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In this paper, we recognized novel results on the integral inequalities type of Hermite-

%ﬂ

Hadamard to explore the applications of A-convex functions. Our conclusion extends
several established theorems in the literature.
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Introduction:

The study of fractional integral inequalities holds significant importance in differential
equations and applied mathematics. Fractional calculus and its extensive range of applications
have reaped increasing attention in recent years. It has become a critical tool in mathematical
analysis, optimization, transform theory, and economics. Over the earlier few decades,
numerous mathematicians have devoted considerable attention to this field, resulting in a
substantial collection of fractional integral inequalities and their various applications such as
resources allocation, decision-making processes, in virtual human body representation,
transfer of thermal energy, deformation-dependent stress response, sequential data
assessment, electrical pathways, science of substances, transverse waves [1][2][3][4]. For an
inclusive overview of new developments in this field, readers are referred to [5][6](7]. Among
the numerous forms of fractional integrals, two in particular have been extensively studied due
to their practical applications [8][9][10]. In recent eras, many mathematicians have intensive
on the study of inequalities, particularly in the fields of functional analysis and mathematical
analysis. Nobody can repudiate its value and consequence, and with time, this area of study
continues to grow stronger and more extensive. Inequalities have many uses in control theory
and various forms of entropy-related challenges, computational techniques encompassing
numerical quadrature, and probabilistic aspects of information theory and statistical problems
[11]. Authors [6] conducted a study on the foundational elements of fractional calculus and
fractional differential equations. Authors [10] proposed the fractional integral and derivatives
theory and application. Some Hadamard-type inequalities were proposed by authors [12]. Later
on, authors proposed the idea of differential equations and integrals of fractional order. After
that, authors [13] investigate the non-contiguous convex forms and practical applications. The
idea of generalized convexity and inequalities proposed by authors [14]. Then authors [4] have
presented the idea of utilization of fractional calculus in simulating dielectric relaxation
behavior in polymer-based substances. After that, author [15] has presented the broader forms
and exactness of the power mean inequality along with applications. The idea of a new
approach, the generalized fractional integral proposed by author[8]. Authors [7] proposed
Hermite-Hadamard type inequalities for fractional integrals and derived related results using
methods from fractional calculus. Later on, by using fractional integrals, authors [9] formulated
an approach to Hermite-Hadamard type inequalities for convex functions on the coordinate
axes. Afterward, the concept of Simpson-type inequalities for geometrically relative convex
functions was presented by authors [11]. Authors [16] proposed the E-convex steps, E-convex
programming, and E -E-convex functions. Later on, the idea of convex functions and their
applications was proposed by authors [17]. In [18], authors presented the notion of A-
convexity as a broader form of standard convex functions along with the following formal
definition.

Convex functions are deeply intertwined with the structure of inequalities. Several
widely recognized and valuable inequalities arise as repercussions of convex functions. Certain
fundamental inequalities, such as Jensen’s inequality and Hadamard’s inequality, offer elegant
interpretations of convex functions. Fractional integral-type inequalities are highly valuable in
the investigation of both fractional partial and ordinary differential equations. Convex analysis
and inequalities have developed as an engaging area of study in mathematics, drawing
significant attention due to their enormous importance and broad applications [15][19].

In this paper, a new integral-type inequalities are derived specifically for A-convex
functions. These inequalities may include midpoint, trapezoid, or Simpson-type inequalities
adapted for Aconvexity. The new bounds are shown to be sharp under certain assumptions.
Optimality conditions or examples are provided where equality holds or the bounds are tight.
These also help us to find the solutions to differential or integral equations involving non-
convexity.

August 2025 | Vol 07 | Issue 03 Page | 1905



International Journal of Innovations in Science & Technology

Objectives of the Study:
The main objective of this study is to develop new integral inequalities of Hermite-Hadamard
type within the framework of A-convex functions. This class of functions serves as a
generalized extension of standard convexity and allows the establishment of more flexible and
inclusive results. The study aims to derive refined bounds for integral expressions involving
the product of two A-convex functions by incorporating both symmetric and cross-evaluated
function values at the endpoints of the interval. To achieve this, the analysis makes use of
auxiliary notations such as V_1,W_1,V_1 and W_2, which help represent the boundary
behavior and interaction of the functions involved. Numerical illustrations and examples are
also included to demonstrate the sharpness and applicability of the established results.
Furthermore, the theoretical developments are intended to contribute toward solving integral
and differential equations where generalized convexity assumptions are required.
Novelty Statement of the Study:
The novelty of this research lies in the formulation of a refined class of Hermite-Hadamard
type inequalities that are specifically constructed for A-convex functions. Unlike classical
inequalities, which focus on standard convexity, the present study introduces inequalities that
incorporate the transformed structure induced by the function A, allowing a broader class of
functions to be considered. A significant innovation of this work is the inclusion of terms like
V_2 = (p,) and W_2 = (¢,}), which represent symmetric and mixed-product combinations
of the function values at the interval endpoints. These terms provide tighter and more
informative bounds for the integral expressions, which are not available through traditional
approaches. Moreover, the results achieved are not limited to known cases but represent a true
extension that contributes new insight into the role of generalized convexity in integral
inequalities. This study, therefore, opens further possibilities for applying the developed
inequalities to areas such as fractional differential equations, optimization problems, and
applied analysis, where precise integral bounds are of central importance.
Preliminaries and Fundamental Concepts:

Here, some definitions, results, and notations are given for a better understanding of
the proposed work.
Definition 2.1: Let g € P(U) with ¢ < ¢ and g € L1[@, P] then the imperative result was
established in ([12], 1893), and it is recognized as the Hermite-Hadamard type inequality in the
literature.

g@ ; 7y fg )ax< 2(g(p) + g(v)) (1)

Definition 2.2: A function g: U —>]R is said to be convex if it satisfies the inequality

glex+(l-¢)y) <cg(x) +(1-¢)g(») @
hold V x,y € U and ¢ € [0,1].
Definition 2.3: A set U C R is called A-convex set concerning a strictly increasing (or
decreasing) continuous function A if

A7 = QA + cA)EU  (3)
forall x,y € U, ¢ € [0,1].
Definition 2.4: A function g: U — R is said to as A-convex, if
g (47 - 940 +¢a)) < A - Qg +590) @
where V x,y € U, ¢ € [0,1].
Main Results and Numerical Experimentations:
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Here, some main results of Hadamard’s type inequality in the form of theorems with
their proofs and some numerical experimentations are demonstrated.
Theorem 3.1. Let g¢: U — <R" is an integrable function that satisfies A-convexity with respect
to the function A, then

L Alp)+ Ay 4
AN R
Proof. As ’g’ satisfies the condition of A-convexity, so that
4 ,AX)+A
g(a EEE) e rgn 6
Now substituting  x = AT'((1—¢) A(p) + ¢A@))and ¥y = A7 (¢A(p) + (1 —
¢) A(y)) in 5, as a result, we obtain

A A
g(a” (_(co); W) < a(a(a(1-01(p) (v + (0 (A o) + -0 )
©

integrating both sides of 6 w.r.t to ¢ on [0,1] and through simplification, we get

A A i’
o(ar AOAW) Y _[ewawd )

) [eAaGde<2g () +g(v)

) <
2 A(w)-A(p)
Similarly, by using the definition of A-convex function, we have
g (A7 (A=9) A(@) +s4@)) < (1—¢) g(@) + c g,
49 (A7 (A=) 4() +54¥))) < 41— ) g(e) + 5 g

On applying a suitable mathematical step and rearranging, we acquire

[ e(Amdr<2(g@)+ 2 () ®

Aly)-ale)
Now, by combining 7 and 8, we get

g(Al(A((/))+A(l//) 4

> S a)-a()

Theorem 3.2. Suppose that g, j: U — R* denote a pair of integrable Aconvex functions that
are ordered in the same sense with respect to the function A, then g*j also satisfies A-

[g@A@dx<2g(p)+2g(¥) O

convexity relative to the function A.

Proof. Given that g, j: U — R* are two integrable functions with A-convexity and similar

ordering V x, y € U and ¢ € [0,1], then by using the definition of A-convex function, we
obtain

A ((1=9)A(x)+ A (D) (A (A=A (x)+cA(»))
<((1-9)g(x)+5(»)

((1=6)j(x)+¢5j(»)

=(1-¢)"g(x)j(x)+5*g(»)j(»)

+6(1=6)(g(x)j(») +g(¥)j(x)

After performing suitable steps of calculation, we get
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g(A™ (=AM + AN/ (AT (1= )AMX) +6AL) < (1 =) g(x) /(%) +52 (1) j(¥)
(10)

Now, in the following theorem, the procedure for finding the midpoint behavior of
two similar ordered A-convex functions is presented, which can be estimated by using only
their integral values and the function values at the endpoints of the interval.

Theotem 3.3. Let g,j: U — R* denote a pair of integrable A-convex functions that are
ordered in the same sense with respect to the function A. Then

(a7 ALOLEAW)) s Al AW,

* 2 A(v)-A(p

; j g(x)j(x)A'(x)dx+§V2 (0.0) +§W2(¢v, v)

where
Vo) = g(e)i(e) + gW)ily) and W,(o.w) =g(p)i(v) +g(v)i(e).
Here, V5 (@, ) represents the sum of the products of function values at the endpoints,
providing a symmetric measutre of g and j at points ¢ and {§. On the other hand, W, (¢, )
captures the cross-products of the functions evaluated at opposite endpoints, further refining
the estimate by incorporating the mixed behavior of g and j across the interval. These terms
serve to enhance the bounds on the integral expression involving the product g(x)j(x) under
the framework of Aconvexity. Also, these terms provide additional bounds and refinements
in the integral inequality based on the behavior of the functions at the boundary of the interval

[, d]-

Proof. Given that g and j an integrable A-convex functions. Then

g(a" (A(x)+A(y))) L&(x)*e(y)

> 2 (11)
and
A A i i
st (x); (y)))gf(x)zf(y) 12

Now substituting x = A”((1—=¢) A(@) + ¢A(¥))and y = A 1 (cA(p) + (1 —
¢) A(¥)) in 11 and 12, as a result, we acquire

A A 2(A (1= 0)A A A (A 1—0)A
g(a( (co); (!//)))S (A ((1-9)A(p)+g (l//)));rg( (cA@)+(1-9)A(w)) 13
and

A A (A7 (1= 0)A A (A (cA 1—0)A
J(A (40); (w)))gj( (1-9)A(p)+4 (!//)));rj( (A@)+(1-)A(w)) 14

To get more convenient expressions, multiplying 13 by 14, then we obtain
L A(@)+A 4 Alp)+A 1 _
g(A I(M))J(A ‘(M))sz[(gm ((1-9)A(p)+aA(w))

+g(AA (@) +(1-)A (W ) GAT(A=9)A(9)+ A (w )+ (A (A (@) + (=) A(w))

On performing suitable mathematical steps and rearranging the terms, we get
L, A(@)+A g Ale)+A 1 _
g(A I(M»J(A I(M))sz[gm (1-9)A(p)+A(w))

+j(AT(1-)A(@)+ A (W) + (A (A (@) + (1-)A(w ) (AT (A(9)+(1-)A(w))
+H(1-9)g(@)+sg(w D)sj(e)+(sg(@)+1-9)g(w INA-9)j(@)+5j(w))]
(15)

Now, taking integration of 15 on both sides with respect to ¢ on [0,1], we have
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g(A*I (wm(ﬂ (w» < iﬁgml((l ~9)A(p)+5A(w))

j(A’l((l—g)A(qo)+gA(W)))dg+fg(A’l(gA(co)+(l—g)A(w)))j(A’l(gA(coﬁ(l—g)A(l//)))dg

+2(2(0)j(9)+2(v) jg(l s +(2(0)i(w)+e(w)i(e) |6 +1-¢)ds
This implies

A A A A ;
g(AI(M)U(AI(M)) < i{ [2(A (-9 (p)+A(w))

JAT(A=9)A () + A (w)ds + [ 2(A™ (A () + (1= A (W) (A (A () + (1= )A(w ))ds

(g( )J ((p)+g(w)j(z//)+§(g(rp)j(t//)+g(t//)j(rp))]

Consequently, we conclude the expression, which is as follows:

[ 8N I + 7,091 + 2 W, 0)
1) 3 3

A(w)-A(e),
(16)

The following theorem demonstrates that the product of two A-convex functions of
the Aweighted average is always less than or equal to the sum of their products at the
endpoints. This is useful as it provides a quick upper bound regarding the integral of two
Aconvex functions multiplied together.

Theorem 3.4. Let g, j: U — R* be a pair of Aconvex functions that are integrable with

A
4g(A1(M»ml< ("’);A("’)»s

respect to the function A and are ordered in the same sense with respect to A. Then

[ 2()j(A (x)dx <V, (1)

2z
A(v)-a(o)y

Vo(o,9) = g(@)jlp) + g@)j@)

Proof. For establishing the theorem, the following inequality is used

g(A" (1= 9)A(p) + 3())J(a7 (1= 9)A(0) + AW))) < (1 - <)e(0)i(e) + c2(v)i(v)
17
Integrating both expressions over [0, 1] with (res)pect to ¢, hence

[a(a" (1 - )a(0) + AW)))i(a" (1 - )al0) + A(w)))de<](1 - £)e(o)i(o)de
0 0 (18)
+cg(w)i(w)ds<g(p)i(e)[(1 - ¢)ds+g(y jgdg,

0

where

j;g(A'l ((1 - 5)A(p) + gA((//)))j(A'] ((1 - ¢)A(p) + Q'A(’//)))dgzng(X)j(x)A'(x)dx

So, using this expression in 18, we get

L Tewjwnoa < EO0),

A(v)-A(0)y
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On rearranging the mathematical expression, we obtain

) [ (@) jA @)dx < V() (19)

2
A(w)-Ale

V(0. 9) = [g(@)jle) + g)j@)].

In the following theorem, an inequality bound, the average of A-convex functions by
using only endpoint values in multiple ways is demonstrated. It gives us constrained control
over the integral without needing complex calculations.

Theotem 3.5. Let g, j: U — R* be A-convex and integrable with respect to the function

where

A. Then
2 e o 2 1
A=A (g | E NS o)+ T Halw)
< @)+ Hoa)F ~T2(0)2(w)+(0) /()]
Where

Vilo, ) = glo) + g@), Wile,¥) = jlo) +j@), V(o) = gle)j(e) +g@)j@p)
and Wo(p,¥) = gl@)j@) + g@)j(e).
The expressions Vi(@,¥) = g(@) + g@@) and Wi(p, ) = jlo) + j@)

represents the sum of the values of the functions g and j, respectively, at the endpoints ¢ and
¢} of the interval [p,J]. These quantities capture the boundary behavior of the respective
functions and are frequently employed in the context of convex analysis to establish symmetric
bounds or to characterize average values at the endpoints.

Proof. Since g, j: U — R* are integrable A-convex functions, we have

) [2(0)j()A()dx =2[ g(A™ (1= )A () + A (w )NJ(A ™ (1= A (p) + A(w ) ds,

2
Alv)-Alp

<2[[(1-9)g(9)+sg(W)1-9)j(0)+cj(v)ds

Now performing a suitable calculation, we acquire

2 I . ’ 2 1
mlg(x)J(x)A (x)dx < T W)+ W (o) (20)
where

Va(o.9) = [9(@)j(e) + g)j] and  Wi(e, ) = [g(@)j®) + g@)j(p)l.

Now, on the other hand, we have

[N mdr<2[[(1 - ¢)g(9)+ce(v)I1-c)g(0)+5/(v)lde.

A(w)-A(e)

Applying suitable integration steps, we get

s << [A@F 4T -8 (0) 2 () +1(9) (w1

2
A(w)-Ale

where

(21)

Vi(o,9) = g(@) + g@) and  Wi(p,¥) = j(p) + j().
Finally, on combining 20 and 21, we obtain
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A—W,)iA(@ [ 9(jOA ()dx <2V, (p,9) + 3 Wa (o) <5 [[Valo )1 — [9(0)g () +
J@iW]] 22)

In the following theorem, the procedure of finding a refined bound including higher-
order information is presented that increases accuracy. This theorem is useful when A-convex
function changes rapidly earlier or is nonlinear.

Theorem 3.6. Let g: U — R* be an integrable A-convex function with respect to the function
A. Then

2 e <oat 2@ AW g(e)g(w)
A(W)—A(ﬁﬂ)ig( VR b =g > ) 3g(A1(A(m;A(t//)»
g (p)+g’(v) 1
" * g* (VA (x)dx
12 (A (A( ) ( ))) 2(A( ) ((p))g(A“(A((p)JrA()))i

Proof. By using the A convexity of g and the arithmetic—geometrlc inequality, it follows that

Alp)+A
g(a™ (M))[g(Al (1-9)A(9)+A(w ) +g(A™ (A(p)+ 1 -)A(w))]

Alo)+A
< gz(A1(%»%@@1((1—G)A(¢>)+gA(!//)))+g(A‘(gA(¢)+(l—g)A(t//)))]

On rearranging the mathematical expressions, we get
A A
2 AW - (0)+ 1))+ 287 (A () 0w )

A(p)+A

< gz(Al(f(W))Hi[g(A1((l—g)A(¢>)+gA(W)))+g2(Al(gA(¢))+ (1-9)A(w))

+2((1-9)g(@)+sg (v ) sg(p)+1-9)g(w))]
(23)

Integrating both sides of 23 w. r. t ¢ over the interval [0, 1], then we obtain

A A i A A
g QAW 2 [ ar g ((p); W)y

2 A(v)-A(0)s

1 (TN g(r)gv)
+2(A(W)_A(¢)£g (A () + =22

g (p)+e’(v)
12

(249)
On rearranging the terms of the above expression 24 and performing suitable mathematical
techniques, we have

2 “/ , L A(p)+A(y) g(p)e(v)
_ A dx < o(A +
) A) {g(x) (0 < g(A (=) o ARV A)
(ot >
g o)+g \v J'
+ g(x)A(x)dx

2
In the following theorem, some mixed A-convex expressions are illustrated that
provide us with a refined upper bound. When someone is working with models that contain
two related nonlinear quantities, it is helpful for them.
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Theorem 3.7. Suppose that g, j: U — R* are A-convex functions that are integrable with
respect to the function A. Then

2 oMo +A) L Al)+A(y) ,
v j (A (=) 0+ (AT (=) g (A ()

Av)

U e imades - ! 1 Alp)+A)

< A(W)_A(w)ig(x)J(X)A(x)dx+6V2((P,l//)+3Wz((Pal//)+g(A( —)
A A

j(AI(M))

where

Va(o,9) = (9(@i(@) + gW)jW)) and W (e, ¥) = (g(@)i@) + g@j(®))
Proof. By definition, since g and j are integrable A-convex functions, hence
A A
et (qo); (AN g(x);g(y)

and

i (A((p);A(q//))) . j(x);j(y)

Now, by substituting x = A™1((1 — ¢) A(@) + ¢A(Y)) and y = A™(¢A(p) + (1 —
¢) A(¥)), we get

s Q@A) 2T (A-9A()+ A () + (A (A 9) + (L-9)A(y))

2 2
and

i A Al) JATA-A(p)+eAy) + AT (GA(p)+(-A(w))
2 Bl 2
Utilizing the rearrangements for the above inequalities 26 and 27, we obtain that.

%g(A’l(M))U(A”(I—G)A(so)+gA(V/)))+j(A’](§A(¢)+(1—g)A(V/)))]

(26)

(27)

A (1-9)A(9)+cA(w))+ (A" A(p)+1-5)))]
< %[g((A’l(lfg)A((/J)+gA(W)))+g(A’1(gA(rp)+(lfg)A(t//)))]X[j(A"(lfg)A((/J)+gA(t//)))+j(A"(gA((p)+(lfg)A(u/)))]

A A A
v AR AT A),,

Now

A A
%g(A”(M»UW(l—g)A((p)+gA(w)))+...+g(A'l(gA(<o)+(1—g))>]

< %[g((A’l(l —)A(9)+A(w)))j(AT(1-9)A(9)+A (v )M (A(@)+(1-)A(w)))
J(A (A (@) +1-)A (W) +g(A (1-5)A(9)+A (W) (A A (@) +(1-)A(w))

A A
+g(A™ (5(A(@) +(1=)A(¥ ) (AT (1-9)A(@) +A(yw ) + g(A™ (M))J'(A’1 (M))

+A
2 2
Also
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Ap)+A
%g(A"(M))U(A“(I—g)A(co)+gA('//)))+---+g(A"(gA(¢)+(l—g)))]
<

%[g((A‘(l—g)A(¢)+gA(l//)))j(A‘((l—g)A(¢)+gA(t//)))g(Al(g(A(¢)+ 1-9)A(w))

JA(A()+1-)A(w ) +([(1-9)g (@) +sg (W )))si(e)+1-¢)j(w))
A A A A
+Hsg(@)+U-9)g(w A=) j(@)+sj(w))+gA™ (M))](AI(M))
(28)
Integrating both sides of 28 w.r.t ¢ over the interval [0,1], then we obtain

A A :
%g(A%M» [T 1=9)A(p)+ A (W) +...+ 2(A™ (A () +(1-5)))]dg

< i [[2((A™ 1=9)A(p)+ A (W DA (1-9A(p)+ A (W) + [ g(A™ (5(A(9) +(1-)A(w )

JA (A (@) +(1=9A(w)ds + [ (1-5)g (9)+ 2 (WS () +(1-6)j (w )t

)| ds

0

l A A A A
+[(cg(p)+1=9)g (W IN-6)j(p)+5i(w)ds + g(AI(M)) A (co); (w)
(29)
Now, by using the definition of Aconvexity, we have
A A A ' / ! A A
Lo ((p); (w)))j{ (x)_, JOAE } PRGN

J(x)A

Aly)=-Alp) Aly)-Ale) 2

gA) . J()A()

A(w)-Ale) Alw)-Ale)

Lt 200N | g@N | LD
_4ﬂgA(WJ)_A(¢) gA(WJ)_A(q))}d 3[8(0)i(9)+e(v)i(w)+3le(0)i(v)+e(v) (o)

(2)+A(y)

(9)+A(w)

A A
+g(A™( 5 NJ( 5 )

On performing suitable mathematical expression techniques and simplification, we get
AP FA(p) 0N (x o A@)FA(Y) T g(0)A ()
A d A
g (= ))lA(W)_A(¢) o+ JA ))lA(W)_A((p) v
1[t2ei@A® , 1 (ohal ol .
S4U NOEC) det2(g(0) i (0)+8(w)i(w)+38(0)i(v)+e(v)i(o)]@)

e AR HAW)

o Alp)+A()
G

Consequently, we obtain

)
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A A A A A
;w I gar AEAW) S 4 jan AOTAW in

AWW)-A(0) 2 2
I S DN 1 Alp)+A(v)
< Aw)=A(0) £ g(x)j(x)A (x)dX+6V2(¢,w)+g(A ( 3 ) (30)
A A
j(A“(M»
Conclusion:

In this study, we extend classical results by exploiting an improved form of
Hadamard’s inequality. The application of A-convex function to integral inequalities allows us
to extend eatlier results to a broader set of functions and intervals, while the enhanced bounds
contribute toward increased accuracy and stronger conclusions. It is expected that the
approaches and ideas presented here will motivate further investigations in this area.

Future Directions:

This result significantly expands the horizon of mathematical analysis applications. It
opens paths for future researchers to investigate extensions involving more complicated
integral inequalities or convexity-related problems. This approach can be applied to numerous
fields, as well as optimize mathematics and numerical analysis, where obtaining accurate
bounds is essential.
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