜑) + 𝜍𝛥(𝜓))  ≤  (1 − 𝜍) 𝑔(𝜑)  +  𝜍 𝑔(𝜓),

4 𝑔 ( ∆−1
 ((1 − 𝜍) 𝛥(𝜑) + 𝜍𝛥(𝜓)))  ≤  4((1 − 𝜍) 𝑔(𝜑)  +  𝜍 𝑔(𝜓)

 

On applying a suitable mathematical step and rearranging, we acquire 

   
( ) ( )

( )
4

( ) ( ) 2( ( ))g x x d g gx





 
 

 
 −

+
   (8)

  
Now, by combining 7 and 8, we get 

(
( ) ( )

( ) ( )
( ) ( )1 4

( )) ( ) ( ) 2( )
2

g g x x dx g g





 
 

 

−
 +

    +
 −   (9) 

Theorem 3.2. Suppose that g, j: U → ℝ+ denote a pair of integrable ∆convex functions that 

are ordered in the same sense with respect to the function ∆, then g·j also satisfies ∆-

convexity relative to the function ∆. 

Proof. Given that g, j: U → ℝ+
 are two integrable functions with ∆-convexity and similar 

ordering ∀ x, y ∈ U and ς ∈ [0,1], then by using the definition of ∆-convex function, we 

obtain 

( ) ( ) ( ) ( )

2

1

2
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After performing suitable steps of calculation, we get 
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 ( ( 11 ) ( ) ( ))) (( ) ( ) ( ))) ( ) ( ) ( ) ( ) ( )((1 1 1x y j xg y g x j x g y j y     − − +    +− −  − +

(10) 
Now, in the following theorem, the procedure for finding the midpoint behavior of 

two similar ordered ∆-convex functions is presented, which can be estimated by using only 
their integral values and the function values at the endpoints of the interval. 
Theorem 3.3. Let g,j: U → ℝ+ denote a pair of integrable ∆-convex functions that are 

ordered in the same sense with respect to the function ∆. Then 

(
( ) ( ) ( ) ( )

( ) ( )
1 1

2 2

1 2
4 ( )) ( ( )) ( ) ( ) ( ) ( , ) ( , )

2 3 3

2

2
g j g x j x x dx V W





   
   

 

− −
 

   
+ +

−
+ +

   

where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2,               ,     .V g j g j and W g j g j           = + = +  

Here, 𝑉2(𝜑, 𝜓) represents the sum of the products of function values at the endpoints, 

providing a symmetric measure of g and j at points φ and ψ. On the other hand, 𝑊2(𝜑, 𝜓) 
captures the cross-products of the functions evaluated at opposite endpoints, further refining 
the estimate by incorporating the mixed behavior of g and j across the interval. These terms 
serve to enhance the bounds on the integral expression involving the product g(x)j(x) under 
the framework of ∆convexity. Also, these terms provide additional bounds and refinements 
in the integral inequality based on the behavior of the functions at the boundary of the interval 
[φ, ψ]. 
Proof. Given that g and j an integrable ∆-convex functions. Then 

(
( ) ( ) ( ) ( )1 ( ))

2 2
g

x y g x g y
−


 

+ +
 (11) 

and 

(
( ) ( ) ( ) ( )1 ( ))

2 2
j

x y j x j y
−


 

+ +
  (12) 

Now substituting 𝑥 =  ∆−1((1 − 𝜍) ∆(𝜑)  +  𝜍∆(𝜓)) and 𝑦 =  ∆−1(𝜍∆(𝜑)  +  (1 −
𝜍) ∆(𝜓)) in 11 and 12, as a result, we acquire 

(
( ) ( ) ( ) ( ) ( )1 1

1
2( ((1 ) ( ( ) (1 )

( ))
(

2
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2
g
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−
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and 

(
( ) ( ) ( ) ( ) ( )1 1

1
( ((1 ) ( ( ) (1 )

( ))
(

2 2

)) ))j
j
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−
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
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To get more convenient expressions, multiplying 13 by 14, then we obtain 

(
( ) ( )

(
( ) ( )
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On performing suitable mathematical steps and rearranging the terms, we get 

(
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(
( ) ( )
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( ) ( ) ( ) ( ) ( ) ( ) ( ) 
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(15) 
Now, taking integration of 15 on both sides with respect to ς on [0,1], we have 
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This implies 
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Consequently, we conclude the expression, which is as follows: 

( ) ( ) ( ) ( )
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1
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1
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4 ( ( )) ( ( )) ( ) ( ,) ( )
2

)
3

(
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2
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



   
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 
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(16) 
The following theorem demonstrates that the product of two ∆-convex functions of 

the ∆weighted average is always less than or equal to the sum of their products at the 
endpoints. This is useful as it provides a quick upper bound regarding the integral of two 
∆convex functions multiplied together. 
Theorem 3.4. Let g, j: U → ℝ+ be a pair of ∆convex functions that are integrable with 

respect to the function ∆ and are ordered in the same sense with respect to ∆. Then 

( ) ( ) 2 )( ) ( ) (
2

,) (g x j x x dx V





 
 

 
−   

where 
𝑉2(𝜑, 𝜓)  =  𝑔(𝜑)𝑗(𝜑)  +  𝑔(𝜓)𝑗(𝜓) 

Proof. For establishing the theorem, the following inequality is used  

( ) ( ) ( )( )( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )1 1 1     1      1    g j g j g j             − − −  +   −  +   − +  

(17) 
Integrating both expressions over [0, 1] with respect to ς, hence 

( ) ( ) ( )( )( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )
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1 1
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 1     1    1  

1  ,
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jg d jg jgd d

            

           

− − −  +   −  +   −

+  − + 

 



 (18) 

since 

( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )
( ) ( )

1

1 1

0

1
 1     1    ( ) ( ) ( )g j g x j x x dxd




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 

− −  −  +   −  +  = 
 −   

So, using this expression in 18, we get 
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g g
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j
x j x x x

j
d
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 
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On rearranging the mathematical expression, we obtain 

( ) ( ) 2

2
( ) ( ) ( ) ( , )g x j x x dx V





 
 

 
−   (19) 

where 
𝑉2(𝜑, 𝜓)  =  [𝑔(𝜑)𝑗(𝜑)  +  𝑔(𝜓)𝑗(𝜓)]. 

In the following theorem, an inequality bound, the average of ∆-convex functions by 
using only endpoint values in multiple ways is demonstrated. It gives us constrained control 
over the integral without needing complex calculations. 
Theorem 3.5. Let g, j: U → ℝ+ be ∆-convex and integrable with respect to the function 

∆. Then 

( ) ( ) 2 2

2 2 1
( ) ( ) ( ) ( , ) ( , )

3 3
g x j x x dx V W





   
 −

  +
   

 ( ) ( ) ( ) ( ) 2 2

1 1

1
[ ( , )] ( , ) ]] [

3
V W g g j j       + + −  

Where 
𝑉1(𝜑, 𝜓)  =  𝑔(𝜑) + 𝑔(𝜓),   𝑊1(𝜑, 𝜓)  =  𝑗(𝜑) + 𝑗(𝜓),    𝑉2(𝜑, 𝜓)  =  𝑔(𝜑)𝑗(𝜑) + 𝑔(𝜓)𝑗(𝜓)  
𝑎𝑛𝑑          𝑊2(𝜑, 𝜓)  =  𝑔(𝜑)𝑗(𝜓)  +  𝑔(𝜓)𝑗(𝜑). 

The expressions 𝑉1(𝜑, 𝜓)  =  𝑔(𝜑) +  𝑔(𝜓) and 𝑊1(𝜑, 𝜓)  =  𝑗(𝜑)  +  𝑗(𝜓) 
represents the sum of the values of the functions g and j, respectively, at the endpoints φ and 
ψ of the interval [φ,ψ]. These quantities capture the boundary behavior of the respective 
functions and are frequently employed in the context of convex analysis to establish symmetric 
bounds or to characterize average values at the endpoints. 
Proof. Since g, j: U → ℝ+ are integrable ∆-convex functions, we have 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 1

0

1

0

(
2

( ) ( ) ( ) 2 ( ((1 ) ((1 ,

2 [(1 ) (1 )

))

][

g x j x x dx g

g g j j

j d

d





       
 

        

− −+ +
−

 =  −    −  


 − +−+

 



 

Now performing a suitable calculation, we acquire 

( ) ( ) 2 2

2 2 1
( ) ( ) ( ) ( , ) ( , )

3 3
g x j x x dx V W





   
 −

  +
   (20) 

where 
𝑉2(𝜑, 𝜓)  =  [𝑔(𝜑)𝑗(𝜑)  +  𝑔(𝜓)𝑗(𝜓)] 𝑎𝑛𝑑     𝑊2(𝜑, 𝜓)  =  [𝑔(𝜑)𝑗(𝜓)  +  𝑔(𝜓)𝑗(𝜑)]. 

Now, on the other hand, we have 

( ) ( )
( ) ( ) ( ) ( ) ( )

1

0

2
( ) ( ) ( ) 2 [ 1  ) .][(1 ]ggx dg x j x x d g j





        
 

+− − +
−

 
    

Applying suitable integration steps, we get 

( ) ( )
( ) ( ) ( ) ( )2 2

1 1 ]
2 1

( ) ( ) ( ) [[ ( , )] [ ( , )] [ ]
3

g x j x x dx V W g g j j





       
 

 − +
−

 +



 

(21) 
where 

𝑉1(𝜑, 𝜓)  =  𝑔(𝜑)  +  𝑔(𝜓)  𝑎𝑛𝑑     𝑊1(𝜑, 𝜓)  =  𝑗(𝜑)  +  𝑗(𝜓). 
Finally, on combining 20 and 21, we obtain 
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2

∆(𝜓)−∆(𝜑)
∫ 𝑔(𝑥)𝑗(𝑥)∆′(𝑥)𝑑𝑥 ≤

𝜓

𝜑

2

3
𝑉2(𝜑, 𝜓) +

1

3
𝑊2(𝜑, 𝜓) ≤

1

3
[[𝑉1(𝜑, 𝜓)]2 − [𝑔(𝜑)𝑔(𝜓) +

𝑗(𝜑)𝑗(𝜓)]] (22) 

In the following theorem, the procedure of finding a refined bound including higher-
order information is presented that increases accuracy. This theorem is useful when ∆-convex 
function changes rapidly earlier or is nonlinear. 
Theorem 3.6. Let g: U → ℝ+  be an integrable ∆-convex function with respect to the function 
∆. Then 
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( ) ( ) ( ) ( )
( ) ( )
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( ) ( )
( ) ( )
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1 1

2

1
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( ) ( ) ( ) ( ))
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3 ( ( ))
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2 2
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g x j x x dx g

g

g
g x x dx
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g
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−

−
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

+ +



+
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−


 

 





 

Proof. By using the ∆-convexity of g and the arithmetic-geometric inequality, it follows that 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )2 1

1 1 1

1 1
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( ( )) ( ))]

( ( ))[ ( ((1 ) ( (1 )
2

1
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2 4

g

g

g
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g
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

+ 
+ + +

++  −  −
+ 

  + +   

 

On rearranging the mathematical expressions, we get 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2 12

1

1

1

1

( ( ))[ ( ((1 ) ( (1 )
2

1

]

)) [ ( ((1 ) ( (1 )
2 4
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)) ( ))]

( ( )) ( ))
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g

g

g

g

g g

g

g g

g
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  + + +


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
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(23) 
Integrating both sides of 23 w. r. t ς over the interval [0, 1], then we obtain 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 2

1 2 1

2

2
( ( )) ( ) ( ) ( ( ))

2 2 12

1
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g
d









     

 

 

 
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+  +  + 

    +



−

−



+  +





 

(24) 
On rearranging the terms of the above expression 24 and performing suitable mathematical 
techniques, we have 

( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

2

1

1

2

2

1

2
( ) ( ) ( ( ))

2
3 ( ( ))

2

( ) ( )

12 ( ( ))
2

g
g x x dx g

g
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g x x dx

g

g

g









   

  

 

 

−

−

−

 
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 


+ 
 

+



+



+−

+





 (25) 

In the following theorem, some mixed ∆-convex expressions are illustrated that 
provide us with a refined upper bound. When someone is working with models that contain 
two related nonlinear quantities, it is helpful for them. 
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Theorem 3.7. Suppose that g, j: U → ℝ+ are ∆-convex functions that are integrable with 

respect to the function ∆. Then 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1

1

2 2

1

2
[ ( ( )) ( ) ( ( )) ( )] ( )
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1 1 1
( ) ( ) ( ) ( , ) ( , ) ( ( ))

6 3 2
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g j x j g x x dx

g x j x x dx V W g

j


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+

+ 
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

−


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where 

𝑉2(𝜑, 𝜓)  =  (𝑔(𝜑)𝑗(𝜑)  +  𝑔(𝜓)𝑗(𝜓)) 𝑎𝑛𝑑 𝑊2(𝜑, 𝜓)  =  (𝑔(𝜑)𝑗(𝜓)  +  𝑔(𝜓)𝑗(𝜑)) 

Proof. By definition, since g and j are integrable ∆-convex functions, hence 

( ) ( )1 ( ) ( )
( ( ))

2 2

g x g y
g

 
− +


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  
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( ) ( )1 ( ) ( )
( ( ))

2 2

j x j y
j

 
− +


+ 

  

Now, by substituting 𝑥 =  ∆−1((1 −  𝜍) ∆(𝜑)  +  𝜍∆(𝜓)) and 𝑦 =  ∆−1(𝜍∆(𝜑) + (1 −
𝜍) ∆(𝜓)), we get 

( ) ( ) ( ) ( ) ( ) ( )1 1

1
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( ( ))
2 2

( ))g
g
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−
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
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  (26) 

and 

( ) ( ) ( ) ( ) ( ) ( )1 1

1
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2 2

( ))j
j
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−
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
+

 (27) 

Utilizing the rearrangements for the above inequalities 26 and 27, we obtain that. 
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Now 
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Also 
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(28) 
Integrating both sides of 28 w.r.t ς over the interval [0,1], then we obtain 
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Now, by using the definition of ∆convexity, we have 
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On performing suitable mathematical expression techniques and simplification, we get 
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Consequently, we obtain 
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Conclusion: 
In this study, we extend classical results by exploiting an improved form of 

Hadamard’s inequality. The application of ∆-convex function to integral inequalities allows us 
to extend earlier results to a broader set of functions and intervals, while the enhanced bounds 
contribute toward increased accuracy and stronger conclusions. It is expected that the 
approaches and ideas presented here will motivate further investigations in this area. 
Future Directions: 

This result significantly expands the horizon of mathematical analysis applications. It 
opens paths for future researchers to investigate extensions involving more complicated 
integral inequalities or convexity-related problems. This approach can be applied to numerous 
fields, as well as optimize mathematics and numerical analysis, where obtaining accurate 
bounds is essential. 
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