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Efﬁcient fertilizer management plays a critical role in maximizing crop yield while

NOISIAI

reducing environmental harm and minimizing resource waste. This study presents an

IoT-based intelligent fertilizer recommendation system designed to deliver accurate,
real-time application guidance. The system integrates NPK sensors for soil nutrient detection,
environmental sensors for humidity and temperature monitoring, and rain gauges to collect
precipitation data. Data from the field is transmitted through an Arduino microcontroller to a
cloud platform. A Random Forest classifier is used to determine the need for fertilization,
while a CatBoost regressor estimates the required fertilizer quantity. The system was tested
using real-time field data across 22 crop types, achieving 100% accuracy in classification and
strong performance in regression tasks. Recommendations are automated and delivered via
SMS to streamline field operations. The objective of this study is to develop an automated,
sensor-driven fertilizer recommendation system using machine learning for precision
agriculture. The novelty lies in the integration of real-time IoT sensing with hybrid AI models
to optimize fertilizer use. This approach enhances productivity, reduces input waste, and
supports environmentally sustainable farming.
Keywords: IoT Sensors 1; Microcontroller 2; Real-Time Monitoring 3; Cat Boost Regressor
4; Random Forest 5; and Crop Optimization 6;
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Introduction:

During the 1980s and early 1990s, food and water supplies were generally adequate.
However, rapid global population growth in recent decades has created increasing scarcity of
these essential resources [1][2]. Agricultural systems now face two critical challenges:
combating the impacts of climate change and meeting the nutritional demands of a growing
population [3].

Traditional farming methods are struggling to keep up with rising demands for food
production. These conventional practices lack the precision and data-driven insights required
for efficient decision-making, leading to suboptimal use of inputs and reduced productivity.
Food security depends on reliable harvests, which are influenced by fertilizer levels, crop
growth stages, and soil nutrient content [4].

China has extensively implemented structured soil testing and fertilizer advisory
techniques to improve agricultural efficiency [5]. Essential nutrients such as nitrogen,
phosphorus, and potassium play significant roles in crop development. For example,
phosphorus and nitrogen help reduce soil acidity and enhance ethylene synthesis, while
potassium increases sugar content and ethylene production critical for the development of
truits like apples [6]. Hybrid rice and wheat productivity have significantly improved through
the adoption of nutrient management techniques. The integration of chemical fertilizers,
organic matter, and biological treatments has demonstrated the highest grain production and
economic returns for these crops [7].

However, global population growth and rapid industrialization have led to reduced
availability of arable land. In response, precision agriculture powered by the Internet of Things
(IoT) and advanced data technologies has emerged as a promising solution to sustainably
boost food production [8]. A growing trend in modern agriculture is the adoption of smart
fertilization systems powered by IoT and sensing technologies, aimed at optimizing nutrient
application and improving crop yields [9]. These systems are already in use for long-range
monitoring of essential agricultural parameters such as soil conditions, irrigation efficiency,
and water usage [10][11][12].

Technologies like distributed computing, cloud platforms, RFID, and wireless sensor
networks are revolutionizing traditional farming by enabling real-time, data-driven operations
[13][14]. IoT systems provide continuous environmental and soil data, allowing farmers to
make informed decisions and increase overall productivity [15]. Nutrients such as nitrogen
and phosphorus, which have been widely employed since the agricultural revolution, have
significantly boosted crop yields but have also contributed to environmental concerns when
misused [16][17].

Smart systems powered by machine learning analyze sensor-collected data to enhance
both crop productivity and soil health [18]. These systems optimize nutrient delivery based on
real-time environmental conditions. STFF (Soil Testing and Formula Fertilization) methods
enable systematic, scientific fertilizer application [19]. Smart environments equipped with IoT
adjust fertilization dynamically, accounting for moisture levels, crop needs, and weather
conditions [20]. These systems also incorporate crop-specific nutrient demands, target yield
levels, and fertilizer efficiency metrics determined through soil nutrient measurements [21].

Emerging digital agricultural technologies, including IoT, artificial intelligence (AI),
and robotics, hold vast potential for improving productivity and ensuring sustainability [22].
Machine learning models such as Random Forest and CatBoost are increasingly applied in
agriculture for tasks like drought prediction, crop classification, and yield forecasting [23][24].
These models are vital for reducing uncertainty in agricultural practices and optimizing
resource use.

Agriculture is increasingly pressured to maximize crop yields while maintaining soil
health and ensuring the efficient use of resources. Smallholder farmers, in particular, face
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challenges such as a lack of access to real-time information, incorrect fertilizer application, and
poor utilization of available resources. These issues often lead to environmental degradation,
low productivity, and high input costs. Compounded by erratic weather patterns and limited
technological access, decision-making in agriculture becomes increasingly complex.

Existing machine learning (ML) models for predicting fertilizer needs typically lack
precision and fail to provide timely, actionable recommendations, limiting their practical utility.
To address these shortcomings, this study proposes an IoT-based, machine learning—driven
fertilizer recommendation system that delivers accurate, real-time guidance for optimized
nutrient use.

The proposed system integrates NPK sensors, temperature and humidity sensors, and
rain gauges to collect field-level data, which is transmitted via Arduino microcontrollers to a
cloud platform. A Random Forest classifier identifies the need for fertilization, while a
CatBoost regressor predicts the optimal dosage. Fertilizer recommendations are then sent via
SMS to farmers, facilitating timely and informed decisions.

Related Work:

This section focuses on existing literature in the above-mentioned subject and similar
strategies in various fields.

Various studies have discussed the use of machine learning (ML) in optimizing
fertilizer use and crop yield prediction. Conventional approaches rely on generalized
recommendations, whereas machine learning methods utilize actual data to generate more
accurate and tailored predictions for crops such as soybeans, rice, and maize. Extreme Random
Tree (ERT) models have proven effective in yield prediction, achieving R? values of 0.744 for
soybeans,0.775 for rice, and 0.749 for maize. Nevertheless, the research was characterized by
high computational cost and variance errors, which decrease the accuracy of predictions [25].
Equally, Random Forest models have been applied when estimating the composition of
fertilizers based on the study of color, and accuracy concerns still exist, along with issues
regarding practical implementation in the real-time environment [206].

The Random Forest model was also implemented in sugarcane yield prediction, as it
was trained under the meteorological and seasonal climate information. The model has
attained 86.36 per cent precision in September preceding harvest, as well as 95.45 per cent in
January of the harvest year. Nevertheless, due to the unusual weather conditions, it was not
accurate enough, raising the question of adding climate resilience in the further models [27].

Real-time data collection has really enhanced the decision-making process in
agriculture, all because of the Internet of Things (IoT). IoT-based Systems IoT-based solutions
combine soil sensors, cloud computing technology, and ML models to automate and optimize
fertilizer practices. For example, an IoT device powered by a CatBoost model was developed
to monitor plant health and predict soil moisture levels, aiming to conserve water and boost
crop productivity [28]. Another study uses CatBoost, LightGBM, and XGBoost to forecast
agricultural productivity, with XGBoost achieving the highest accuracy at 99.12%.
Nevertheless, uncertainties relating to the environment and changes in soil fertility present a
difficulty when being handled in accounting [28].

One more IoT-related system created a synchronous data collection framework, and
it collects real-time soil, humidity, and temperature data. Although this improved fertilizer
recommendations and resource efficiency, the system requires further enhancement to
become scalable, integrate satellite data effectively, and adapt to a variety of crops.[29]

Optimization algorithms have been employed to improve fertilizer efficiency. The
combination of Extreme Random Tree (ERT) with the Cuckoo Search Algorithm (CSA)
resulted in yield increases of 23.9% for maize, 13.3% for rice, and 20.3% for soybeans.
Nevertheless, computational expenses and complicated data processing needs are serious
problems [25].
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Data scarcity in agricultural datasets has been addressed through the use of ensemble
learning algorithms. A comparison of ML and ensemble learning methods revealed that
XGBoost, CatBoost, and LightGBM are the best models, and in crop damage prediction,
XGBoost corresponded to 89.56% accuracy. Nevertheless, the paper noted that imputation
methods are largely affected by data distribution and the ratio of missingness. That is why
more resistant procedures are necessary to deal with unfinished agricultural data and make the
prediction process more precise [30].

Challenges in Prior Research and Proposed Improvements:

Despite significant advancements in emerging technologies such as machine learning
(ML)- based agricultural systems and the Internet of Things (IoT), several limitations persist.
Among these obstacles, computational complexity is a major one, and the cost of the models
used, such as Extremely Randomized Trees (ERT) and Crow Search Algorithm (CSA), is high,
which limits scalability. Environmental factors also pose a challenge, as many current models
struggle to account for dynamic and intense climatic variations, thereby reducing the accuracy
of their predictions. A third critical challenge is real-time data integration, as IoT-based models
often struggle with the effective interpretation and assimilation of dynamic soil and climatic
data. Lastly, generalizability remains a problem because fertilizer prescription algorithms very
often fail to be adaptable to diverse types of crops and soils, which limits their applicability in
any other farming settings. These problems should be addressed through optimization of
computational efficiency, intake of trustworthy environmental modeling, enhancement of real-
time data merging, as well as making recommendation systems more adaptive to different
farming conditions.

Comparison of Related Work and Proposed Solution:

Table 1 below summarizes previous studies, their associated limitations, and how the
proposed approach addresses these challenges.

Table 1. Comparison of Related Work and Proposed Solution

Study

Methodology

Limitations

Proposed Solution

ERT for crop
yield prediction
[25].

The ERT model
applies to predict
crop yield and smart

The cost of computing is
low, and errors related to
variance lower the

Create better
parameter-tuned

ERT models and

fertilizer use. accuracy of the forecasts. | use hybrid methods.
Random Forest | Used color analysis | Accuracy issues, real-time | Improve real-time
for fertilizer to estimate fertilizer | processing challenges, processing,

meteorological and
seasonal data

estimation [26]. | composition. and compatibility integrate spectral
limitations analysis for better
estimation.
Random Forest | Forecasted Impact of climate change | Incorporate climate
for sugarcane sugarcane yield and extreme weather on | resilience factors
yield [27]. using accuracy into the model

CatBoost-based

IoT system [28].

Applied 10T sensors
and CatBoost to
forecast the level of
soil moisture and to
send fertilizers in a
more optimized
way.

Needed higher scalability,
satellite data fusion, and
not towards rigidity.

Make it more
scalable, use satellite
images, and transfer
learning to have
more use of family
applications.
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XGBoost for Comparison of ML | Accuracy was impacted Improve soil
crop models for by environmental nutrition
productivity predicting crop uncertainties and calculation, apply
[29]. productivity. differences in soil fertility. | ensemble

computing to
improve robustness.

CSA + ERT for | Optimization High computational Lightweight
fertilizer techniques for costs. optimization of
optimization enhanced fertilizer real-time

[25]. application. algorithms.

Despite the significant achievements of earlier research, challenges such as
computational complexity, unpredictable environmental conditions, and limited real-time
adaptability persist. To enhance fertilizer recommendations and yield predictions, this study
aims to bridge existing gaps by integrating an optimized machine learning framework with
IoT-driven real-time data processing.

Precision agriculture has attracted growing interest for improving resource allocation
and increasing crop yields; however, traditional fertilizer application methods still rely on
manual
assessments, often leading to inefficient nutrient use. Machine learning models, such as
Random Forest and CatBoost, have been extensively utilized to forecast soil fertility and
suggest ideal fertilizer formulations by examining Nitrogen (N), Phosphorus (P), Potassium
(K), and environmental variables like temperature, humidity, pH, and rainfall. IoT-driven
technologies augment agricultural decision-making by facilitating real-time monitoring via
sensors that relay soil data to cloud platforms for analysis, minimizing human intervention,
and assuring accurate fertilizer application.

Figure 1 displays an IoT-ML-based fertilizer recommendation system in which sensor
data is acquired, evaluated by a machine learning model to assess fertilizer requirements, and
employed to activate an actuator for optimal nutrient distribution. Nevertheless, despite these
advancements, several challenges persist such as limited model generalizability across regions,
difficulties in integrating real-time data, and scalability constraints for large-scale agricultural
operations. Numerous existing methods fail to integrate climate change and irregular weather
patterns, consequently reducing their dependability. This study proposes a complete ML-IoT
system to raise accuracy, optimize resource consumption, and improve agricultural yield via
real-time soil analysis.

The system utilizes 10T sensors, including NPK, temperature, humidity sensors, and
rain gauges, inside a structured five-layer IoT architecture for seamless data collecting,
processing, and decision-making. Exploratory data analysis utilizing pair plots helps discover
critical correlations between soil nutrients and environmental conditions, facilitating model
development. Random Forest and CatBoost models are employed to estimate fertilizer
requirements, and automated injectors connected with SMS messages provide exact and timely
fertilizer application. The suggested approach is meant to be scalable and adaptable to varied
agricultural situations, eventually boosting efficiency and sustainability in modern farming.
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Figure 1. IoT-Enabled MIL-Based Fertilizer Recommendation System Architecture
Novelty statement:

The novelty of this system lies in its integration of real-time multi-sensor data, hybrid ML
models, and automated delivery of actionable insights. Unlike conventional approaches, it provides
precise, location-specific guidance that enhances crop yield, reduces input waste, and supports
environmentally sustainable farming. This research contributes to the emerging field of precision
agriculture by connecting advanced technologies with practical, scalable solutions for smallholder
farmers.

Material and Methods:

This study presents a Smart Fertilizer Recommendation System that provides real-time
Nutrient requirement information for various crops. As shown in Figure 2, the system
operates through three main steps: (1) IoT sensors collect soil quality data, (2) the data is pre-
processed and analyzed, and (3) fertilizer requirements are calculated using machine learning
models. Users get real-time fertilizer recommendation texts from the system, which provide
personalized advice on how to produce maximum crop growth and soil health, depending on
soil condition and the variety of the crop. It is extremely accurate, effective, and flexible to
address the particular requirements of each fitting crop.

Collection of data with IOT Sensors:

The Arduino microcontroller is connected to the automated system of fertilization,
and the configuration proposed to utilize the combination contains a variety of sensors. These
sensors enable real-time monitoring of both ambient and soil conditions, focusing particularly
on the most critical parameters for effective nutrient management. Arduino MKRFOX1200
is a mini power-efficient IoT board with the intended use of overseeing and managing the
actual agricultural conditions, together with remote controls. It gathers data on real-time
sensors and sends them to a cloud environment to process them. NPK sensor informs the
level of nutrition in the soil of specific Nitrogen, Phosphorus, and Potassium nutrients by
using the electrical conductivity method, thus indicating how nutritionally deficient the soil is,
so that fertilizing can be done optimally. The DHT?22 sensor accurately measures temperature
and humidity using a single-wire connection, making it well-suited for monitoring the
environmental conditions essential for crop growth. The high-accuracy data provided by a
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tipping bucket rain gauge allows evaluation of the soil moisture and the nutrient content.
Moreover, the Arduino is tied up with an automation interface that connects an automated
fertilizer injector to correctly apply fertilizer, and at the same time, it simulates the water levels
to keep the supply steady.
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Figure 2. Proposed Layout of the Smart Fertilizer Recommendation Process.
Five-Layer IoT Network Layout for Smart Fertilizer Recommendation System:

Modern farming is advancing through the integration of the Internet of Things (IoT),
forming a structured multi-level system that combines sensors, cloud computing, and
communication technologies. This system increases the usage of resources and increases the
productive agricultural land.

Figure 3 illustrates the five layers of the IoT network architecture used in smart
agriculture, with each layer serving the following roles:

User Interface Layer: Helping farmers to control and track agricultural practices using
dashboards, mobile notices, and automated suggestions via Al

Process Layer: Processes aggregated data through cloud computing, machine learning
algorithms, and predictive analytics to take data-informed decisions.

Connectivity Layer: Ensures that there is a seamless interconnection of the data between the
devices and cloud platforms through the use of Wi-Fi and gateway solutions.

Computation Layer: Data preprocessing, filtering, and basic analysis are conducted on
microcontrollers such as Arduino and other edge devices.

Sensor Layer: It records current sensory information about the environmental and soil reader
conditions in the form of NPK sensor, temperature sensor, humidity sensor, and rain gauge.
This organized process enables real-time monitoring, effective decision-making, and targeted
agricultural intervention, thus enhancing yield and sustainability.

Dataset Description and Preprocessing:

The dataset employed in this study plays a central role in developing the proposed
fertilizer recommendation system. It was sourced from Kaggle and titled “Crop
Recommendation Dataset” by author[31]. This dataset includes several key agronomic and
environmental features;Nitrogen (N), Phosphorus (P), Potassium (K), temperature, humidity,
pH, and rainfall that are crucial to crop development. It also covers 22 crop classes such as
Apple, Banana, Watermelon, and Wheat.
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The primary objective is to develop a predictive model that leverages Random Forest
and CatBoost algorithms to recommend suitable fertilizers based on soil and environmental
conditions. To train the model, we utilized the Kaggle dataset containing key features relevant
to these conditions, enabling accurate fertilizer recommendations across diverse agricultural
scenarios. The data model supports precision farming and enhances decision-making by
farmers. Table 2 provides an overview of the key attributes and their importance in
determining optimum fertilizer requirements.

Table 2. Dataset Description

Nitrogen | Phosphorus | Potassium | Temperature Humidity PH_Value Rainfall Crop

0 |5 136 195 22.356287 91.923605 | 6.264203 | 107.769741 | Apple

1 124 128 196 22.750888 90.694892 | 5.521467 | 110.431786 | Apple

2 |10 136 204 21.198522 92.155951 | 6.276199 | 105.855435 | Apple

3 |82 78 46 29.148272 84.973237 | 5.738679 | 110.440880 | Banana

4 191 84 52 24.900460 78.710248 | 6.390742 | 110.440880 | Banana

61 | 109 21 55 24.900460 89.735242 | 6.770278 | 57.449421 | Watermelon
62 | 118 15 45 24.214957 84.205770 | 6.538006 | 48.011385 | Watermelon
63 | 31 76 82 20.824845 17.850571 | 7.599280 | 79.205092 | wheat

64 | 24 55 78 17.302879 15.154059 | 6.649196 | 75.577904 | wheat

65 | 56 67 78 17.574456 16.718266 | 8.255451 | 77.818914 | Wheat

gﬁé loT-Based Smart Agriculture Framework
Mobile SMS, Al-based
Provid Recommendations
rovides user access via
05 User Interface Layer dashboards & alerts

04 Process Layer mii:::;:;::;:’:gfyis <Dala$lorage‘ Data processing, Machine learning
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03 Connectivity Layerm
Wi-Fi, Gateways
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Figure 3. Five-Layer IoT Network Architecture for Smart Agriculture
Feature Engineering:

To improve the predictive capabilities of the proposed fertilizer recommendation
system, two new features were engineered: Fertilizer Needed and Fertilizer Quantity.
These features enable a hybrid modeling approach that supports both classification and
regression tasks.

Fertilizer Needed (Binary Label):

This binary label determines whether a fertilizer application is necessary based on
nutrient sufficiency thresholds. The following agronomic thresholds were established:
Nitrogen (N) < 100
Phosphorus (P) < 120
Potassium (K) < 130
Feature Engineering:

To improve the predictive capabilities of the proposed fertilizer recommendation
system, two new features were engineered: Fertilizer Needed and Fertilizer Quantity. These

July 2025 | Vol 07 | Issue 03 Page | 1684



International Journal of Innovations in Science & Technology

features enable a hybrid modeling approach that supports both classification and regression
tasks.
Fertilizer Needed (Binary Label):

This binary label determines whether a fertilizer application is necessary based on
nutrient sufficiency thresholds. The following agronomic thresholds were established:
Nitrogen (N) < 100
Phosphorus (P) < 120
Potassium (K) < 130

If any of these conditions are met, the sample is labeled as requiring fertilizer ("Yes");
otherwise, it is marked as not required ("No"). These thresholds are grounded in agronomic
research [32]. And were validated through exploratory analysis of the Kaggle dataset, which
revealed that samples below these levels consistently exhibited suboptimal performance.
Fertilizer Quantity (Regression Target):

This continuous feature estimates the exact dosage of fertilizer required for each crop
sample. It incorporates both the crop-specific baseline fertilizer requirement and nutrient
deficiencies observed in the soil. The formulation is as follows:

Fertilizer Quantity=Base Amount_ crop +max (0, Deficiency in N) +max (0, Deficiency in P)
+max (0, Deficiency in K)

Here, Base Amount_ crop refers to a predefined average fertilizer requirement for
each crop species, and the max () functions ensure that only nutrient deficiencies influence the
final recommendation. In crop-specific scenarios, this formulation allows the system to tailor
fertilizer quantities according to the distinct needs of each crop while also addressing existing
soil nutrient gaps.

Modeling Strategy:

These engineered features enable a two-stage machine learning pipeline:

A Random Forest classifier determines whether fertilization is needed (binary outcome).

A CatBoost regressor predicts the optimal quantity of fertilizer required (continuous output).

This integrated approach ensures both actionable decision support and precise dosage
estimation, helping farmers make informed, data-driven interventions suited to real-time field
conditions. A representative view of the engineered dataset is shown in Table 3.

Table 3. Fertilizer Prediction_ Data

Nitrogen | Phosphorus | Potassium | Fertilizer Needed | Fertilizer Quantity
0 1 145 205 Yes 96
1 1 123 205 Yes 143
2 1 135 203 Yes 122
3 1 133 200 Yes 197
4 1 124 199 No 103

Pair Plot Analysis of Nutrients and Environmental Factors:

Figure 4 presents a pair plot that visualizes the relationships between key agricultural
parameters, including Nitrogen, Phosphorus, Potassium, Temperature, Humidity, pH Value,
and Rainfall. The diagonal elements of the plot display histograms, illustrating the distribution
of each variable across the dataset. These histograms indicate varying distribution patterns,
such as a multimodal distribution for nitrogen and a relatively uniform spread for rainfall. The
off-diagonal elements of the pair plot provide scatter plots depicting pairwise correlations
between variables. Several insights emerge from these visualizations. For instance, the
interaction between Nitrogen, Phosphorus, and Potassium (NPK) nutrients shows distinct
clustering, indicating possible grouping patterns among different crop types. Furthermore, the
impact of environmental factors like Rainfall and Humidity on soil nutrients is evident, with
certain variables exhibiting a dispersed pattern, suggesting a wide range of climatic conditions
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across different crop samples. Additionally, the presence of outliers in some feature
combinations, such as extreme values of pH and Nitrogen, may indicate unique soil
compositions or anomalies in data collection. By analyzing these patterns, the study aims to
enhance crop yield prediction accuracy using machine learning models such as Random Forest
and CatBoost. The insights gained from the pair plot help refine feature selection and model
performance by highlighting key interactions among soil and environmental factors.

API Implementation for Real-Time Fertilizer Recommendation:

The Flask-based API development enabled real-time fertilizer recommendation access
through web and mobile applications. The API functions by receiving soil sensor data, which
it processes through machine learning models to produce exact fertilizer recommendations
that relate to soil parameters. The API implements a RESTful architecture design to deliver
multiple endpoints that support different functionalities. Soil parameter inputs such as
nitrogen (N), phosphorus (P), potassium (K), temperature, humidity, pH, and rainfall can be
provided to the /predict endpoint, which generates real-time fertilizer recommendations
together with necessaty fertilizer amounts. Through the /calculate-npk endpoint, the API
determines NPK amounts needed for specific crops and deficient soil conditions to deliver
optimal fertilizer doses. The /historical-data endpoint provides users access to archived
predictions, which helps farmers evaluate fertilizer use patterns for making improved
agricultural decisions. The /sensor-data endpoint establishes a database entry system that
records live sensor data to generate valuable information for enhancing model accuracy. This
API-based methodology allows the system to provide precise fertilizer advice, which drives
both precise agricultural practices and sustainable soil care.

Model of Machine Learning for Fertilizer Prediction:

In this study, Random Forest Regression and CatBoost Regression have been selected
for their strong performance in regression tasks, particularly in capturing complex nonlinear
interactions. Those models were chosen because they are accurate, robust, and can be used
for a range of datasets, including those containing categorical variables. Model Training and
hyperparameter tuning.

To maintain the original class distribution across both sets, stratified sampling was
employed to split the dataset in this study into training and testing sets in an 80:20 ratio. This
procedure also helped to ensure that every subset reflected the entire diversity in the data,
meaning that there is more trustworthy the assessment.

Random Forest: To produce predictions, we applied a machine learning technique
referred to as Random Forest. The idea here is to combine many smaller decision-making
models, such as trees, into one final option. We started from (Ngctimators100 trees of these,
and found that increasing or otherwise modifying other parameters didn’t bring much gain to
the model’s performance.

By averaging all trees’ predictions, we can obtain a forecast y” for a given input x. The
ultimate output is represented in equation 1

§ = ———Fpegimatorhy (x) (1)
estimator
The performance of the Random Forest model was tested using the Mean Squared Error

(MSE) metric, which is specified in equation 2
_1yn C 512
MSE=— . (yi—9D? (2)
For our Random Forest model, it was determined that the number of trees
(Nectimators) Was to be set initially at 100 based on initial tuning. Since these changes had no

observable effect on performance and the other hyperparameters stayed the same, I didn’t
make further modifications.
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Pair Plot of Nutrients and Fertilizer Quantities
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Figure 4. Pair Plot of Nutrients and Fertilizer Quantities Across Crops
Cat Boost Regressor:

Cat Boost, in the proposed method, is a gradient boosting algorithm selected for its
efficiency in handling categorical data. To balance model complexity with training time, the
CatBoost model was trained using 1,000 iterations, a tree depth of 6, and a learning rate of 0.1.
Furthermore, an early stopping mechanism was implemented to minimize overfitting and
ensure effective training. The model training was terminated if the performance on the
validation set plateaued, meaning there was no substantial improvement over a defined
number of iterations.

CatBoost builds the predictive model iteratively by adding trees that correct the residuals of
previous iterations. The prediction at the t-th iteration is given by equation 3:
Fi(x) =F_1(®) +n-gtx) 3)

Where 1 represents the learning rate and gt(x) denotes the gradient of the loss
function at iteration t. The model optimizes performance by minimizing the Root Mean
Squared Error (RMSE), which is defined in equation 4:

J o= FrGa)? 4

Our models' validity and over-fitting prevention were achieved through k-fold cross-
validation at a level of k=5. The k-fold approach splits the data into k sections so that the
model trains k times, using different partitioned sections for validating the results and the
remaining sections for training. The model&#39;s performance was evaluated by averaging
the results from each fold in the cross-validation process, offering a more accurate
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representation of its generalization ability. The model's performance evaluation relied on the
R? value computed through equation 5.

2 i, =90’
RZ=1-% 5
Yic, Vi—y? ®)
vyl is the true value,§i is the predicted value,y is the mean of the true values across all

samples.

"The overall workflow of the proposed fertilizer recommendation system is illustrated
in Figure 5. It demonstrates the sequential flow from IoT-based data collection, cloud
communication, preprocessing, machine learning prediction, and finally to user
recommendation delivery."

Figure 5. Architecture of a Smart Agriculture System for Real-Time Fertilizer
Recommendation Using Machine Learning”
Result and Discussion:
Random Forest Model Performance:

The Random Forest model provided a perfect predictive result on the amount of
fertilizer required by various crops, depending on the parameters of the soil and the
environment in which the crop would be located. Figure 6, which shows very closely the
observed values (x-axis) and expected values (y-axis) along the 45-degree reference line, shows
the correlation between the actual and predicted fertilizer levels. This demonstrates the
potential to accurately assess fertilizer requirements across a wide range of crops and diverse
environmental conditions.

The data points appear to almost perfectly line up, resulting in little variance between
the actual from the expected. The model achieved a strong R* value of 0.999996, indicating
that it captures nearly all the variability in fertilizer requirements. This conclusion is further
supported by additional performance metrics. Furthermore, the high accuracy and reliability
of the predictions are supported by the low MSE of 0.0052 of the models, suggesting that they
reach very accurate fertilizer recommendations with a small amount of error. Table 4 below
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summarizes key performance metrics, including R? Mean Squared Error (MSE), and the
model’s overall alignment with the actual data.

Random Forest: Actual vs Predicted Fertilizer Quantities
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Figure 6. Relationship between Actual and Predicted Fertilizer Quantities (Random Forest

Model.
Table 4. Summary of Performance Metrics for the Random Forest Model.
Metric Value Description
R? Score 0.999996 | Indicates the proportion of variance in fertilizer

quantity explained by the model's input features.
Mean Squared 0.0052 | Represents the average squared difference

Error (MSE) between actual and predicted fertilizer
quantities.

Alignment with | High Predicted values closely align with actual values

Actuals along the 45-degree line, showing high accuracy.

Cat Boost Model Performance:

Figure 7 shows the performance of the CatBoost model, which has a high correlation
between the actual and the predicted fertilizer quantities. Green dots can be viewed as a
predicted value; the dotted line marks the possible 1:1 correlation. The closer the points match
with the dashed line, the more controlling the predictions. The figure presents the difference
between the actual and forecasted values of fertilizer through the CatBoost model. The graph
shows a high level of linear correlation between the two sets of values, implying the high
precision in the forecast of the model.

The green dots represent the predicted fertilizer levels, while the dashedline indicates
a perfect prediction where the actual and predicted values are identical. The closer the data
points are to the dashed line, the more accurate the model’s predictions. The CatBoost model
demonstrates a high level of accuracy in predicting fertilizer amounts, supporting the claim
that it is an excellent predictive model.

CatBoost: Actual vs Predicted Fertilizer Quantities
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Figure 7. Cat Boost model

July 2025 | Vol 07 | Issue 03 Page | 1689



International Journal of Innovations in Science & Technology

Cat Boost Model Training Progress:

Figure 8 displays a 3D image illustrating the training process of the CatBoost model,
showing how total time (ms), test loss, learn loss, and best metrics evolve with the number of
iterations. The blue line (learn) represents training loss as a function of iterations. The red line
in the figure represents the lowest test loss observed up to the current iteration, indicating the
model's best performance so far. As training progresses, the CatBoost model aligns with the
graph, accurately reflecting the model’s convergence behavior. Initially, both the training and
test losses are high, but they decrease with each iteration. This occurs because, as long as the
model remains imperfect, the best loss value continues to decline eventually reaching its
minimum at iteration 999. As we iterate the model, total time (ms) increases, while the time
before achieving optimal performance decreases. This reflects a good training process as the
model converges toward the best solution. This 3D visualization complements the data in
Table 5 by providing a more intuitive understanding of the model's petformance and
convergence.

Training Progress in 3D

—e— Leamn
—a - Test
—a— Best

0]
200
400

600
Iteratio,, 89° " 1000 @ %
Figure 8. Cat Boost training progress
Model Performance Comparison:

As shown in Table 6 and Figure 9, A very low Mean Squared Error (MSE) of 0.005
and an R-squared value of 0.9999 proved the Random Forest model to be a near-perfect
match. With an MSE of 0.238 and an R? value of 0.9998, CatBoost performed well; however,
as illustrated
In Figure 7, Random Forest outperformed CatBoost in terms of prediction accuracy for this
dataset.

Table 5. Training Progress

Iteration | Learn Loss | Test Loss | Best Test Loss | Total Time | Remaining Time
0 33.5865535 | 33.0503554 | 33.0503554 2.56 2.56
200 0.4995538 | 0.7009549 0.7009549 331 1.31
400 0.2954709 | 0.5746148 0.5746148 654 0.976
600 0.2042863 | 0.5242705 0.5242705 991 0.658
800 0.1522084 | 0.5010225 0.5010225 1290 0.321
999 0.1196821 | 0.4873802 0.4873802 1610 0
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3D Bar Plot: Model Performance Comparison

N MSE
N R-squared

Figure 9. Comparison of model performance
Table 6. Comparison of model performance

1.0
0.8
0.6
0.4
0.2

0.0
R-squared

Model MSE R-squared
Random Forest 0.005164545454545453 0.999961090572125
CatBoost 0.23753942961562133 0.99982103897884453

Visualization of Nutrition Requirements for Various Crops (in mL/ha):

Table 7 shows the requirements of nutrients in different crops under Nitrogen,
Phosphorus, and Potassium (mL./ha). The figures show that there is a wide range of changes
among the various crops, with cotton, pigeon peas, and coconut consuming the most nitrogen,
followed by others like banana, rice, and watermelon that consume significantly less nitrogen.
The requirement of phosphorus and potassium is quite constant among crops, but minor

changes can be noticed.

A 3D representation of such nutrient requirements can be found in Figure 10, which
shows the spatial distribution of Nitrogen (blue), Phosphorus (orange), and Potassium (green)
for specific crop types.Visualization shows the importance of precision agriculture in
improving the rational use of fertilizer so that crops receive the necessary nutrient amount

according to their particular demands to increase their productivity and sustainability.
Nutrient Requirements for Different Crops (in mi/ha)
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Figure 10. Nutrient Requlrements for Different Crops
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Table 7. Nutrient Requirements per Crop (ml/ha) for Nitrogen, Phosphotus, and

Potassium.

Crop Nitrogen (ml/ha) | Phosphorus (ml/ha) | Potassium (ml/ha)
Apple 100000 0.19 0.21
Banana 50000 0.1925 0.2075
Blackgram 75000 0.195 0.205
Wheat 125000 0.1975 0.2025
Coconut 150000 0.2 0.2
Coffee 175000 0.2025 0.1975
Cotton 200000 0.205 0.195
Grapes 100000 0.19 0.21
Beans 50000 0.1925 0.2075
Maize 75000 0.195 0.205
Mungbean 125000 0.1975 0.2025
Orange 150000 0.2 0.2
Papaya 175000 0.2025 0.1975
Pigeonpeas 200000 0.205 0.195
Pomegranate 100000 0.19 0.21
Rice 50000 0.1925 0.2075
Watermelon 75000 0.195 0.205

These findings underscore the importance of precision agriculture, emphasizing the
need for crop-specific fertilizer recommendations to optimize agricultural productivity.
Matrix Analysis of Fertilizer Requirement Prediction:

The confusion parameters and the charts of the Random Forest and CatBoost models,
as posted in Figure 11 and Figure 12, as well as the table of evaluation in Table 8, show that
the models are perfect in predicting the number of fertilizers that should be used. Both models
achieved a perfect fit of all the 261 instances where fertilizer was not needed and 179 where
fertilizer was needed, and no instances of false positives or false negatives occurred. These
findings suggest that the models are highly effective in distinguishing between cases where
fertilizer is required and those where it is not.

Such an ideal classification implies that the models can be of great value to sustainable
agriculture by maximizing the use of fertilizer. They can determine the fertilizer requirement
and thus make the most appropriate choices and limit wastage of resources, alleviating
environmental effects and promoting cost-effective agricultural behavior.

Table 8. Performance Evaluation.

Model Predict: Not Required | Predict: Required
Actual Not Required 261 0
Actual Required 0 179

Random Forest - Confusion Matrix

Not Required

Actual

- 100

Required

-50

0 -0
Not Required Required
Predicted

Figure 11. Random Forest Confusion Matrix.
July 2025 | Vol 07 | Issue 03 Page | 1692




International Journal of Innovations in Science & Technology

CatBoost - Confusion Matrix
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Figure 12. Cat Boost Confusion
Discussion:

This system illustrates the way classic planting can be altered under the unification of
IoT and machine intelligence. Besides saving on cash, the intelligent fertilization system
eliminates the environmental consequences of poor management of the fertilizer, such as
nutrient loss through runoff and soil destruction. Approaching soil and environment
conditions in this way, however, is the most appropriate means of providing specific
recommendations that can be developed to enhance the health, productivity, and quality of
the crops, which result in more successful agricultural operations , which, according to the
appearance, seems to be more responsible.

The models are very accurate in their prediction, especially in the determination of
fertilizer requirements, but are poor in their prediction of the quantity of fertilizers. The
additional model fine-tuning, enhanced data gathering, and integration of more factors, like a
type of soil, a specific stage of crop growth, and the production of the former crops, may make
the system much more reliable and flexible to tackle this task. When we can work this system
around additional crops and other geographical areas, then we could take part in sustainable
farming by implementing local, data-informed decision-making in farms of many different
types.

Lastly, this intelligent fertilizing system offers such an example of the metaphoric
potential that IoT and Al can discover in building big-scale data-driven agricultural solutions.
This finding indicates that it is just a prototype for a future in which precision agriculture can
not only increase production but also efficiency in the management of the environment
through farming practices that are agreeable to global sustainability principles.

Conclusion:

The smart fertilizer recommendation system proposed in the paper illustrates a data-
driven method of precision agriculture with real-time collection of sensor data and its
prediction using machine learning to optimize fertilizer recommendations. The five-layer
approach to IoT allows fertilization to be carried out automatically and efficiently, so that the
exact amount of nutrients is provided, and all the resources are used almost to the fullest. The
study can prove through a comparative analysis of both the models of Random Forest and
CatBoost that the former model performed significantly better than the latter because it had a
high coefficient of fit of 0.9999, or nearly practically perfect, and a low error (known as MSE)
of 0.0052, which is a very low error. Although no less effective, the CatBoost model
demonstrated a slightly increased measure of MSE (0.238), showing enhanced and somewhat
weaker predictive accuracy. Moreover, crop-specific nutrient breakdown looks into the
significance of crop-specific fertilizer recommendations of soil properties and the
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environment. This system's strategic capabilities of machine learning and IoT integration can

help derive in-time and data-based fertilizer recommendation decisions, further increasing

agricultural efficiency, sustainability, and productivity.

Future Recommendations:

Future research can look into other deep learning algorithms, including even more
sensors and adaptive learning, in order to further perfect the predictions and allow an
autonomous smart farming system to make decisions. The study will help develop precision
agriculture, increase sustainability in farming, and promote resource-efficient uses.
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