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NOISIAI

Swat, Pakistan, using meteorological records and CMIP6-based projections under

SSP2-4.5 and SSP5-8.5 scenarios. Metrological variables, such as temperature and
precipitation, were examined for long-term trends, anomalies, and extremes. Machine learning
techniques (XGBoost and SHAP) were used to identify the most relevant online datasets and
climate models. ERA5 emerged as the most reliable online source, and INM-CM5-0, CNRM-
CMG6-1, and CMCC-ESM2 were selected as the best-performing GCMs. The Mann-Kendall
test showed a significant rise in minimum and maximum temperatures based on future
conditions. For instance, the maximum temperature under SSP5-8.5 had a significant
increasing trend with a Kendall Tau value of 0.1517, a Sen Slope of 0.00018, and a p-value less
than 0.001. In the meantime, the trend of precipitation under SSP2-4.5 was decreasing
significantly, which indicated the likelihood of an even more arid future. Under SSP5-8.5,
temperature anomalies might be as high as 6.5°C, and precipitation anomalies could be as low
as -1.5 mm or as high as +2 mm. Furthermore, Intensity-Duration-Frequency (IDF) analysis
indicated that extreme rainfall events are projected to intensify, with rainfall intensities for the
100-year return period increasing from an observed value of 340 mm/hr to 360 mm/hr under
SSP5-8.5. These outcomes show a potential rising trend of warmer and possibly drier
conditions in the Swat District, and higher vulnerability to severe weather conditions. The
results show that we need infrastructure that can handle climate change, flexible water
management plans, and aggressive planning to lessen the effects of future extreme weather

events.
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This study investigates the observed and projected impacts of climate change in District
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Introduction:
Climate change is one of the most pressing global issues, exerting profound impacts
on both natural ecosystems and human societies [1]. Over recent decades, extensive scientific
evidence has pointed to a consistent rise in global and regional temperatures, with this trend
expected to continue through the 21st century [2]. According to projections based on climate
model simulations, average global temperatures by the end of the century could rise between
1.1°C to 5.4°C (2°F to 9.7°F) above current levels [3]. This shift is already triggering significant
changes in hydrological systems, especially in sensitive regions like South Asia, where climate-
driven disruptions in rainfall and runoff patterns are becoming increasingly evident [4][5]. One
of the most severe manifestations of these disruptions is the alteration of precipitation
patterns, leading to increased frequency and intensity of river flows and flood events.
Flooding, often surpassing historical boundaries, has become one of the most destructive
hydro-meteorological disasters globally. These floods not only result in massive economic
losses and infrastructure damage but also threaten human lives, particularly in regions with
inadequate prediction and control systems [6]. In 2020 alone, over 33 million people were
affected by floods, with 6,171 recorded fatalities, according to the Centre for Research on the
Epidemiology of Disasters (CRED, 2021) [7]. Furthermore, between 2008 and 2018, natural
disasters displaced around 26.4 million people globally. South Asia accounted for 26.14% of
these displacements, underscoring the region’s acute vulnerability to climate extremes [6].

Pakistan’s geographical diversity plays a central role in its climate sensitivity. The
country lies adjacent to the warm Arabian Sea in the south and hosts three major mountain
ranges the Himalayas, the Hindu Kush, and the Karakoram along its northern and western
boundaries. These mountains contain vast reserves of glacial ice and snow, which are critical
to the country’s freshwater supply. However, this unique topography also exposes Pakistan to
heightened climate risks, especially when coupled with rapid urbanization, deforestation, and
other anthropogenic pressures. Since 1998, Pakistan has experienced over 150 extreme
weather events, including 14 major floods since 1990, making it one of the most climate-
vulnerable counttries in the world [8].

Within Pakistan, climatic conditions vary significantly across regions. Northern areas
such as Gilgit-Baltistan, Azad Jammu and Kashmir, and upper districts of Khyber
Pakhtunkhwa are characterized by cooler temperatures and high precipitation, and serve as
vital snowmelt and glacial zones. These regions are critical for sustaining river flow during dry
seasons. In contrast, Central Punjab and Upper Sindh exhibit moderate rainfall and
temperature levels and are heavily dependent on agriculture. Their agricultural productivity is
highly sensitive to climatic vatiations. Southern Sindh and the southwestern/western regions
of Balochistan, on the other hand, suffer from low rainfall and high temperatures, making
them chronically drought-prone and water-scarce. This distinct climatic gradient underscores
the urgent need for region-specific adaptation strategies in water management and agricultural
planning.

Swat District, situated in northern Pakistan within Khyber Pakhtunkhwa, exemplifies
a region increasingly threatened by climate-induced flooding. Its mountainous terrain and
proximity to snow-fed rivers make it particularly susceptible to intense rainfall and flash floods.
The 2010 flood event serves as a stark example: 86 lives were lost, nearly 9,800 livestock
perished, and over 40,000 houses were destroyed [9]. Vulnerability calls for continuous
monitoring and detailed analysis of flood events to understand how local watersheds respond
to sudden precipitation and temperature anomalies [10].

Objectives:

This study aims to analyze the historical and projected climatic trends of District Swat
by examining key meteorological parameters, temperature (minimum and maximum), and
precipitation, using observed data and CMIP6-based projections under SSP2-4.5 and SSP5-
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8.5 scenarios. The research integrates advanced machine learning techniques (XGBoost and
SHAP) to identify the most reliable online climate datasets and GCMs specific to the region,
enhancing model transparency and accuracy. By applying the Mann-Kendall trend test and
developing future Intensity-Duration-Frequency (IDF) curves, the study assesses long-term
shifts and extreme rainfall behavior, which are crucial for regional climate resilience.
Novelty Statement:

The novelty of this work lies in its data-driven approach to model selection, high-
resolution analysis of a flood-prone mountainous district, and the projection of future climate
extremes to inform adaptive infrastructure and water resource planning in a region that has
been historically underrepresented in detailed climate impact assessments.

Methodology:

Study Area:

District Swat is a riverine valley located in the Khyber Pakhtunkhwa province of Pakistan,
positioned approximately between 35.2° to 35.9° North latitude and 72.0° to 72.8° East
longitude. The region receives an average annual precipitation ranging between 700- and 800-
mm. Summers, extending from June to September, are marked by heavy rainfall, while winters,
from December to February, are notably cold. During summer, average temperatures range
from 20°C to 30°C, whereas in winter, they drop to between 0°C and 10°C.
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Figure 1. Study Area
Data Collection:

Pakistan faces significant challenges related to data availability, as limited access to
reliable and comprehensive data remains a major constraint in various sectors. The data
concerning precipitation and mean temperature were taken from the Pakistan Meteorological
Department. The data of temperature maximum and temperature minimum was obtained at
Climate Forecast System CFS, Climate Hazards Group Infrared Precipitation with Station data
(CHIRPS), Climate Prediction Center Unified Precipitation Project (CPC UPP), ERA5-Land
data tailored to agricultural purposes (ERA5 Ag), Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2), National Aeronautics and Space
Administration Prediction of Worldwide Energy Resources (NASA POWER), and
Precipitation Estimation from Remotely Sensed Information. Additionally, daily
climatological data for maximum temperature, minimum temperature, and precipitation were
obtained from ten Global Climate Models (GCMs): INM-CM4-8 (Russia), INM-CM5-0
(Russia), NESM3 (China), EC-Earth3-Veg-LR (Europe), GFDL-ESM4 (United States),
CMCC-ESM2 (Italy), CNRM-CMG6-1 (France), CNRM-ESM2-1 (France), MIROC6 (Japan),
and MRI-ESM2-0 (Japan). In the case of precipitation and temperature, data from the most
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relevant online resource were displayed using the XGBoost method. Likewise, the most
relevant GCMs were also depicted through the XGBoost method. The Shared Socioeconomic
Pathways SSP5-8.5 and SSP2-4.5 were used in the analysis, representing high- and moderate-
emission scenarios, respectively. Figure 2 shows the overall methodology: first, climatic data
were downscaled and bias-corrected; second, precipitation and temperature pattern analysis
was conducted using statistical trend detection methods, including the Mann—Kendall (MK)
test and Sen’s slope estimator; third, drought index and heat wave characteristics were
evaluated under both historical and projected climate conditions.

Observed Modelled
Data Data
Source Selection
!
Downscaling &
Bias Correction
[— Data Preparation ﬁ
Precipitation Temperature
Pattern Pattern
Analysis Analysis
|8 )
¥

Inter-Comparison

of Present &
Future Condition

Figure 2. Methodology
Selection of Online Data Sources and GCM Models:

In this study, the Extreme Gradient Boosting (XGBoost) model was applied to rank
the importance of various input features in predicting precipitation and temperature over the
Swat region. For online dataset selection, the input features included time series data of
precipitation, maximum temperature, and minimum temperature obtained from multiple
gridded climate data products namely ERA5-Land, CHIRPS, MERRA-2, CPC UPP, NASA
POWER, and CFS. These datasets were compared against observed station data from the
Pakistan Meteorological Department to assess their representativeness. For GCM evaluation,
the input features consisted of bias-corrected daily precipitation and temperature values
derived from ten CMIP6 models under SSP2-4.5 and SSP5-8.5 pathways. The XGBoost
model used these variables to compute feature importance scores, identifying the most reliable
datasets and GCMs for climate analysis in District Swat.

Shapley Additive explanations (SHAP):

The interpretation of machine learning models is noteworthy because it helps to better
select and understand liable input variables influencing the output decisions. Shapley Additive
exPlanations (SHAP) were proposed by Lundberg and Lee (2017) and combines game theory
with the purpose of explaining the impact of each feature on the result of the model. SHAP
gives each feature a number in which it contributes to how far the prediction is away from
being average. This process provides two types of explanations of model behavior: the overall
(global) and the individual (local). SHAP values go further and average the effect of a feature
across all possible combinations of the inputs, giving a balanced and fair perspective of feature
importance [11].

Online Data Source Selection:

The feature importance scores are actual numbers useful in the process of choosing
the most pertinent features for the model. Higher scores signify greater importance, meaning
the feature has a larger impact on the model’s predictions. These scores may be used in the
process of determining or choosing the appropriate online data sources to analyze to ensure
that whatever data is collected shows a formidable nexus with the observed data. In the current
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work stream, the XGBoost model was applied to calculate the feature importance scores on
online data sources [12].

In this study, the XGBoost algorithm was implemented to determine the relative
importance of different climate data sources and global climate models (GCMs) based on their
ability to replicate observed climatic conditions in District Swat. For the evaluation of online
data sources, the input features included daily time series data for precipitation, maximum
temperature, and minimum temperature obtained from six gridded datasets: ERA5-Land,
CHIRPS, MERRA-2;, CPC Unified, NASA POWER, and CFSv2. These were compared
against the observed station data from the Pakistan Meteorological Department. Similarly, for
GCM selection, input features comprised downscaled and bias-corrected daily precipitation
and temperature data from ten CMIP6 models under both SSP2-4.5 and SSP5-8.5 scenarios.
The model computed feature importance scores using decision tree-based ranking, enabling
the identification of the most representative datasets and models for climate analysis in the
study region.

GCM Models Selection:

One of the methods of correcting the data is referred to as bias correction. It is usually
applicable in improving the outcomes of GCMs (Global Climate Models). GCMs are
computerized programs that use mathematical rules to replicate the functioning of the
atmosphere, ocean, and land. While these models attempt to predict Earth’s climate, they
inherently contain systematic biases. Bias correction adjusts the GCM data to align with real-
world observations, enhancing its reliability for decision-making.

Methods of statistical downscaling develop connections between the observed data
and the output of GCMs. They are convenient, quicker, and computationally efficient
compared to other downscaling approaches. Due to this fact, such methods have frequently
been applied by scientists to conduct climatic and hydrological research. In the current project,
the linear scaling method was used to correct the bias. This method is straightforward and
preserves both natural variability and trends in the GCM results.

To support this process, the XGBoost model was applied to calculate feature
importance scores for 10 GCMs, allowing the identification of the most suitable models for
the region [13].

Mann—-Kendall (MK) Trend Test:

Monitoring the trends in climate conditions like temperature and precipitation is
essential in climate profiling, especially in the comprehension of long-term effects of global
warming and new hydrological patterns. The Mann-Kendall (MK) test has become a widely
used statistical tool among the many developed so far, because of its non-parametric
characteristic, which makes it appropriate in studying hydro-meteorological time series that
tend to have missing/outlier values or even non-normally distributed data. [14][15]. MK test
relies on the assumption of monotonicity, which implies that the variable being examined has
a monotonic tendency to either increase or decrease over the course of time without specifying
whether the tendency is monotonic or not. As a rank-based method, it does not require the
data to follow a normal distribution, making it particularly valuable in climate studies where
data such as monthly or annual temperature and precipitation often deviate from normality
[16].

The Mann-Kendall test has gained wide acceptance in the analysis of long-term trends
in climatic variables, particularly in climate risk-prone regions. A typical example is when it is
employed in measuring higher temperatures over several decades or even extent of significant
fall or rise in rainfall as a result of climatic change. This procedure tends to provide a credible
approach to identifying indicators of hydrological change early on in the context of climate
profiling, especially in semi-arid and mountainous areas [17]. The MK test is deemed to be
best suited where the data is obtained either through weather stations, satellite monitoring, or
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climate models that were downscaled. In investigations where Representative Concentration
Pathways (RCPs) or Shared Socioeconomic Pathways (SSPs) are used, the MK test can be
used to analyze and predict data to inform whether the climate models assume statistically
significant trends in the future.

In this study, the Mann—Kendall trend analysis was conducted using meteorological
data from a single weather station representing District Swat. As the dataset was point-based
and not spatially distributed, spatial interpolation methods such as Inverse Distance Weighting
(IDW) or Kriging were not applicable.

Intensity-Duration-Frequency curves (IDF):

One of the well-known methods, the intensity-period-frequency (IDF) relationship,
can be viewed as a way to derive the relationship between the rainfall intensity and its duration
and the period of recurrence. IDF curves are developed by determining the most appropriate
statistical distribution to model the variation of excessive rainfall [18]. The IDF curves play a
vital role in hydrologic design and infrastructure planning. An analysis of rainfall frequency
plays a role in urban drainage design, flood management, and climate resilience [19]. A record
of rainfall generates statistics based on annual maximum rainfall values and will be undertaken
through the rainfall record. The annual maximum estimates are used to perform the analysis
through the Gumbel distribution and the Gamma distribution to estimate the depth of rainfall
of different return periods. The effectiveness of the above distribution methods was
determined through Kolmogorov-Smirnov, Anderson-Darling darling and Chi-Squared. The
rainfall intensities are then calculated using the depth of rainfall [20]. A three-dimensional
relationship is estimated between intensity, duration, and frequency via empirical equations
[21]. The relationship between the aforementioned parameters is visualized via IDF curves for
different return periods [22].

Results and Discussion:
Online data source:

For both precipitation and temperature, the ERA5 reanalysis dataset exhibited the
highest feature importance score among the evaluated online data sources, as demonstrated in
Figure 3. Based on its superior performance and consistency with observed patterns, ERA5
was selected as the preferred data source in cases where observed meteorological records were
unavailable. This ensured a reliable representation of climatic conditions across the study area,
supporting robust analysis in data-scarce regions such as District Swat.
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Figure 3. Online data sources selection for (a) precipitation and (b) temperature
GCM Models:
The feature importance score of INM-CM5-0 is the highest, followed by CNRM-
CMo6-1 (France) and CMCC-ESM2 GCMs, as is obvious from Figure 4. A multi-model
ensemble (MME) of the top three models was computed via arithmetic mean.
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Figure 4. GCM selection

Temperature and Precipitation Regime Over Swat:

The raw observed data, selected top three models, and multi-model ensemble for
temperature minimum, temperature maximum, and precipitation are visualized via Parallel
Coordinates Plots, as obvious from Figure 5, Figure 6, and Figure 7, respectively. Parallel
Coordinates Plots effectively compare multiple GCMs with observed and MME records,
which highlight the similarities and differences among the datasets.

CMCC-ESM2
30.34

CNRM-CM6-1 France
3145

INM-CM5-0
30.54

10+
-10.08 ~1594

Ensemble Observe{ ~ CMCC-ESM2 CNRM-CM6-1 France
28077 33 46.99 4749

=4 =3 =211 5.25

TECNE0
094

4.65

Ensemble
4265

9.063

25

Figure 5. Comparison of the temp;erature of the selected three models; the observed record,

CMCC-ESM2
3155

-17.25

=807 =561

3,757 -3 238 6.55

5
4.96

and the MME under SSP245
CNRN-CM6-1 France INM:-C5-0 Ensemble Obsen  CMCC-ESM2 CNRM-CM6-1 France INM-CM5-0 Ensemble Obsers}
32 341 0,547 ki 4843 5374 4392 45437 45

10
9.687

45

A0

25

Figure 6. Comparison of the temperature of the selected three models, the observed record,

and the MME under SSP585

August 2025 | Vol 07 | Issue 03

Page | 1745



OPEN 8ACCESS

330

140

i 0

International Journal of Innovations in Science & Technology
CNRM-CM$-1 France INM-CM3-0 Easemble Observed CMCC-ESM2 CNRM-CME-1 France IRM-CHMS-C Eusenble Qlserved
118.76 69118 2304 187 EEE 35900 42 187
L 100 &0 2 190 Ly 50 350 | B
0 €00 200 w M 0 0 i L 10| W
350 B e 300

140

Procipitation (mm)

@

Figure 7. Comparison of precipitation of the selected three models, observed record, and
MME under SSP245 and SSP585

Figures 8, 9, and 10 present the variations in minimum temperature, maximum
temperature, and precipitation under the SSP2-4.5 and SSP5-8.5 scenarios. The projected
temperatures were consistently higher than the observed record under both scenarios. While
the overall temporal pattern of precipitation remained comparable between observed and
future datasets, the projections, particularly under SSP5-8.5, exhibited occasional extreme
precipitation peaks. These anomalies suggest an increased risk of intense rainfall events, which

may have critical implications for flood management and agricultural planning in the region.
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Figures 11 and 12 illustrate how daily maximum and minimum temperatures are
projected to vary under the SSP2-4.5 and SSP5-8.5 scenarios. These figures compare the
observed records with projections for the near future (2015-2042), mid-century (2043-2073),
and far future (2074-2099). Over time, the temperature minimum and maximum distribution
shifts to the right, indicating a steady increase in nighttime minimum temperatures and daytime
maximum temperatures. This suggests that higher minimum and maximum temperatures are
likely to occur more frequently in the future. By the end of the century, very cold nights and
days almost disappeared, rendering a clear warming pattern that can impact ecosystems,
agriculture, and human health. This trend indicates a significant warming pattern for the
region, which could have various implications for the local community.
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In this study, the reference period was selected from 1993 to 2022. The anomaly in
both temperature minimum and maximum under SSP245 ranges between -2 and to 4°C as
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demonstrated by Figure 13. Similarly, the anomaly in temperature minimum and maximum
under SSP585 ranges between -2 to 6.5°C, and -2 to 6°C respectively, as obvious from Figure
14. The findings of the present study indicate that the temperature anomalies under SSP5-8.5
are greater than those under SSP2-4.5 for both minimum and maximum temperatures. This
suggests that District Swat is expected to experience a significantly warmer climate in the

future compared to the reference period.

For precipitation, an anomaly was estimated for both SSP scenarios. The anomaly in
both SSP245 and SSP585 ranges between -1.5 to 1.5mm and -1.5 to 2mm, as demonstrated
by Figure 15. It’s worth notable that the anomaly of SSP585 is greater than SSP245. Moreover,
both positive and negative anomalies are observed under both SSP scenarios. However, the
overall analysis indicates that the Swat District is likely to experience predominantly warmer
climate conditions under both SSP2-4.5 and SSP5-8.5 scenarios.
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Trend analysis:

Table 1 reveals significant increasing trends in both minimum and maximum
temperatures under the SSP2-4.5 and SSP5-8.5 scenarios. In contrast, the trend in observed
maximum temperature was not statistically significant. It is noteworthy that future temperature
projections exhibit an increasing trend, indicating that temperatures in the Swat District are
expected to rise in the coming years. SSP245 exhibited a statistically significant decreasing
trend. The observed precipitation and SSP585 trends were not statistically significant. These
findings suggest that the project area is likely to experience a hotter and drier climate in the
future. Based on this projection, climatologists, hydrologists, and policymakers can formulate
informed adaptation strategies to effectively manage the challenges associated with a warming
and drying environment.

Table 1. Trend analysis of meteorological parameters for Swat

Variable Scenario P value Tau Sen’s slope Trend
Observed 9.69E™" -0.000246778 0 not significant

Tmax SSP 245 1.18E™ 0.076873984 9.17E" significant

SSP 585 0 0.151741629 | 0.000181726 | significant

Observed 2.98E" 0.037989938 1.31E™ significant

Tmin SSP 245 5.17E1 0.086276308 9.38E " significant

SSP 585 0 0.170008459 | 0.000187718 | significant
Observed | 0.52229641 | -0.004685319 0 not significant

Precipitation | SSP 245 0.013469954 | -0.010281459 0 Significant
SSP 585 0.378404411 | 0.003656326 0 not significant

Frequency Analysis of Precipitation:

The IDF curve shows the three-dimensional relationship between rainfall duration,
intensity, and return period. Longer return period (100-year) corresponds to higher rainfall
intensities, while shorter return period (2-year) corresponds to lower intensities, as is obvious
from Figure 16. The observed data, SSP245 and SSP585, curve peaks at the 100-year return
petiod with the highest rainfall intensity of 340mm/hr, 345mm/hr, and 360mm/hr,
respectively, and suggest that extreme rainfall events are more intense. Notably, the rainfall
intensities of SSP scenarios were greater than the observed record, as is obvious from above.
The observed, SSP245, and SSP585 data reflected traditional IDF curve behavior, where
intensity decreases with shorter return periods and vice versa. To determine the most suitable
statistical distribution for modeling extreme rainfall events in the study area, three commonly
used distributions, Gumbel, Gamma, and Log-Normal, were evaluated. The performance of
each distribution was assessed using multiple goodness-of-fit tests, including the Kolmogorov-
Smirnov (K-S) test, the Anderson-Darling (A-D) test, and the Chi-Square test. Among the
tested distributions, the Gumbel distribution consistently yielded the lowest K-S and A-D
statistics, indicating a better fit to the annual maximum rainfall data. Based on these results,
the Gumbel distribution was selected for constructing Intensity—Duration—Frequency (IDF)
curves for both observed and projected climate scenarios. The rainfall intensities of SSPs were
higher than observed records, rendering the importance of climate-resilient infrastructure
design to withstand the rare but severe rainfall events.
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Figure 16. IDF curve for (a) observed conditions, and future conditions under (b) SSP245
and (c) SSP585 scenarios
Discussion:

This study indicates a significant warming trend in the District Swat across SSP2-4.5
and SSP5-8.5. Maximum and minimum temperatures were shown to increase significantly,
especially in SSP5-8.5, where Tau was recorded to be 0.1517. These trends are consistent with
global projections that indicate a rise in surface temperatures towards the end of the
century.[23]. The maximum temperature anomaly of +6.5 °C under SSP5-8.5 points to the
possibility of a threat to the existence of snow and glacier-based hydrological regimes in
mountains. This warming may accelerate glacier melt rates, change the timing of runoffs, and
change the seasonal ablation of water in the area [24]. The above analysis also revealed that
precipitation reduced considerably under the SSP2-4.5, which represented a drying tendency
in the area. This is consistent with the predictions made on South Asia, where precipitation
will become less predictable in the middle emission scenarios and more variable [23].
Nonetheless, based on the intensity-duration-frequency (IDF) analysis, it is projected that the
rainfall extremes in the future would become stronger. For instance, the 100-year return period
rainfall is estimated to increase by 20mm/hr or 340mm/hr to 360mm/hr under SSP5-8.5,
which implies a higher risk of flash flooding and exceedance of the infrastructure capacity.
These data align with the observed and simulated trends, indicating an increase in the intensity
of extreme rainfall events associated with global warming, even over relatively short
observation periods. There is also similar rainfall intensification in monsoon-dominated areas
of South Asia, such as northern Pakistan, where the warming has caused an increased
frequency of storm events, but decreased concentration of rainfall falling within those events
[25]. The application of model selection (XGBoost and SHAP) based on machine learning
algorithms ensured transparency and resilience in the selection of the most appropriate GCMs
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and online data sets. Using explainable Al in assessing climate models improves the confidence

of regional climate projections [26]. This study demonstrates that the District Swat is extremely

susceptible to future hydro-climatic change. Rising temperatures, severe precipitation events,

a rise in seasonal variability, and more stressful weather conditions raise the necessity to plan

resilience to climate change, early warning systems, and sustainable management to meet such

arising challenges.

Conclusion:

The climate profile of the district of Swat indicates the massive conversion of the
physical environment due to climate change. Projections have shown that the future weather
will continue to get warmer in all seasons, with winter becoming milder and summers getting
warmer. These results are reassured by observational results and downscaled climate model
data. These changes would influence the water needs of crops, increase glacier break-up, and
have consequences on the health of the people and the productivity of livestock in the area.
Take an in-depth look at the climate changes to conclude that indeed there is a change of
climate with Swat expected to heat up under SSP2-4.5 and SSP5-8.5, and get drier, especially
in the case of SSP2-4.5. These changes will strain the current storage systems of water and
alter future agricultural schedules, hence the need to create climate-fortified water systems.

The evidence of air warming, changes in the precipitation regime, and shifts in
intensity—duration—frequency (IDF) curves all point to increasing climatic instability in the
region. Such changes will have a considerable impact on food output, water safety, the
feasibility of infrastructure, and disaster response. Hence, there is a vital need to develop and
put in place an adaptive strategy that would be resilient to climate change in the agriculture,
public health, and infrastructure and water management sectors as a way of achieving long-
term environmental as well as socio-economic sustainability.
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