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isaster mitigation and climate-resilient planning heavily depend on accurate Land Use 
and Land Cover (LULC) datasets. Well-classified LULC data optimizes hazard 
modeling, surface runoff estimation, and sustainable land use planning, enabling 

informed decision-making and proactive risk reduction. However, supervised LULC 
classification faces challenges such as selecting optimal Machine Learning (ML) algorithms, 
differences in spatial and spectral resolution, and seasonal variability. This study adopts a 
multi-tiered approach to generate effective LULC maps for Gilgit District, Pakistan, by 
comparing pixel-based classification and object-based image analysis (OBIA) methods. Pixel-
based classification was performed on Google Earth Engine (GEE) using Landsat-8 and 
Sentinel-2 imagery, applying three classifiers: Random Forest (RF), Support Vector Machine 
(SVM), and k-Nearest Neighbor (k-NN). OBIA involved multi-resolution segmentation, 
followed by training and classification on image objects using the same algorithms. Validation 
using independent samples revealed that object-based maps were visually smoother and more 
realistic. Quantitatively, pixel-based RF yielded the highest accuracy: 82.9% for Landsat-8 and 
78.02% for Sentinel-2. In contrast, OBIA k-NN achieved superior accuracy: 81.3% on 
Landsat-8 and 83.6% on Sentinel-2. Remaining classifiers also provided nearby results in both 
classification methods. Lower accuracy in Sentinel-2 may be due to within-class spectral 
variability at 10m spatial resolution, while Landsat-8’s lower resolution (30m) reduced object-
based segmentation performance, resulting in object heterogeneity and misclassification. 
Although pixel-based classification provided promising results, OBIA ultimately 
demonstrated superior overall accuracy. This study highlights the importance of resolution-
context compatibility and algorithm choice in enhancing LULC classification, which is 
essential for reliable climate-responsive planning, disaster preparedness, and sustainable 
development. 
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Introduction: 
During the early 21st century, the increase in global population and unmanaged economic 

development have significantly triggered changes in LULC. Quantitative assessment of LULC changes 
is one of the most effective approaches for evaluating and managing land transformation [1]. Land 
surface mapping is a commonly used environmental monitoring technique that plays a vital role in 
studying the impacts of climate change [2]. Knowledge of LULC is crucial for effective disaster risk 
reduction and the sustainable management of land and water resources [3][4]. Its consistent analysis is 
essential in interpreting global phenomena such as drought, flooding, urbanization, and deforestation [5]. 
Detailed information on various land cover types is necessary to develop effective policies [6]. The 
availability of open-access satellite data has facilitated the timely generation of LULC maps, leading to a 

growing demand for up-to-date land cover information [7]. 
Remote sensing is one of the techniques, extensively employed for land cover mapping 

and monitoring its transformations over time [8]. Compared to traditional ground-based methods, 
remote sensing is convenient, efficient, time-saving, and cost-effective [9]. Optical Remote Sensing 
(ORS) is frequently used for land observation, providing a variety of data with diverse spatial, spectral, 
and temporal resolutions. Landsat-8 and Sentinel-2 imagery are among the widely utilized sources in the 
low- to medium-resolution satellite category [10]. They are widely used globally due to their free 
accessibility of imagery and their spatial and spectral resolutions, which enable the generation of valuable 
results [11], transforming raw satellite imagery into meaningful information, and their interpretation is 
achieved by image classification [12]. It is pivotal in generating LULC thematic maps that support 
sustainable land use by balancing development and environmental conservation [13]. The first challenge 
in this scenario is to determine the most suitable method for classification. There are two approaches 
most commonly used for image classification: the classical Pixel-based and OBIA approaches [12][14][9]. 
The pixel-based classification depends only on the spectral information of the pixel, while the object-
based classification utilizes spectral and spatial features [12]. Pixel-based classification methods analyze 
individual pixels, which often struggle with increased variability, leading to spectral mixing and lower 
accuracies [15]. In comparison, OBIA represents a methodological shift from traditional pixel-based 
classification approaches by interpreting images through meaningful objects and their spatial 
relationships, rather than individual pixels. It incorporates statistical descriptors such as mean, standard 
deviation, and mode, which enhance the differentiation between land cover classes [12]. Beyond these 
frameworks, ML algorithms have gained popularity for classifying land cover [16].These classifiers can 
be integrated into both workflows, but selecting the appropriate ML algorithm remains challenging, 
making it essential to evaluate the accuracy of different classifiers for their practical application, especially 

in a mountainous landscape [17].  
Creating accurate land cover maps involves significant challenges in image classification, and 

we must choose an efficient approach with a suitable ML algorithm for precise map classification [12]. 
Based on literature review, we selected the most popular ML classifiers like SVM, which is suitable for 
handling complex data and offers high accuracy in land cover classification, especially with multisource 
inputs [18], RF, which handles high-dimensional data, its fast performance and high accuracy making it 
a popular choice [12], k-NN which is a simple, non-parametric classification method known for its 
effectiveness, though it can be computationally intensive during prediction [19]. Many studies have used 
these classifiers for LULC mapping [14][5][20][17][9][21][16][19], and according to [22], RF, SVM, and 
k-NN are three prominent classifiers recognized for producing high accuracies. Mapping over a vast area 
encounters many challenges, primarily due to the extensive data involved, and managing these datasets 
requires a lot of storage and processing power to achieve fast and precise results [23]. The advent of 
Google Earth Engine (GEE) has addressed this challenge by integrating remote sensing with big data, 

providing a cloud-based, high-performance platform for efficient processing and analysis [24]. 
To identify the effective method and high-performing ML algorithm for accurate 

classification, we delineate a comparison of both pixel-based and OBIA approaches and the 
performance of SVM, RF, and k-NN classifiers on Landsat-8 and Sentinel-2 imagery of Gilgit 
District, Pakistan. There is limited research on assessing ML classifiers and classification 
methods within a single study. Existing studies, especially those for this and the nearby region, focus 
primarily on the assessment of ML algorithms.[16]. The novelty of this study is that we compare the two 
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popular classification techniques (pixel-based and OBIA) with the comparative assessment of three ML 
classifiers using multi-scale imagery. The literature gap highlights the need for a comprehensive 
comparative study of classification methods and classifiers using multi-spatial and spectral datasets, 
particularly in this complex terrain.  

Novelty: 
The three objectives of this study are; (1) to determine the applicability of pixel-based 

classification and OBIA methods, (2) investigate the performance of three ML classifiers (SVM, RF, k-
NN) for accurate LULC mapping, and (3) assessing the impact of varying spatial and spectral resolutions 
(30 m of Landsat-08 and 10m of Sentinel-2 imageries) on accuracy of LULC classification. This 

evaluation would provide valuable guidance on selecting the optimal approach, identifying the best-
performing classifier, and assessing the compatibility of datasets with resolution context for 
reliable image classification, ultimately supporting climate-responsive planning, sustainable land 
management, and disaster preparedness. The remaining paper is structured as follows: Section-
2 presents the overall experimental design, including materials and methods. The experiment 
results related to the objectives and discussions are listed in Section-3, and the conclusion, 
including the significance and limitations of the study, is summarized in Section-4. 
Materials & Methods: 
Study Area: 

Gilgit District is situated in Gilgit-Baltistan (GB), a province in Pakistan. This is a region 
home to some of the world's highest mountain ranges, including the Karakoram [25]. Gilgit District is 
the administrative capital of GB and has geographical coordinates of 35.8819◦ N to 74.4643◦ E [26]. It 
spans approximately 40,8100 hectares (ha) of area bordered by Shigar and Skardu districts to the east, 
Diamer and Astore to the south, Ghizer to the west, and Nagar to the north. Its average annual 
temperature is about 2.59 °C, average summer temperature is 14.09◦C, and -8.94◦C average temperature 
in winters [27]. This district has significant environmental, geographical, and socio-economic importance. 
It is in the buffer zone to the route of China–Pakistan Economic Corridor (CPEC), a popular tourist 
spot and prone to natural disasters [26][25][16]. This highlights the need for accurate LULC mapping for 

disaster management and urban planning, which aligns with the aims of this study. Figure 1. 
provides the graphical layout of the study area. 

 
Figure 1. Location of study area (a) International Boundaries (b) Location of the study area 

with elevation derived from Shuttle Radar Topography Mission (SRTM) (30 m) data 
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Data Collection: 
Landsat-8, launched on February 11, 2013, by the National Aeronautics and Space 

Administration (NASA) in partnership with the U.S. Geological Survey (USGS), carries the 
Operational Land Imager (OLI), which measures visible, near infrared (NIR), and shortwave 
infrared (SWIR) portions of the electromagnetic spectrum. Landsat-8 images have 30-meter 
multispectral spatial resolutions (as outlined in Table 1) and a 16-day temporal resolution. Landsat-
8 surface reflectance products are generated using the Land Surface Reflectance Code (LaSRC) algorithm 
[28]. In the GEE catalog, OLI data is available as USGS Landsat-8 Level 2, Collection 2 product, which 

can be accessed using code ‘ee.ImageCollection("LANDSAT/LC08/C02/T1_L2")’ [29]. 
Sentinel-2A was launched on June 23, 2015, by the European Space Agency (ESA) as 

part of the Copernicus program. It has a 10-meter spatial resolution with 13 spectral bands for 
specialized coverage of land and vegetation, ranging from visible to SWIR wavelengths of the 
spectrum (displayed in Table 1). It has a  5-day revisit time and a swath of 290 km, providing frequent 
land cover images [30]. Sentinel-2 Multispectral Instrument (MSI) data is available as Level-2A Surface 
Reflectance (SR) product in GEE, and it can be retrieved by using code 

‘ee.ImageCollection(“COPERNICUS/S2_SR”)’ [31]. 
Table 1. Description of datasets used in this study 

Satellite 
Sensors 

Bands 
Used 

Description Wavelength 
(µm) 

Spatial 
Resolution(m) 

Date of 
Acquisition 

 
Landsat-8 

OLI 
Surface 

Reflectance 
Tier-2 

Sentinel-2 
MSI-Level 
2A (SR) 

B2 
B3 
B4 
B5 
B6 
B7 
B2 
B3 
B4 
B8 
B11 
B12 

Blue 
Green 
Red 
NIR 

SWIR-I 
SWIR-II 

Blue 
Green 
Red 
NIR 

SWIR-I 
SWIR-II 

0.450 - 0.51 
0.53-0.59 
0.64 - 0.67 
0.85 - 0.88 
1.57 - 1.65 
2.11 - 2.29 

0.4966 
0.560 
0.6645 
0.8351 
1.6137 
2.2024 

30 
30 
30 
30 
30 
30 
10 
10 
10 
10 
20 
20 

 
12-September-2024 

and 
21-September-2024 

 
 
 
 
 
 
 
 

21-September-2024 

A brief overview of methodology: 
The methodology in this study involves the acquisition of Landsat-8 OLI SR level 2 

imagery for September 12 and 21, 2024, as the study area was covered in two tiles. Sentinel-2 
MSI Level 2A imagery for September 21, 2024, with cloud cover less than 7% for both images, 
was selected. The month of September was chosen to avoid the impact of monsoon rains and 
the fresh snow on classification results. Then, the image preprocessing and Landsat-8 imagery 
mosaic were performed in GEE. Seven classes were defined based on the literature review 

[16][17][11][27], illustrated in Table 2. 
The training samples were collected and independent validation samples were employed 

for training of the classifiers and for validation purposes, distributed evenly across the study 
area. The samples for land cover classes were visually interpreted from high-resolution Google 
Earth Pro imagery. Additionally, ML classifiers, RF, SVM, and k-NN, were applied for pixel-
based classification, without any hyperparameter tuning. The accuracy assessment was done on 
the classified rasters to evaluate the performance of classifiers. The validation samples were 
collected independently to ensure the reliability, consistency, and unbiased accuracy assessment 
of the classification. OBIA was performed in e-Cognition Developer. Initially, segmentation was 
carried out using a multiresolution segment with a shape factor of 0.1, compactness of 0.4, and 
a scale parameter of 50 for Sentinel-2 and 70 for Landsat-8. This was due to the 30-meter spatial 
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resolution of Landsat-8, which led to difficulty in accurately delineating small and heterogeneous 
land cover features. The model was subsequently trained using the three classifiers, and they 
were then applied sequentially to obtain the classified outputs. Accuracy assessment was 
performed on the resulting rasters using standard metrics including Overall accuracy (OA), 
User’s accuracy (UA), Producer’s accuracy (PA), and Kappa Coefficient. The flow of this study 
is provided in Figure 2.  

 
Figure 2. Flowchart of Study 

Table 2. Land Cover classes were delineated based on the literature review 
Classes Description 

Rock / Soil Land areas of exposed soil and bare mountains 

Grass / Shrub Grasses, grass-like plants, forbs, or shrubs 

Forest Dense vegetation, mixed forest, and Tree cover 

Cropland Arable, horticultural, and ploughed land 

Built-up Area Urban and rural settlements 

Snow / Glacier Clean ice and debris 

Water Shallow water, rivers, and natural lakes 
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Machine Learning Algorithms: 
Random Forest: 

Random Forest (RF) is also a binary decision tree that utilizes multiple independent 
decision trees to facilitate classification. It builds numerous randomized decisions trees and 
utilizes predictions from the previously constructed trees. A subset of the input data is used for 
training, and the remaining data is for unbiased validation. The final classification decision is 
made by calculating the mean of the class probability estimates across all the single trees. RF is 
considered to have high stability and be tolerant to overfitting and noise due to the nature of the 
algorithm, and it is also suitable for high-dimensional datasets [21]. The performance of RF depends on 
several parameters, and the number of trees and the number of variables at each node are critical, which 
were set to 100 in this study [5]. The ‘classifier.smileRandomForest’ function within the Google Earth Engine 

(GEE) library was utilized to implement RF classification. 
Support Vector Machine: 

Initially, SVM was created for separating classifications using Structural Risk 
Minimization (SRM). The Support Vector Machine (SVM) utilizes a hyperplane to separate data 
points by maximizing the distance between classes through support vectors, effectively handling 
both categorical variables and linear as well as non-linear datasets. Radial Basis Function (RBF) 
and polynomial kernels are commonly utilized in sensing applications; however, RBF is 
preferred for LULC categorization due to its proven level of accuracy. The process of SVM 
classification involves finding the decision boundary using a kernel function to reduce errors and create 
clear decision boundaries effectively [18]. Choosing the kernel greatly influences how smooth the 
separation surface is, for multispectral data where performance can be improved by carefully selecting a 
suitable kernel and possibly fine-tuning it with genetic optimization techniques aimed at defining a 
boundary that maximizes the distance between support vectors, for accurate classification purposes [5]. 
This study employed the ‘classifier.libsvm’ method from the Google Earth Engine (GEE) library, using the 

RBF kernel type, a Gamma value of 10, and a Cost value of 20 for SVM classification implementation. 
K-Nearest Neighbor: 

K-Nearest Neighbor (k-NN) is a fundamental, straightforward classification method, 
beneficial when the data distribution is unknown [14]. As a 'lazy learning' algorithm, it stores all training 
data and classifies new samples by identifying their K nearest neighbors. The latest sample's class is then 
determined by voting or weighted sums among these neighbors. Neighbors are identified by calculating 
distances between the input vector and all training samples, then ordering them by proximity [19][20]. 

Code snippet to access the k-NN ‘ee.Classifier.smileKNN(k)’ was used in this study. 
Classification Methods: 
Pixel-based Classification: 

Pixel-based supervised image classification is a traditional approach that assigns land 
cover classes by comparing the spectral signature of each pixel—represented as an n-dimensional 
data vector—to predefined class models. These spectral vectors typically consist of digital numbers (DN) 
values from multispectral bands [14]. This approach ignores contextual, spatial, and textural details in 
favor of relying only on the spectral information of each pixel. Because each pixel in high- or very high-
spatial-resolution (VHSR) imagery may represent complex and varied surface features, it loses some of 
its dependability. The high intra-class variability and reduced inter-class separability at such resolutions 
often lead to reduced classification accuracy and the well-known "salt and pepper" noise [8]. Moreover, 
because image pixels do not represent actual geographical objects and lack topological relationships, the 
approach struggles to extract meaningful object-based insights. Despite this, pixel-based classification is 
widely appreciated for its simplicity, ease of implementation, and strong spectral discrimination 
capabilities, making it especially effective for moderate-resolution imagery where spectral variation 
between classes is distinct and sufficient for accurate land cover mapping. It is essential to consider the 
spatial and spectral resolution of the dataset, as the effectiveness of pixel-based classification largely 

depends on these parameters. That is why we assess the effectiveness of the pixel-based approach 
by comparing datasets with varying resolutions and analysis scales. 
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Object-based Image Analysis (OBIA): 
Object-Based Image Analysis (OBIA) is a strong alternative to traditional pixel-based 

methods because it uses not only spectral information but also spatial, textural, and contextual 
attributes of image data. OBIA groups neighboring pixels into meaningful image objects through 
segmentation, which is a key step in the classification process. These image objects, characterized by 
homogeneity in shape, size, texture, and spectral properties, are then classified based on a combination 
of their features [12]. The segmentation process typically follows a bottom-up principle, where small 
segments are progressively merged based on homogeneity criteria such as scale, spectral similarity, and 
spatial characteristics, commonly using multi-resolution region-growing techniques [15]. This approach 
enables OBIA to more accurately represent real-world features and mitigate classification noise, such as 
the "salt-and-pepper" effect commonly found in pixel-based methods. Although threshold setting for 
segmentation parameters can influence outcomes—potentially causing over- or under-segmentation—
OBIA's ability to integrate geometric and contextual information significantly enhances classification 
accuracy, especially for very high-resolution remote sensing imagery [32]. It is imperative to consider the 
spatial and spectral resolution of the dataset, as they primarily depend on these factors. In this study, we 
compare multi-resolution and multi-scale datasets to evaluate the efficiency of the object-based approach. 
By grouping spectrally and spatially similar pixels into objects, OBIA helps in overcoming the limitations 

of pixel-level analysis and enhances the full potential of modern remote sensing datasets. 
Ground Truth Information: 

Accurate ground truth information plays a pivotal role in training and validating classification 
models [33]. In this study, a total of 441 ground reference points were established across the study area. 
We used high-resolution images from Google Earth Pro to mark these reference points because it has 
better spatial detail, temporal coverage, and visual clarity, making them a reliable source for interpreting 
land cover. Out of the total samples, 318 were used for model training and 123 were set aside for 
validation only, to ensure an unbiased and statistically sound assessment of classification performance. 
The training samples were manually digitized and plotted using the GEE platform, which facilitated the 
easy distribution and representation of classes across different landscapes [24]. We carefully labeled the 
land cover classes based on visual interpretation techniques and checked them against temporal data to 
reduce uncertainty. The validation dataset was used to independently assess classification accuracy 

through standard performance metrics, ensuring the reliability of the classification outputs. 
Accuracy Assessment: 

Using common confusion matrix-derived metrics, such as Overall Accuracy (OA), 
Kappa Coefficient (Kc), Producer's Accuracy (PA), and User's Accuracy (UA) for every land 
cover class, the accuracy of the LULC classification results was evaluated. As a general indicator 
of classification performance, OA shows the percentage of correctly classified pixels of all reference 
pixels. By taking into consideration the potential for agreement to occur by chance, the Kc offers a more 
thorough assessment and a more sophisticated understanding of classification reliability [34]. While UA 
indicates the possibility that a pixel classified into a particular category represents that class in reality 
(ground-truth), PA shows the likelihood that a reference pixel has been correctly classified [35]. The 
dataset was divided into 70% training and 30% validation subsets using a stratified random sampling 
technique to ensure an accurate and objective assessment and to guarantee that each land cover class was 
fairly represented. The independent validation (testing) samples derived from this stratified approach 
were used to compute all accuracy metrics. These metrics were used to systematically evaluate and 
compare the performance of the three machine learning classifiers—RF, SVM, and k-NN—under both 

pixel-based and OBIA approaches. The comparative analysis based on OA and Kappa values 
facilitated the identification of the most effective classification method and algorithm 
combination for accurately mapping the land cover. 
Results: 
Comparison of ML classifiers: 

SVM, RF, and k-NN were applied to Landsat-8 and Sentinel-2 imagery using two 
different classification approaches to evaluate the performance of classifiers. Results, illustrated 
in Figure 3, displays the overall accuracy (OA) and kappa coefficient (Kc) of each classifier in 
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four different cases. When the ML classifiers were applied to Landsat-8 imagery using a pixel-
based approach, RF outperformed SVM and k-NN by achieving 82.9% OA and 0.796 Kappa 
coefficient, while SVM obtained 81.3 % OA and a Kappa coefficient of 0.777, and k-NN 
achieved OA of 78.9% and 0.747 Kappa coefficient. In the case of Sentinel-2 imagery using a 
pixel-based approach, RF again performed well among other classifiers, achieving an OA of 
78% and a kappa coefficient of 0.737, while SVM reached an OA of 76.4% with a kappa 
coefficient of 0.719, and k-NN achieved an OA of 72.4% and a kappa coefficient of 0.666. In 
the OBIA method, when classifiers were applied to Landsat-8 imagery, k-NN surpassed other 
classifiers by achieving 81.3% OA and a kappa coefficient of 0.777. RF and SVM achieved an 
OA of 73.2% and 77.2% with a kappa coefficient of 0.676 and 0.728, respectively. Using 
Sentinel-2 imagery, k-NN achieved the highest OA of 83.6% with a kappa coefficient of 0.80, 
whereas RF achieved 75.6% OA with a kappa coefficient of 0.711, and SVM gained 72.4% OA 
and a kappa coefficient of 0.665. The user and producer accuracies of the best-performing 
classifiers in each case are depicted in Table 3. 

 
Figure 3. Overall accuracies and Kappa Coefficients of classification methods and classifiers 

Pixel-based Classification using Landsat-8 imagery: 
The SVM classifier identified 223,852 ha as rocky areas or bare land, 91,819 ha as shrubs 

or grasses, 13,654 ha as forest, 5,025 ha as cropland, 49,120 ha as snow, 11,520 ha as water 
bodies, and 13,110 ha as built-up and residential areas, using a pixel-based approach on Landsat-
8 imagery. The RF classifier classified 217,825 ha as rock areas, 98,154 ha as grasses, 12,900 ha 
as forest, 6,039 ha as cropland, 13,900 ha as built-up areas, 48,200 ha as snow, and 11,082 ha as 
water bodies. The k-NN classifier observed 211,225 ha as bare areas, 108,000 ha as grasses, 
11,990 ha as forest and tree cover, 5,636 ha as cropland, 14,289 ha as built-up areas, 47,100 ha 
as snow, and 9,860 ha as water bodies. The area statistics are also displayed in Figure 5. 

The area under investigation was predominantly barren land, which was followed by 
land covered with grass and shrubs after the monsoon rains in September. The forest cover is 
typically found at high altitudes, as well as in dense and sparse tree cover in urban and rural 
settlements, residential areas, and cropland that lies along water bodies. It is distributed 
throughout the valleys, and snow covers the mountain-tops (glaciers), as there was no snowfall 
in September. Figure 4 illustrated the output rasters. 
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Table 3. Confusion matrices, UA, and PA of high-performing classifiers in both methods. 

Land Cover 
Rock 
/ Soil 

Grass / 
Shrub Forest Cropland 

Built-up 
Area 

Snow / 
Glacier Water PA 

K-NN applied on Landsat-08 imagery using OBIA 

Rock / Soil  24 1 0 0 1 6 1 82.75 

Grass / Shrub 4 14 0 0 0 2 1 77.77 

Forest 0 3 19 0 0 0 0 100 

Cropland 0 0 0 16 3 0 0 100 

Built-up Area 0 0 0 0 10 0 0 71.42 

Snow / Glacier 1 2 0 0 0 10 0 55.55 

Water 0 0 0 0 0 0 7 77.77 

UA 72.72 66.66 86.36 84.21 100 90.9 100  

K-NN applied on Sentinel-2 imagery using OBIA 

Rock / Soil  26 3 0 0 0 0 0 78.78 

Grass / Shrub 0 16 0 1 0 1 0 69.56 

Forest 0 0 14 2 0 0 0 82.35 

Cropland 0 0 1 16 0 0 0 88.88 

Built-up Area 1 0 0 0 13 0 0 100 

Snow / Glacier 4 2 0 0 0 10 2 90.9 

Water 0 1 0 0 0 0 8 80 

UA 89.65 88.88 73.68 100 92.86 55.55 88.88  

RF applied on Landsat-08 imagery using a Pixel-based approach. 

Rock / Soil  24 4 0 0 2 4 0 70.58 

Grass / Shrub 2 15 0 0 0 0 0 68.18 

Forest 0 0 18 1 0 0 0 94.73 

Cropland 0 0 0 16 1 0 0 94.12 

Built-up Area 1 0 0 0 13 0 0 100 

Snow / Glacier 5 3 0 0 0 9 1 90 

Water 2 0 0 0 0 0 7 87.5 

UA 82.75 83.33 94.73 100 92.86 50 77.78  

RF applied on Sentinel-2 imagery using a Pixel-based approach. 

Rock / Soil  26 3 0 0 0 0 0 68.42 

Grass / Shrub 1 17 0 0 0 0 0 65.38 

Forest 1 3 14 1 0 0 0 87.5 

Cropland 0 0 2 14 0 0 0 93.33 

Built-up Area 3 1 0 0 10 0 0 90.9 

Snow / Glacier 6 2 0 0 1 9 0 81.81 

Water 1 0 0 0 0 2 6 100 

UA 89.66 94.44 73.68 87.5 71.43 50 66.66  

Pixel-based Classification using Sentinel-2 imagery: 
The pixel-based method indicated that the RF classifier classified 201,115 ha as rock 

areas, 110,090 ha as grasses, 13,200 ha as forest, 5,137 ha as cropland, 15,100 ha as built-up 
areas, 53,300 ha as glacier or snow, and 10,158 ha as water bodies, using Sentinel-2 imagery. The 
k-NN classifier identified 220,010 ha as rock areas, 100,800 ha as shrubs or grasses, 12,070 ha 
as forest, 4,716 ha as cropland, 11,300 ha as built-up areas, 50,014 ha as snow, and 9,190 ha as 
water bodies, as depicted in Figure 5. SVM classifier detected 199,900 ha as rock areas, 119,010 
ha as shrubs, 13,990 ha as forest, 4,100 ha as cropland, 48,102 ha as snow, and 12,084 ha as 
water bodies and built-up area as 10,914 ha. Figure 4 illustrates the resulting rasters. 
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Figure 4. Spatial Distribution of LULC classification after applying RF, SVM, and k-NN on 

Landsat-8 and Sentinel-2 imagery using Pixel-Based and OBIA approach. 
OBIA using Landsat-8 imagery: 

The results obtained using the OBIA method on Landsat-8 imagery reveal that the RF 
classifier categorized 198,000 ha as rock areas, 130,400 ha as shrublands, 14,100 ha as forest, 
5,850 ha as cropland, 12,100 ha as built-up areas, 48,900 ha as glaciers, and 8,950 ha as water 
bodies. The SVM classifier identified 225,825 ha as barren land, 89,029 ha as shrubland, 14,042 
ha as forest, 6,320 ha as cropland, 13,010 ha as built-up areas, 50,520 ha as glaciers, and 9,354 
ha as water bodies. The k-NN classifier classified 210,000 ha as rock areas, 101,010 ha as shrubs, 
13,755 ha as forest, 7,510 ha as cropland, 14,500 ha as built-up areas, 49,990 ha as glacier, and 
11,335 ha as water bodies. Figure 4 demonstrates the results, and Figure 5 presents the 
comparison of land cover area among the classifiers. 
OBIA using Sentinel-2 imagery: 

On Sentinel-2 imagery, OBIA exhibits that the RF classifier in the object-based approach 
using Sentinel-2 imagery identified 211,003 ha as rocky areas or bare land, 106,010 ha as grasses, 
14,120 ha as forest, 5,452 ha as cropland, 51,113 ha as snow or glacier, 11,302 ha as water bodies, 
and 9,100 ha as built-up and residential areas. The SVM classifier identified 208,012 ha as rock 
areas, 111,001 ha as grasslands, 13,502 ha as forest, 6,120 ha as cropland, 12,300 ha as built-up 
areas, 47,233 ha as glaciers, and 9,932 ha as water bodies. The k-NN classifier observed 198,123 
ha as bare areas, 121,100 ha as grasses, 12,600 ha as forest and tree cover, 5,863 ha as cropland, 
10,100 ha as built-up areas, 50,013 ha as snow, and 10,301 ha as water bodies. Classified rasters 
are shown in Figure 4, and Figure 5 depicts the comparison of the area of each classifier. 
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Figure 5. Area comparison of Land cover classes 

Discussions: 
In a pixel-based classification framework, RF consistently excelled the other two 

classifiers for both Landsat-8 and Sentinel-2 imagery. RF achieved the highest OA of 82.9% OA 
and a 0.796 Kappa coefficient, and an OA of 78% with a kappa coefficient of 0.737 on Sentinel-2. The 
superior performance of RF in pixel-based applications is probably due to its high stability and resistance 
to overfitting and noise, making it suitable for high-dimensional data sets [21]. SVM also showed 
reasonable results but lagged slightly behind RF. It performed well on Landsat-8 imagery by attaining 
81.3% OA and 0.777 Kappa coefficient, but fell behind in performing with Sentinel-2 imagery, which 
may be due to the presence of mixed pixels and its sensitivity to spectral heterogeneity [18], k-NN 
produces lower accuracy, which is due to its reliance on distance metrics, which become less effective in 

heterogeneous landscapes, especially in mountainous regions [22]. 
Interestingly, in the OBIA, k-NN surpassed RF and SVM by gaining OA of 81.3% with 

a kappa coefficient of 0.777 when applied to Landsat-8 imagery. It demonstrates that the use of 
multiresolution segmentation enhances class boundaries, which in turn helps k-NN by reducing within-
class spectral variability and enabling more coherent neighborhood-based classification [20]. Similarly, 
with Sentinel-2 imagery, k-NN produced the highest OA and kappa coefficient by achieving 83.6% and 
0.80, respectively. RF and SVM showed decreased performance in object-based classification, especially 
with Sentinel-2, which is likely due to segment heterogeneity and mixed pixels resulting from high 

resolution [12], making it harder for RF and SVM to classify accurately. 
In terms of land cover area distribution, SVM, despite having slightly lower accuracy in 

object-based classification, produced the most considerable extent of barren land in several 
instances, possibly due to its sensitivity to spectral variation and its tendency to overgeneralize spectrally 
similar classes [18]. RF demonstrated more balanced area allocation, which is evident in its strength in 
pixel-based classification [16]. An algorithm with high accuracy may not necessarily yield realistic area 
estimates if it over- or under classifies specific land cover types due to spectral confusion or lazy learning 

[20]. Additionally, the area among different land covers could change due to seasonal issues [26]. 
The comparative assessment of both classification methods using three ML classifiers 

on multi-resolution imagery provides a significant understanding and clear trends in the 
effectiveness of classifier behavior under varying spatial and spectral resolutions. Overall, the 
results exhibit that the classification method influences the classifier’s performance. Pixel-based 
classification supports RF due to its strength in spectral analysis, while OBIA obliges k-NN due 
to the homogeneity of segmented objects.  

However, our research has some limitations. The performance of classifiers was 
analyzed on default parameters without fine-tuning hyperparameters; segmentation parameters 
were selected manually, which may not be optimal across all landscapes. The study also focused 
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on a single time frame (September), limiting the results across inter-annual variations and 
seasonality issues. Future research should consider integrating multi-temporal imagery with the 
use of topographic indices to enhance classification accuracy. The adoption of Deep Learning 
techniques or hybrid models could further improve classification results. An OBIA method 
using k-NN with high-resolution imagery is proposed for classification, incorporating multi-
temporal analysis and automated parameter optimization for segmentation tuning to mitigate 
bias and enhance reproducibility.  

Therefore, for complex mountainous areas like Gilgit District, choosing a suitable 
classification method and algorithm should align with the spatial and spectral resolutions of 
datasets and the specific goals of the analysis. OBIA approach using k-NN emerged as the best-
performing combination overall, particularly with Sentinel-2, indicating it is optimal for high-
resolution, spatially heterogeneous landscapes. These findings underscore the necessity of 
reliable LULC maps in practical applications such as environmental monitoring, disaster 
preparedness, and for accurate area estimation and planning.  
Conclusion: 

This study provides a comprehensive evaluation of pixel-based and OBIA classification 
approaches using three widely adopted ML classifiers, SVM, RF, and k-NN, under Landsat-8 
and Sentinel-2 imagery for LULC mapping in the mountainous terrain of Gilgit District, 
Pakistan. This research demonstrates that classification performance is significantly dependent 
on the interaction between the spatial resolution of imagery, the segmentation method, and the 
classifier used. Pixel-based classification demonstrated the highest accuracy with RF, while k-
NN obtained the highest accuracy in the OBIA method. Overall, the OBIA, combined with k-
NN, applied to Sentinel-2 imagery, yields promising results. 

The use of the above-mentioned techniques is recommended and should be adopted by 
the government to integrate land cover monitoring, support data-driven policies, promote 
sustainable land use, and facilitate climate-resilient development. This examination provides a 
solid foundation for helping in future land cover analysis and change detection efforts. 
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