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fficient fertilizer management plays a critical role in maximizing crop yield while 
reducing environmental harm and minimizing resource waste. This study presents an 
IoT-based intelligent fertilizer recommendation system designed to deliver accurate, 

real-time application guidance. The system integrates NPK sensors for soil nutrient detection, 
environmental sensors for humidity and temperature monitoring, and rain gauges to collect 
precipitation data. Data from the field is transmitted through an Arduino microcontroller to a 
cloud platform. A Random Forest classifier is used to determine the need for fertilization, 
while a CatBoost regressor estimates the required fertilizer quantity. The system was tested 
using real-time field data across 22 crop types, achieving 100% accuracy in classification and 
strong performance in regression tasks. Recommendations are automated and delivered via 
SMS to streamline field operations. The objective of this study is to develop an automated, 
sensor-driven fertilizer recommendation system using machine learning for precision 
agriculture. The novelty lies in the integration of real-time IoT sensing with hybrid AI models 
to optimize fertilizer use. This approach enhances productivity, reduces input waste, and 
supports environmentally sustainable farming. 
Keywords: IoT Sensors 1; Microcontroller 2; Real-Time Monitoring 3; Cat Boost Regressor 
4; Random Forest 5; and Crop Optimization 6; 
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Introduction: 
During the 1980s and early 1990s, food and water supplies were generally adequate. 

However, rapid global population growth in recent decades has created increasing scarcity of 
these essential resources [1][2]. Agricultural systems now face two critical challenges: 
combating the impacts of climate change and meeting the nutritional demands of a growing 
population [3]. 

Traditional farming methods are struggling to keep up with rising demands for food 
production. These conventional practices lack the precision and data-driven insights required 
for efficient decision-making, leading to suboptimal use of inputs and reduced productivity. 
Food security depends on reliable harvests, which are influenced by fertilizer levels, crop 
growth stages, and soil nutrient content [4]. 

China has extensively implemented structured soil testing and fertilizer advisory 
techniques to improve agricultural efficiency [5]. Essential nutrients such as nitrogen, 
phosphorus, and potassium play significant roles in crop development. For example, 
phosphorus and nitrogen help reduce soil acidity and enhance ethylene synthesis, while 
potassium increases sugar content and ethylene production critical for the development of 
fruits like apples [6]. Hybrid rice and wheat productivity have significantly improved through 
the adoption of nutrient management techniques. The integration of chemical fertilizers, 
organic matter, and biological treatments has demonstrated the highest grain production and 
economic returns for these crops [7]. 

However, global population growth and rapid industrialization have led to reduced 
availability of arable land. In response, precision agriculture powered by the Internet of Things 
(IoT) and advanced data technologies has emerged as a promising solution to sustainably 
boost food production [8]. A growing trend in modern agriculture is the adoption of smart 
fertilization systems powered by IoT and sensing technologies, aimed at optimizing nutrient 
application and improving crop yields [9]. These systems are already in use for long-range 
monitoring of essential agricultural parameters such as soil conditions, irrigation efficiency, 
and water usage [10][11][12]. 

Technologies like distributed computing, cloud platforms, RFID, and wireless sensor 
networks are revolutionizing traditional farming by enabling real-time, data-driven operations 
[13][14]. IoT systems provide continuous environmental and soil data, allowing farmers to 
make informed decisions and increase overall productivity [15]. Nutrients such as nitrogen 
and phosphorus, which have been widely employed since the agricultural revolution, have 
significantly boosted crop yields but have also contributed to environmental concerns when 
misused [16][17]. 

Smart systems powered by machine learning analyze sensor-collected data to enhance 
both crop productivity and soil health [18]. These systems optimize nutrient delivery based on 
real-time environmental conditions. STFF (Soil Testing and Formula Fertilization) methods 
enable systematic, scientific fertilizer application [19]. Smart environments equipped with IoT 
adjust fertilization dynamically, accounting for moisture levels, crop needs, and weather 
conditions [20]. These systems also incorporate crop-specific nutrient demands, target yield 
levels, and fertilizer efficiency metrics determined through soil nutrient measurements [21]. 

Emerging digital agricultural technologies, including IoT, artificial intelligence (AI), 
and robotics, hold vast potential for improving productivity and ensuring sustainability [22]. 
Machine learning models such as Random Forest and CatBoost are increasingly applied in 
agriculture for tasks like drought prediction, crop classification, and yield forecasting [23][24]. 
These models are vital for reducing uncertainty in agricultural practices and optimizing 
resource use. 

Agriculture is increasingly pressured to maximize crop yields while maintaining soil 
health and ensuring the efficient use of resources. Smallholder farmers, in particular, face 
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challenges such as a lack of access to real-time information, incorrect fertilizer application, and 
poor utilization of available resources. These issues often lead to environmental degradation, 
low productivity, and high input costs. Compounded by erratic weather patterns and limited 
technological access, decision-making in agriculture becomes increasingly complex. 

Existing machine learning (ML) models for predicting fertilizer needs typically lack 
precision and fail to provide timely, actionable recommendations, limiting their practical utility. 
To address these shortcomings, this study proposes an IoT-based, machine learning–driven 
fertilizer recommendation system that delivers accurate, real-time guidance for optimized 
nutrient use. 

The proposed system integrates NPK sensors, temperature and humidity sensors, and 
rain gauges to collect field-level data, which is transmitted via Arduino microcontrollers to a 
cloud platform. A Random Forest classifier identifies the need for fertilization, while a 
CatBoost regressor predicts the optimal dosage. Fertilizer recommendations are then sent via 
SMS to farmers, facilitating timely and informed decisions. 
Related Work: 

This section focuses on existing literature in the above-mentioned subject and similar 
strategies in various fields.  

Various studies have discussed the use of machine learning (ML) in optimizing 
fertilizer use and crop yield prediction. Conventional approaches rely on generalized 
recommendations, whereas machine learning methods utilize actual data to generate more 
accurate and tailored predictions for crops such as soybeans, rice, and maize. Extreme Random 
Tree (ERT) models have proven effective in yield prediction, achieving R² values of 0.744 for 
soybeans,0.775 for rice, and 0.749 for maize. Nevertheless, the research was characterized by 
high computational cost and variance errors, which decrease the accuracy of predictions [25]. 
Equally, Random Forest models have been applied when estimating the composition of 
fertilizers based on the study of color, and accuracy concerns still exist, along with issues 
regarding practical implementation in the real-time environment [26]. 

The Random Forest model was also implemented in sugarcane yield prediction, as it 
was trained under the meteorological and seasonal climate information. The model has 
attained 86.36 per cent precision in September preceding harvest, as well as 95.45 per cent in 
January of the harvest year. Nevertheless, due to the unusual weather conditions, it was not 
accurate enough, raising the question of adding climate resilience in the further models [27]. 

Real-time data collection has really enhanced the decision-making process in 
agriculture, all because of the Internet of Things (IoT). IoT-based Systems IoT-based solutions 
combine soil sensors, cloud computing technology, and ML models to automate and optimize 
fertilizer practices. For example, an IoT device powered by a CatBoost model was developed 
to monitor plant health and predict soil moisture levels, aiming to conserve water and boost 
crop productivity [28]. Another study uses CatBoost, LightGBM, and XGBoost to forecast 
agricultural productivity, with XGBoost achieving the highest accuracy at 99.12%. 
Nevertheless, uncertainties relating to the environment and changes in soil fertility present a 
difficulty when being handled in accounting [28]. 

One more IoT-related system created a synchronous data collection framework, and 
it collects real-time soil, humidity, and temperature data. Although this improved fertilizer 
recommendations and resource efficiency, the system requires further enhancement to 
become scalable, integrate satellite data effectively, and adapt to a variety of crops.[29] 

Optimization algorithms have been employed to improve fertilizer efficiency.  The 
combination of Extreme Random Tree (ERT) with the Cuckoo Search Algorithm (CSA) 
resulted in yield increases of 23.9% for maize, 13.3% for rice, and 20.3% for soybeans. 
Nevertheless, computational expenses and complicated data processing needs are serious 
problems [25]. 
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Data scarcity in agricultural datasets has been addressed through the use of ensemble 
learning algorithms.  A comparison of ML and ensemble learning methods revealed that 
XGBoost, CatBoost, and LightGBM are the best models, and in crop damage prediction, 
XGBoost corresponded to 89.56% accuracy. Nevertheless, the paper noted that imputation 
methods are largely affected by data distribution and the ratio of missingness. That is why 
more resistant procedures are necessary to deal with unfinished agricultural data and make the 
prediction process more precise [30]. 
Challenges in Prior Research and Proposed Improvements: 

Despite significant advancements in emerging technologies such as machine learning 
(ML)- based agricultural systems and the Internet of Things (IoT), several limitations persist.  
Among these obstacles, computational complexity is a major one, and the cost of the models 
used, such as Extremely Randomized Trees (ERT) and Crow Search Algorithm (CSA), is high, 
which limits scalability. Environmental factors also pose a challenge, as many current models 
struggle to account for dynamic and intense climatic variations, thereby reducing the accuracy 
of their predictions. A third critical challenge is real-time data integration, as IoT-based models 
often struggle with the effective interpretation and assimilation of dynamic soil and climatic 
data. Lastly, generalizability remains a problem because fertilizer prescription algorithms very 
often fail to be adaptable to diverse types of crops and soils, which limits their applicability in 
any other farming settings. These problems should be addressed through optimization of 
computational efficiency, intake of trustworthy environmental modeling, enhancement of real-
time data merging, as well as making recommendation systems more adaptive to different 
farming conditions. 
Comparison of Related Work and Proposed Solution: 

Table 1 below summarizes previous studies, their associated limitations, and how the 
proposed approach addresses these challenges. 

Table 1. Comparison of Related Work and Proposed Solution 

Study Methodology Limitations Proposed Solution 

ERT for crop 
yield prediction 
[25]. 

The ERT model 
applies to predict 
crop yield and smart 
fertilizer use. 

The cost of computing is 
low, and errors related to 
variance lower the 
accuracy of the forecasts. 

Create better 
parameter-tuned 
ERT models and 
use hybrid methods. 

Random Forest 
for fertilizer 
estimation [26]. 

Used color analysis 
to estimate fertilizer 
composition. 

Accuracy issues, real-time 
processing challenges, 
and compatibility 
limitations 

Improve real-time 
processing, 
integrate spectral 
analysis for better 
estimation. 

Random Forest 
for sugarcane 
yield [27]. 

Forecasted 
sugarcane yield 
using 
meteorological and 
seasonal data 

Impact of climate change 
and extreme weather on 
accuracy 

Incorporate climate 
resilience factors 
into the model 

CatBoost-based 
IoT system [28]. 

Applied IoT sensors 
and CatBoost to 
forecast the level of 
soil moisture and to 
send fertilizers in a 
more optimized 
way. 

Needed higher scalability, 
satellite data fusion, and 
not towards rigidity. 

Make it more 
scalable, use satellite 
images, and transfer 
learning to have 
more use of family 
applications. 
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XGBoost for 
crop 
productivity 
[29]. 

Comparison of ML 
models for 
predicting crop 
productivity. 

Accuracy was impacted 
by environmental 
uncertainties and 
differences in soil fertility. 

Improve soil 
nutrition 
calculation, apply 
ensemble 
computing to 
improve robustness. 

CSA + ERT for 
fertilizer 
optimization 
[25].  

Optimization 
techniques for 
enhanced fertilizer 
application. 

High computational 
costs. 

Lightweight 
optimization of 
real-time 
algorithms. 

Despite the significant achievements of earlier research, challenges such as 
computational complexity, unpredictable environmental conditions, and limited real-time 
adaptability persist. To enhance fertilizer recommendations and yield predictions, this study 
aims to bridge existing gaps by integrating an optimized machine learning framework with 
IoT-driven real-time data processing. 

Precision agriculture has attracted growing interest for improving resource allocation 
and increasing crop yields; however, traditional fertilizer application methods still rely on 
manual 
assessments, often leading to inefficient nutrient use. Machine learning models, such as 
Random Forest and CatBoost, have been extensively utilized to forecast soil fertility and 
suggest ideal fertilizer formulations by examining Nitrogen (N), Phosphorus (P), Potassium 
(K), and environmental variables like temperature, humidity, pH, and rainfall. IoT-driven 
technologies augment agricultural decision-making by facilitating real-time monitoring via 
sensors that relay soil data to cloud platforms for analysis, minimizing human intervention, 
and assuring accurate fertilizer application.  

Figure 1 displays an IoT-ML-based fertilizer recommendation system in which sensor 
data is acquired, evaluated by a machine learning model to assess fertilizer requirements, and 
employed to activate an actuator for optimal nutrient distribution. Nevertheless, despite these 
advancements, several challenges persist such as limited model generalizability across regions, 
difficulties in integrating real-time data, and scalability constraints for large-scale agricultural 
operations. Numerous existing methods fail to integrate climate change and irregular weather 
patterns, consequently reducing their dependability. This study proposes a complete ML-IoT 
system to raise accuracy, optimize resource consumption, and improve agricultural yield via 
real-time soil analysis. 

The system utilizes IoT sensors, including NPK, temperature, humidity sensors, and 
rain gauges, inside a structured five-layer IoT architecture for seamless data collecting, 
processing, and decision-making. Exploratory data analysis utilizing pair plots helps discover 
critical correlations between soil nutrients and environmental conditions, facilitating model 
development. Random Forest and CatBoost models are employed to estimate fertilizer 
requirements, and automated injectors connected with SMS messages provide exact and timely 
fertilizer application. The suggested approach is meant to be scalable and adaptable to varied 
agricultural situations, eventually boosting efficiency and sustainability in modern farming. 
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Figure 1. IoT-Enabled ML-Based Fertilizer Recommendation System Architecture 

Novelty statement: 

The novelty of this system lies in its integration of real-time multi-sensor data, hybrid ML 

models, and automated delivery of actionable insights. Unlike conventional approaches, it provides 

precise, location-specific guidance that enhances crop yield, reduces input waste, and supports 

environmentally sustainable farming. This research contributes to the emerging field of precision 

agriculture by connecting advanced technologies with practical, scalable solutions for smallholder 

farmers. 

Material and Methods: 
This study presents a Smart Fertilizer Recommendation System that provides real-time 

Nutrient requirement information for various crops. As shown in Figure 2, the system 
operates through three main steps: (1) IoT sensors collect soil quality data, (2) the data is pre-
processed and analyzed, and (3) fertilizer requirements are calculated using machine learning 
models. Users get real-time fertilizer recommendation texts from the system, which provide 
personalized advice on how to produce maximum crop growth and soil health, depending on 
soil condition and the variety of the crop. It is extremely accurate, effective, and flexible to 
address the particular requirements of each fitting crop. 
Collection of data with IOT Sensors: 

The Arduino microcontroller is connected to the automated system of fertilization, 
and the configuration proposed to utilize the combination contains a variety of sensors. These 
sensors enable real-time monitoring of both ambient and soil conditions, focusing particularly 
on the most critical parameters for effective nutrient management. Arduino MKRFOX1200 
is a mini power-efficient IoT board with the intended use of overseeing and managing the 
actual agricultural conditions, together with remote controls. It gathers data on real-time 
sensors and sends them to a cloud environment to process them. NPK sensor informs the 
level of nutrition in the soil of specific Nitrogen, Phosphorus, and Potassium nutrients by 
using the electrical conductivity method, thus indicating how nutritionally deficient the soil is, 
so that fertilizing can be done optimally. The DHT22 sensor accurately measures temperature 
and humidity using a single-wire connection, making it well-suited for monitoring the 
environmental conditions essential for crop growth. The high-accuracy data provided by a 
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tipping bucket rain gauge allows evaluation of the soil moisture and the nutrient content. 
Moreover, the Arduino is tied up with an automation interface that connects an automated 
fertilizer injector to correctly apply fertilizer, and at the same time, it simulates the water levels 
to keep the supply steady. 

 
Figure 2. Proposed Layout of the Smart Fertilizer Recommendation Process. 

Five-Layer IoT Network Layout for Smart Fertilizer Recommendation System: 
Modern farming is advancing through the integration of the Internet of Things (IoT), 

forming a structured multi-level system that combines sensors, cloud computing, and 
communication technologies. This system increases the usage of resources and increases the 
productive agricultural land.  

Figure 3 illustrates the five layers of the IoT network architecture used in smart 
agriculture, with each layer serving the following roles: 
User Interface Layer: Helping farmers to control and track agricultural practices using 
dashboards, mobile notices, and automated suggestions via AI. 
Process Layer: Processes aggregated data through cloud computing, machine learning 
algorithms, and predictive analytics to take data-informed decisions. 
Connectivity Layer: Ensures that there is a seamless interconnection of the data between the 
devices and cloud platforms through the use of Wi-Fi and gateway solutions. 
Computation Layer: Data preprocessing, filtering, and basic analysis are conducted on 
microcontrollers such as Arduino and other edge devices. 
Sensor Layer: It records current sensory information about the environmental and soil reader 
conditions in the form of NPK sensor, temperature sensor, humidity sensor, and rain gauge. 
This organized process enables real-time monitoring, effective decision-making, and targeted 
agricultural intervention, thus enhancing yield and sustainability.  
Dataset Description and Preprocessing: 

The dataset employed in this study plays a central role in developing the proposed 
fertilizer recommendation system. It was sourced from Kaggle and titled “Crop 
Recommendation Dataset” by author[31]. This dataset includes several key agronomic and 
environmental features;Nitrogen (N), Phosphorus (P), Potassium (K), temperature, humidity, 
pH, and rainfall that are crucial to crop development. It also covers 22 crop classes such as 
Apple, Banana, Watermelon, and Wheat. 
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The primary objective is to develop a predictive model that leverages Random Forest 
and CatBoost algorithms to recommend suitable fertilizers based on soil and environmental 
conditions. To train the model, we utilized the Kaggle dataset containing key features relevant 
to these conditions, enabling accurate fertilizer recommendations across diverse agricultural 
scenarios. The data model supports precision farming and enhances decision-making by 
farmers. Table 2 provides an overview of the key attributes and their importance in 
determining optimum fertilizer requirements. 

Table 2. Dataset Description 
 Nitrogen Phosphorus Potassium Temperature Humidity PH_Value Rainfall Crop 

0 5 136 195 22.356287 91.923605 6.264203 107.769741 Apple 

1 24 128 196 22.750888 90.694892 5.521467 110.431786 Apple 

2 10 136 204 21.198522 92.155951 6.276199 105.855435 Apple 

3 82 78 46 29.148272 84.973237 5.738679 110.440880 Banana 

4 91 84 52 24.900460 78.710248 6.390742 110.440880 Banana  

61 109 21 55 24.900460 89.735242 6.770278 57.449421 Watermelon 

62 118 15 45 24.214957 84.205770 6.538006 48.011385 Watermelon 

63 31 76 82 20.824845 17.850571 7.599280 79.205092 wheat 

64 24 55 78 17.302879 15.154059 6.649196 75.577904 wheat 

65 56 67 78 17.574456 16.718266 8.255451 77.818914 Wheat 

 
Figure 3. Five-Layer IoT Network Architecture for Smart Agriculture 

Feature Engineering: 
To improve the predictive capabilities of the proposed fertilizer recommendation 

system, two new features were engineered: Fertilizer Needed and Fertilizer Quantity. 
These features enable a hybrid modeling approach that supports both classification and 
regression tasks. 
Fertilizer Needed (Binary Label):  

This binary label determines whether a fertilizer application is necessary based on 
nutrient sufficiency thresholds. The following agronomic thresholds were established: 
Nitrogen (N) < 100 
Phosphorus (P) < 120 
Potassium (K) < 130 
Feature Engineering: 

To improve the predictive capabilities of the proposed fertilizer recommendation 
system, two new features were engineered: Fertilizer Needed and Fertilizer Quantity. These 
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features enable a hybrid modeling approach that supports both classification and regression 
tasks. 
Fertilizer Needed (Binary Label):  

This binary label determines whether a fertilizer application is necessary based on 
nutrient sufficiency thresholds. The following agronomic thresholds were established: 
Nitrogen (N) < 100 
Phosphorus (P) < 120 
Potassium (K) < 130 

If any of these conditions are met, the sample is labeled as requiring fertilizer ("Yes"); 
otherwise, it is marked as not required ("No"). These thresholds are grounded in agronomic 
research [32]. And were validated through exploratory analysis of the Kaggle dataset, which 
revealed that samples below these levels consistently exhibited suboptimal performance. 
Fertilizer Quantity (Regression Target): 

This continuous feature estimates the exact dosage of fertilizer required for each crop 
sample. It incorporates both the crop-specific baseline fertilizer requirement and nutrient 
deficiencies observed in the soil. The formulation is as follows: 
Fertilizer Quantity=Base Amount_ crop +max (0, Deficiency in N) +max (0, Deficiency in P) 
+max (0, Deficiency in K) 

Here, Base Amount_ crop refers to a predefined average fertilizer requirement for 
each crop species, and the max () functions ensure that only nutrient deficiencies influence the 
final recommendation. In crop-specific scenarios, this formulation allows the system to tailor 
fertilizer quantities according to the distinct needs of each crop while also addressing existing 
soil nutrient gaps. 
Modeling Strategy: 
These engineered features enable a two-stage machine learning pipeline: 
A Random Forest classifier determines whether fertilization is needed (binary outcome). 
A CatBoost regressor predicts the optimal quantity of fertilizer required (continuous output). 

This integrated approach ensures both actionable decision support and precise dosage 
estimation, helping farmers make informed, data-driven interventions suited to real-time field 
conditions. A representative view of the engineered dataset is shown in Table 3. 

Table 3. Fertilizer_ Prediction_ Data 

 Nitrogen Phosphorus Potassium Fertilizer Needed Fertilizer Quantity 

0 1 145 205 Yes 96 

1 1 123 205 Yes 143 

2 1 135 203 Yes 122 

3 1 133 200 Yes 197 

4 1 124 199 No 103 

Pair Plot Analysis of Nutrients and Environmental Factors: 
Figure 4 presents a pair plot that visualizes the relationships between key agricultural 

parameters, including Nitrogen, Phosphorus, Potassium, Temperature, Humidity, pH Value, 
and Rainfall. The diagonal elements of the plot display histograms, illustrating the distribution 
of each variable across the dataset. These histograms indicate varying distribution patterns, 
such as a multimodal distribution for nitrogen and a relatively uniform spread for rainfall. The 
off-diagonal elements of the pair plot provide scatter plots depicting pairwise correlations 
between variables. Several insights emerge from these visualizations. For instance, the 
interaction between Nitrogen, Phosphorus, and Potassium (NPK) nutrients shows distinct 
clustering, indicating possible grouping patterns among different crop types. Furthermore, the 
impact of environmental factors like Rainfall and Humidity on soil nutrients is evident, with 
certain variables exhibiting a dispersed pattern, suggesting a wide range of climatic conditions 
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across different crop samples. Additionally, the presence of outliers in some feature 
combinations, such as extreme values of pH and Nitrogen, may indicate unique soil 
compositions or anomalies in data collection. By analyzing these patterns, the study aims to 
enhance crop yield prediction accuracy using machine learning models such as Random Forest 
and CatBoost. The insights gained from the pair plot help refine feature selection and model 
performance by highlighting key interactions among soil and environmental factors. 
API Implementation for Real-Time Fertilizer Recommendation: 

The Flask-based API development enabled real-time fertilizer recommendation access 
through web and mobile applications. The API functions by receiving soil sensor data, which 
it processes through machine learning models to produce exact fertilizer recommendations 
that relate to soil parameters. The API implements a RESTful architecture design to deliver 
multiple endpoints that support different functionalities. Soil parameter inputs such as 
nitrogen (N), phosphorus (P), potassium (K), temperature, humidity, pH, and rainfall can be 
provided to the /predict endpoint, which generates real-time fertilizer recommendations 
together with necessary fertilizer amounts. Through the /calculate-npk endpoint, the API 
determines NPK amounts needed for specific crops and deficient soil conditions to deliver 
optimal fertilizer doses. The /historical-data endpoint provides users access to archived 
predictions, which helps farmers evaluate fertilizer use patterns for making improved 
agricultural decisions. The /sensor-data endpoint establishes a database entry system that 
records live sensor data to generate valuable information for enhancing model accuracy. This 
API-based methodology allows the system to provide precise fertilizer advice, which drives 
both precise agricultural practices and sustainable soil care. 
Model of Machine Learning for Fertilizer Prediction: 

In this study, Random Forest Regression and CatBoost Regression have been selected 
for their strong performance in regression tasks, particularly in capturing complex nonlinear 
interactions. Those models were chosen because they are accurate, robust, and can be used 
for a range of datasets, including those containing categorical variables. Model Training and 
hyperparameter tuning. 

To maintain the original class distribution across both sets, stratified sampling was 
employed to split the dataset in this study into training and testing sets in an 80:20 ratio. This 
procedure also helped to ensure that every subset reflected the entire diversity in the data, 
meaning that there is more trustworthy the assessment. 

Random Forest: To produce predictions, we applied a machine learning technique 
referred to as Random Forest. The idea here is to combine many smaller decision-making 

models, such as trees, into one final option. We started from (nectimators100 trees of these, 
and found that increasing or otherwise modifying other parameters didn’t bring much gain to 
the model’s performance. 

By averaging all trees’ predictions, we can obtain a forecast y ̂ for a given input x. The 
ultimate output is represented in equation 1 

ŷ =
1

nestimator
∑ ht

nestimator
t=1 (x) (1) 

The performance of the Random Forest model was tested using the Mean Squared Error 
(MSE) metric, which is specified in equation 2 

MSE= 
1

n
∑ (yⅈ − ŷⅈ)2n

i=1
 (2) 

For our Random Forest model, it was determined that the number of trees 

(nectimators) was to be set initially at 100 based on initial tuning. Since these changes had no 
observable effect on performance and the other hyperparameters stayed the same, I didn’t 
make further modifications. 
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Figure 4. Pair Plot of Nutrients and Fertilizer Quantities Across Crops 

Cat Boost Regressor: 
Cat Boost, in the proposed method, is a gradient boosting algorithm selected for its 

efficiency in handling categorical data. To balance model complexity with training time, the 
CatBoost model was trained using 1,000 iterations, a tree depth of 6, and a learning rate of 0.1. 
Furthermore, an early stopping mechanism was implemented to minimize overfitting and 
ensure effective training. The model training was terminated if the performance on the 
validation set plateaued, meaning there was no substantial improvement over a defined 
number of iterations. 
CatBoost builds the predictive model iteratively by adding trees that correct the residuals of 
previous iterations. The prediction at the t-th iteration is given by equation 3: 

Ft(x) = Ft−1(x) + η ⋅ gt(x) (3) 

Where η represents the learning rate and gt(x) denotes the gradient of the loss 

function at iteration t. The model optimizes performance by minimizing the Root Mean 
Squared Error (RMSE), which is defined in equation 4: 

√
1

n
∑ (yi −

n

i=1
FT(xi))2 (4) 

Our models' validity and over-fitting prevention were achieved through k-fold cross-
validation at a level of k=5. The k-fold approach splits the data into k sections so that the 
model trains k times, using different partitioned sections for validating the results and the 
remaining sections for training. The model&#39;s performance was evaluated by averaging 
the results from each fold in the cross-validation process, offering a more accurate 
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representation of its generalization ability. The model's performance evaluation relied on the 
R² value computed through equation 5. 

R ² = 1 −
∑ (yi−ŷi)2n

i=1

∑ (yi−y̅i)2n

i=1

 (5) 

yⅈ is the true value,ŷⅈ is the predicted value,y̅ is the mean of the true values across all 
samples. 

"The overall workflow of the proposed fertilizer recommendation system is illustrated 
in Figure 5. It demonstrates the sequential flow from IoT-based data collection, cloud 
communication, preprocessing, machine learning prediction, and finally to user 
recommendation delivery." 

 
Figure 5. Architecture of a Smart Agriculture System for Real-Time Fertilizer 

Recommendation Using Machine Learning” 
Result and Discussion: 
Random Forest Model Performance: 

The Random Forest model provided a perfect predictive result on the amount of 
fertilizer required by various crops, depending on the parameters of the soil and the 
environment in which the crop would be located. Figure 6, which shows very closely the 
observed values (x-axis) and expected values (y-axis) along the 45-degree reference line, shows 
the correlation between the actual and predicted fertilizer levels. This demonstrates the 
potential to accurately assess fertilizer requirements across a wide range of crops and diverse 
environmental conditions. 

The data points appear to almost perfectly line up, resulting in little variance between 
the actual from the expected. The model achieved a strong R² value of 0.999996, indicating 
that it captures nearly all the variability in fertilizer requirements. This conclusion is further 
supported by additional performance metrics.  Furthermore, the high accuracy and reliability 
of the predictions are supported by the low MSE of 0.0052 of the models, suggesting that they 
reach very accurate fertilizer recommendations with a small amount of error. Table 4 below 
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summarizes key performance metrics, including R², Mean Squared Error (MSE), and the 
model’s overall alignment with the actual data. 

 
Figure 6. Relationship between Actual and Predicted Fertilizer Quantities (Random Forest 

Model. 
Table 4. Summary of Performance Metrics for the Random Forest Model. 

Metric Value Description 

R² Score 0.999996 Indicates the proportion of variance in fertilizer 
quantity explained by the model's input features. 

Mean Squared 
Error (MSE) 

0.0052 Represents the average squared difference 
between actual and predicted fertilizer 
quantities. 

Alignment with 
Actuals 

High Predicted values closely align with actual values 
along the 45-degree line, showing high accuracy. 

Cat Boost Model Performance: 
Figure 7 shows the performance of the CatBoost model, which has a high correlation 

between the actual and the predicted fertilizer quantities. Green dots can be viewed as a 
predicted value; the dotted line marks the possible 1:1 correlation. The closer the points match 
with the dashed line, the more controlling the predictions. The figure presents the difference 
between the actual and forecasted values of fertilizer through the CatBoost model. The graph 
shows a high level of linear correlation between the two sets of values, implying the high 
precision in the forecast of the model.  

The green dots represent the predicted fertilizer levels, while the dashedline indicates 
a perfect prediction where the actual and predicted values are identical. The closer the data 
points are to the dashed line, the more accurate the model’s predictions. The CatBoost model 
demonstrates a high level of accuracy in predicting fertilizer amounts, supporting the claim 
that it is an excellent predictive model. 

 
Figure 7. Cat Boost model 
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Cat Boost Model Training Progress: 
Figure 8 displays a 3D image illustrating the training process of the CatBoost model, 

showing how total time (ms), test loss, learn loss, and best metrics evolve with the number of 
iterations. The blue line (learn) represents training loss as a function of iterations. The red line 
in the figure represents the lowest test loss observed up to the current iteration, indicating the 
model's best performance so far. As training progresses, the CatBoost model aligns with the 
graph, accurately reflecting the model’s convergence behavior. Initially, both the training and 
test losses are high, but they decrease with each iteration. This occurs because, as long as the 
model remains imperfect, the best loss value continues to decline eventually reaching its 
minimum at iteration 999. As we iterate the model, total time (ms) increases, while the time 
before achieving optimal performance decreases. This reflects a good training process as the 
model converges toward the best solution. This 3D visualization complements the data in 
Table 5 by providing a more intuitive understanding of the model's performance and 
convergence. 

 
Figure 8. Cat Boost training progress 

Model Performance Comparison: 
As shown in Table 6 and Figure 9, A very low Mean Squared Error (MSE) of 0.005 

and an R-squared value of 0.9999 proved the Random Forest model to be a near-perfect 
match. With an MSE of 0.238 and an R² value of 0.9998, CatBoost performed well; however, 
as illustrated 
In Figure 7, Random Forest outperformed CatBoost in terms of prediction accuracy for this 
dataset. 

Table 5. Training Progress 

Iteration Learn Loss Test Loss Best Test Loss Total Time Remaining Time 

0 33.5865535 33.0503554 33.0503554 2.56 2.56 

200 0.4995538 0.7009549 0.7009549 331 1.31 

400 0.2954709 0.5746148 0.5746148 654 0.976 

600 0.2042863 0.5242705 0.5242705 991 0.658 

800 0.1522084 0.5010225 0.5010225 1290 0.321 

999 0.1196821 0.4873802 0.4873802 1610 0 
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Figure 9. Comparison of model performance 
Table 6. Comparison of model performance 

Model MSE R-squared 

Random Forest 0.005164545454545453 0.999961090572125 

CatBoost 0.23753942961562133 0.99982103897884453 

Visualization of Nutrition Requirements for Various Crops (in mL/ha): 
Table 7 shows the requirements of nutrients in different crops under Nitrogen, 

Phosphorus, and Potassium (mL/ha). The figures show that there is a wide range of changes 
among the various crops, with cotton, pigeon peas, and coconut consuming the most nitrogen, 
followed by others like banana, rice, and watermelon that consume significantly less nitrogen. 
The requirement of phosphorus and potassium is quite constant among crops, but minor 
changes can be noticed. 

A 3D representation of such nutrient requirements can be found in Figure 10, which 
shows the spatial distribution of Nitrogen (blue), Phosphorus (orange), and Potassium (green) 
for specific crop types.Visualization shows the importance of precision agriculture in 
improving the rational use of fertilizer so that crops receive the necessary nutrient amount 
according to their particular demands to increase their productivity and sustainability. 

 
Figure 10. Nutrient Requirements for Different Crops 
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Table 7. Nutrient Requirements per Crop (ml/ha) for Nitrogen, Phosphorus, and 
Potassium. 

Crop Nitrogen (ml/ha) Phosphorus (ml/ha) Potassium (ml/ha) 

Apple 100000 0.19 0.21 

Banana 50000 0.1925 0.2075 

Blackgram 75000 0.195 0.205 

Wheat 125000 0.1975 0.2025 

Coconut 150000 0.2 0.2 

Coffee 175000 0.2025 0.1975 

Cotton 200000 0.205 0.195 

Grapes 100000 0.19 0.21 

Beans 50000 0.1925 0.2075 

Maize 75000 0.195 0.205 

Mungbean 125000 0.1975 0.2025 

Orange 150000 0.2 0.2 

Papaya 175000 0.2025 0.1975 

Pigeonpeas 200000 0.205 0.195 

Pomegranate 100000 0.19 0.21 

Rice 50000 0.1925 0.2075 

Watermelon 75000 0.195 0.205 

These findings underscore the importance of precision agriculture, emphasizing the 
need for crop-specific fertilizer recommendations to optimize agricultural productivity. 
Matrix Analysis of Fertilizer Requirement Prediction: 

The confusion parameters and the charts of the Random Forest and CatBoost models, 
as posted in Figure 11 and Figure 12, as well as the table of evaluation in Table 8, show that 
the models are perfect in predicting the number of fertilizers that should be used. Both models 
achieved a perfect fit of all the 261 instances where fertilizer was not needed and 179 where 
fertilizer was needed, and no instances of false positives or false negatives occurred. These 
findings suggest that the models are highly effective in distinguishing between cases where 
fertilizer is required and those where it is not. 

Such an ideal classification implies that the models can be of great value to sustainable 
agriculture by maximizing the use of fertilizer. They can determine the fertilizer requirement 
and thus make the most appropriate choices and limit wastage of resources, alleviating 
environmental effects and promoting cost-effective agricultural behavior. 

Table 8. Performance Evaluation. 

Model Predict: Not Required Predict: Required 

Actual Not Required 261 0 

Actual Required 0 179 

 
Figure 11. Random Forest Confusion Matrix. 
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Figure 12. Cat Boost Confusion 

Discussion: 
This system illustrates the way classic planting can be altered under the unification of 

IoT and machine intelligence. Besides saving on cash, the intelligent fertilization system 
eliminates the environmental consequences of poor management of the fertilizer, such as 
nutrient loss through runoff and soil destruction. Approaching soil and environment 
conditions in this way, however, is the most appropriate means of providing specific 
recommendations that can be developed to enhance the health, productivity, and quality of 
the crops, which result in more successful agricultural operations , which, according to the 
appearance, seems to be more responsible.  

The models are very accurate in their prediction, especially in the determination of 
fertilizer requirements, but are poor in their prediction of the quantity of fertilizers. The 
additional model fine-tuning, enhanced data gathering, and integration of more factors, like a 
type of soil, a specific stage of crop growth, and the production of the former crops, may make 
the system much more reliable and flexible to tackle this task. When we can work this system 
around additional crops and other geographical areas, then we could take part in sustainable 
farming by implementing local, data-informed decision-making in farms of many different 
types.  

Lastly, this intelligent fertilizing system offers such an example of the metaphoric 
potential that IoT and AI can discover in building big-scale data-driven agricultural solutions. 
This finding indicates that it is just a prototype for a future in which precision agriculture can 
not only increase production but also efficiency in the management of the environment 
through farming practices that are agreeable to global sustainability principles.  
Conclusion: 

The smart fertilizer recommendation system proposed in the paper illustrates a data-
driven method of precision agriculture with real-time collection of sensor data and its 
prediction using machine learning to optimize fertilizer recommendations. The five-layer 
approach to IoT allows fertilization to be carried out automatically and efficiently, so that the 
exact amount of nutrients is provided, and all the resources are used almost to the fullest. The 
study can prove through a comparative analysis of both the models of Random Forest and 
CatBoost that the former model performed significantly better than the latter because it had a 
high coefficient of fit of 0.9999, or nearly practically perfect, and a low error (known as MSE) 
of 0.0052, which is a very low error.  Although no less effective, the CatBoost model 
demonstrated a slightly increased measure of MSE (0.238), showing enhanced and somewhat 
weaker predictive accuracy. Moreover, crop-specific nutrient breakdown looks into the 
significance of crop-specific fertilizer recommendations of soil properties and the 
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environment. This system's strategic capabilities of machine learning and IoT integration can 
help derive in-time and data-based fertilizer recommendation decisions, further increasing 
agricultural efficiency, sustainability, and productivity.  
Future Recommendations: 

Future research can look into other deep learning algorithms, including even more 
sensors and adaptive learning, in order to further perfect the predictions and allow an 
autonomous smart farming system to make decisions. The study will help develop precision 
agriculture, increase sustainability in farming, and promote resource-efficient uses. 
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