
 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1659

Adaptive Student Assessment Method for Teaching
Programming Course

Sadia Amin, Maida Shahid*, Talha Waheed, Muhammad Awais Hasan
Department of Computer Science, University of Engineering and Technology, Lahore,
Pakistan.
*Correspondence: maida.shahid@uet.edu.pk
Citation| Amin. S, Shahid. M, Waheed. T, Hasan. M. A, “Adaptive Student Assessment Method
for Teaching Programming Course”, IJIST, Vol. 07, Issue. 03 pp 1659-1676, July 2025
Received| June 14, 2025 Revised| July 26, 2025 Accepted| July 27, 2025 Published| July
28, 2025.

omputer programming is a core component of computer science education and is
widely recognized as a vital skill for aspiring professionals. Repetitive coding
assessments help students improve their programming abilities, but the manual

creation and evaluation of these assessments can be time-consuming and challenging for
instructors. To address this, we developed an Adaptive Student Assessment System (ASAS)
that automatically generates subjective programming questions aligned with Course Learning
Objectives (CLOs) and assists in evaluating student responses. The system was evaluated using
a controlled study involving two groups: a test group and a control group. Results
demonstrated that the test group consistently outperformed the control group across cognitive
assessments, with overall performance improvements of 13.5%. Affective feedback collected
through a post-term survey showed a 48.20% higher agreement rate in the test group regarding
motivation, clarity, and satisfaction with the assessment process. Teacher evaluations further
confirmed the system's effectiveness, with improvements of 23.33% in assessment creation,
26.67% in assessment conduction, and 43.33% in result compilation compared to traditional
methods. Teachers reported reduced workload, increased efficiency, and a positive attitude
toward long-term adoption of the system. These findings highlight that ASAS not only
enhances student engagement and academic performance but also improves instructional
efficiency, making it a scalable and effective solution for programming education.
Keywords: Assessment Systems; Programming Fundamentals; Automatic Question
Generation; Interactive Learning; Skill-based Learning

C

mailto:maida.shahid@uet.edu.pk

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1660

Introduction:
Humans are continuously evolving. From the pebble and stone tools of the Stone Age

to the smartphones and computer systems of the current Iron Age, humans have improved
their way of living. This is all because of scientific and technological development, and the
field of Computer Science has vital importance in this evolution.

Computer Science is now considered a very important field in Education [1]. Recent
studies have shown that the requirement for computer programmers has increased, due to
which computer science degree growth has surged to 76% as compared to the previous growth
of 16% in the last 12 years [2]. This degree offers many courses, out of which Programming
Fundamentals (PF) has great significance in Computer Science degree programs [3].
Programming fundamentals help beginners understand how to code and how to get the
desired output from given input data [4]. In a way, this course broadens students’ minds by
encouraging them to think out of the box [5][6]. Keeping a check on the minor details of the
problems helps students in developing better solutions [4]. Therefore, it is very important for
the students to grasp and master the PF course contents so that they can excel in the field of
computer science [7].

Authorsuggests in [8] that if a student is not skilled in practical programming, they
cannot master the significant concepts of the computer science field. To develop these skills
in Computer Science students, a huge responsibility comes to the teachers to create the course
contents, assessments, and exam questions that help students practice the theoretical
knowledge learned [9]. Traditional assessment methods are most commonly used to create
assignments manually. Then, the teachers evaluate all of the assignments one by one.

One of the drawbacks of this manual assessment system is that it takes quite a lot of
time and effort from the teachers and requires considerable coordination [10]. As the manual
methods can only generate limited programming tasks, the students tend to pass the
assessments mostly through memorization and recitation techniques instead of learning the
concepts taught in the class [11]. As a result, students’ cognitive skills are confined to a box,
and their focus shifts towards cramming, and their ability to explore and learn new things is
restrained [12]. Hence, the grades do not reflect students’ skills and abilities. Rather, they
depend on how well a student can cram [13].

Because of excessive cramming habits, students are unable to map theoretical concepts
to real-world problems and find their solutions. In order to resolve this challenge, the need
for repetitive exercises arises [14]. These continuous activities performed in the classroom can
be a bit hard to follow for an increasing number of computer science students [2]. Moreover,
the repetition of the same course and the same assessments in different student sections can
be a very tiresome and monotonous task for the teachers. Thus, the teachers find it difficult
to conduct seamless exams for a growing number of computer science students manually.

The second challenge with the manual assessment method is the timely checking of
the exams and provision of feedback to the students [15]. Continuous feedback is crucially
important for students for their improvement and skill polishing. In addition, assessing all the
students on the same criteria is not a good approach when everyone has their own learning
pace [16].

As a solution to these challenges, automated programming assessment systems
(APAS) [17] have recently replaced the traditional manual methods and have evolved to the
most suitable forms to cater to teachers’ needs and responsibilities. The idea of the automatic
examination system roots back to the 1960s when the first system was developed by
Hollingsworth [18] to identify the issues for assembly language programs. Since then, this
system has been a topic of interest to educators.

APAS offers Automatic Question Generation, the most frequently used assessment
method to generate students' assessments [19]. Automatic question generation is the most

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1661

common form of grading that is preferred by teachers [20][21] for the accuracy of the results
and the timely delivery of grades.

It has also been observed in recent studies that automatic questions enable the students
to improve their skill set, thus they can perform better in exams [22]. Hence, the students can
answer questions of any complexity level within the learned skills [23]. This type of question
taxonomy is linked with the theory stated by Bloom Benjamin in 1956 [24]. This theory
supports the argument that cognitive skills (in our case, Programming Skills) are one of the
most important learning domains for human beings, which can be developed and improved
via repetitive assessments. To include these programming skills in students, continuous
assessments have to be conducted so that the students can master the skills. In order to ease
the assessment process for teachers, an automatic examination system is required that could
continuously generate unique questions in each iteration.

There are many different techniques used for automatic question generation. The rule-
based question generation [25] focuses on multiple-choice analogy-based questions. The
algorithm-based question generation [26] is used to generate algebra questions for school-level
students, or any questions that fall under the if-else bracket. The template-based question
generation [2] and schema-based question generation [27], both being the same variants of a
problem, are also mainly focused on multiple-choice questions. However, there is work done
on the generation of problems with controlled complexity. Moreover, these techniques are
used to cover the syntactic analysis of already generated objective-wise questions.

Now, the question arises of how we can overcome the problem to automatically
generate questions that are not only brief in their nature but also are comprehensive,
specifically for computer science students. Moreover, the students are usually not willing to
learn from the theoretical concepts taught in class. Instead, they give more attention to
practical assessments [14]. The system, already available for question generation, does not do
well when it comes to creating comprehensive/logical programming questions [28] that are
also subjective. It is hard to map real-world problems into a set of questions based on the
student's learning skills using these techniques. Hence, teachers often face issues with these
techniques in grading computer science assessments.

Despite the advancements in Automated Programming Assessment Systems (APAS),
existing solutions mostly rely on rule-based or template-based question generation, which
limits their ability to produce complex, subjective programming questions [29][30][31][32][33].
These systems often fail to align with course learning objectives (CLOs) or adapt to varying
student skill levels, making it difficult to effectively assess students' problem-solving and
coding abilities. Additionally, current systems focus primarily on objective assessments and
lack mechanisms to evaluate open-ended programming tasks or provide meaningful, skill-
based feedback. This creates a significant research gap in developing a system that not only
automates the creation of subjective programming questions but also evaluates student
responses in a way that supports both personalized student learning and teacher efficiency.
This study addresses this gap by proposing an adaptive assessment system that generates
subjective questions mapped to CLOs and automatically evaluates students' answers to assist
teachers in assessment and result compilation.
Literature Survey:
Student Learning Skills:

The author suggested [34] that student skills can be significantly improved with the
help of written presentations. In this research, students were provided with 20 research
publications. A rubric table was developed listing the criteria for student evaluation. Each
rubric corresponded to a specific student learning level. Positive results were seen in a few
rubric factors. Moreover, students were ranked between beginning, developing, competent,
and accomplished levels. The issue with this approach was that the data provided to students

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1662

was limited. Students had to extensively study the publications before submitting their
answers. The study strongly supports that students' critical thinking can be improved if they
are provided with real-life examples.

Author[35] came up with a meta-analysis process to keep up with the latest research
in the general science field. The research was conducted on papers, dissertations, and theses
from the past decade, and the results were then used in the classroom by teachers and
educators. A statistically significant effect was observed in student learning. Nevertheless, this
approach uses a comprehensive way of teaching and thus does not cover student assessment
via automated systems, such as automatic questions and automated assessment methods.
Automatic Assessment Systems:

Authorhas pointed out [29] that learning Programming Fundamentals can be hard for
fresh students. He proposed an AutoLEP, an automatic learning and assessment system, that
helps teachers to check the programming assignment given to the students, and students are
given feedback according to their test results, hence performing better next time. The
AutoLEP system has 3 main components: student clients, a dynamic testing server, and the
main server. The only lag in it is the unavailability of an automatic question generation system
that would pick questions for the students according to their current learning level.

Author[30] suggested an eGrader. eGrader works both on dynamic and static analysis.
The dynamic analysis process creates dynamic tests for different types of problems that have
been proven effective, complete, and precise. The static analysis process consists of two parts:
the structural similarity, which is based on the graph representation of the program, and the
quality, which is measured by software metrics. The framework of eGrader consists of three
components: Grading Session Generator, Source Code Grader, and Reports Generator. The
limitation of this eGrader is that the Engineering Graphs can be tricky for non-technical
teachers to comprehend and would require a long time to extract the results.

[31] caters to the problem of student assignment assessment based on the fact that the
number of students keeps increasing with respect to the number of teachers. JavAssess is
composed of four different modules, three of which can work in an isolated way. The three
independent modules are classes that are located in the codeAssess; javAssessment package,
and are called introspector, intercessor, and tester. The problem, again, with this solution is
that it does not incorporate the automatic generation of student problem questions.

Author[32] has proposed a solution to identify the common problems made by novice
programmers. There are 10 problems to be solved with increasing complexity. The code
evaluations were divided into ALL_PASS, NOT_ALL_PASS, COMPILE_ERROR,
RUNTIME_ERROR, and REPEAT, but only those were considered to have the label
NOT_ALL_PASS. A manual examination of the code was also performed, and the code
errors were divided into types: algorithmic, misinterpretation, and misconception. This
solution involves the assessment of only 10 pre-defined problems and does not entertain the
automatic question generation for teacher ease. The main focus is the identification of
programming errors in the given set of programming problems.

Author[33] has focused mostly on the semantic analysis of the code APIs that are
changed during code maintenance. FindBugs was developed using a bug-driven methodology.
It includes the detection of Infinite recursive loops, Statements, or branches. The solution
works great for the corporate sector, where APIs are mostly used for inter-domain
communication. It is not very suitable for educational purposes and does not cater to the
problem of automatic question generation as well.

Author[36] also suggested the semantic analysis of the code that is syntactically correct.
He studied nearly 10 million static analysis errors found in over 500 thousand program
submissions made by students over a five-semester period. The scope of this research does
not include the automatically generated questions.

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1663

Author[37] worked on the identification of the logical errors made by the students.
Logic Error Detection Algorithm: works on the comparison between the wrong code
submitted by a student and the correct code, already available in the system. Comparison of
structure patterns (a structured pattern can be considered to express the general form of source
code, including a list of expressions and block statements). The error detection algorithm does
not support automatic problem generation.

Our system will provide relief to the teachers by generating problem questions for
programming assignments based on the students' learning skill sets. Our focus is to create an
easy-to-use system that would not only generate questions automatically but also provide
feedback that is easy to understand for non-technical educators as well.
Research Objectives:
To create a system that can automatically make programming questions for students with
different skill levels.
To build a system that can check and grade students' programming answers using
automatically generated questions.
To find out how automatic question generation can help teachers in making and managing
exams more easily.
To develop a smart student profile system that helps students learn programming better by
understanding their learning needs.
Material and Methods:

This research adopts a Template-Based Automatic Question Generation (AQG)
approach, enhanced by AI-driven mechanisms in question personalization, code assessment,
and adaptive student profiling. The methodology is organized into multiple stages, each
leveraging AI concepts such as automation, adaptive feedback, and data-driven decision-
making. Figure 1 explains the brief details of the proposed methodology.

Figure 1. Proposed Methodology

Learning Objectives Extraction from Learning Skills:
The first step is choosing topics from a Programming Fundamentals course. A third

party helps by providing a list of learning skills. Each skill is broken down into smaller parts
called learning objectives. These objectives become the topics for our question generator.

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1664

For example, the Learning Skill of Conditional Statements states:
“Write a C++ program that can perform different tasks based on single or multiple

conditions.”
To create templates, we carefully analyze each learning objective under this skill. One

of the learning objectives extracted from the learning skill of conditional statements is stated
below:

“Write a C++ program for a Conditional Statement with a Single Boolean Expression
consisting of Any Comparison Operator.”

The goal of this learning objective is to help students understand how to use
comparison operators within conditional statements. This classification enables the system to
generate questions aligned with cognitive learning stages of the students, which is a principle
drawn from AI in adaptive learning systems [38].
Template-Based Question Generation:

For each learning objective, generic question templates are created. These templates
follow the same pattern and include variables (like $V1, $V2) that can be filled in with different
values to make dynamic questions. For this purpose, many templates are devised, one of which
is given below:

T01: “Write a program to check if $V1 is $V2, then print True, where $V3 is taken as
input from the command line. Hint: $V4”
Each template is linked to a dedicated database table that stores lookup values for all variables.
Table 1 shows the lookup table used for Template 01.

Table 1. Lookup values for template 01 variables

Sr# V1 V2 V3 V4 Test Case

1 Polygon Triangle

Sum of
Interior
Angles

Sum of
angles = 180

[{input:180; inputType: int; output: true;
outputType: bool; TestResult=true},
{input: range(0:179);inputType: int; output:
false; outputType: bool; TestResult =false},
{input:range(181:999); inputType: int; output:
false; outputType: bool; TestResult =false}]

2 Person
Senior
Citizen Age

Senior
Citizen Age

> 60

[{input:range(60:999); inputType: int; output:
true; outputType: bool; TestResult=true},
{input: range(0:59); inputType: int; output:
false; outputType: bool; TestResult =false}]

3 Letter Vowel Alphabet [a, e, i, o, u]

[{input:['a','e','I','o','u']; inputType: list; output:
true; outputType: bool; TestResult=true},
{input:['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J',
'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z']; inputType: list; output: false;
outputType: bool; TestResult =false}]

4 Angle
Acute
Angle Angle

Acute angle
< 90°

[{input:range(0:89); inputType: int; output:
true; outputType: bool; TestResult=true},
{input: range(90:999); inputType: int; output:
false; outputType: bool; TestResult =false}]

The number of rows inserted in the above table would be equivalent to the number of
unique questions generated from a template. The variable values are carefully designed to
create many different versions of the same question, match real-world examples, and help
build test cases to check student answers automatically. This flow is explained in Figure 2.

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1665

Figure 2. Question Generation via Templates

This method is based on a rule-based way of generating text, which is part of AI in the
field of Natural Language Processing [39].
Question Generation Engine:

An algorithmic engine is implemented to generate unique questions from each
template. It operates as follows:
Iterates through variable sets from the database.
Replaces template variables with corresponding values.
Logs each generated question with metadata (e.g., skill level, template ID).

This engine mimics the data-driven logic found in AI-powered intelligent tutoring
systems (ITS) [40]. Generated questions from template T01:
Q1: Write a program to check if a Polygon is a Triangle, then print True, where the Sum of
the Interior Angles is taken as input. Hint: Sum of angles = 180
Q2: Write a program to check if a Person is a Senior Citizen, then print True, where the Age
is taken as input. Hint: Senior Citizen Age > 60
Q3: Write a program to check if a Letter is a Vowel, then print True, where the Alphabet is
taken as input from the command line. Hint: vowels: [a, e, i, o, u]
Q4: Write a program to check if the Angle is an Acute Angle, then print True, where the
Angle is taken as input from the command line. Hint: Acute angle < 90°
Each question is unique due to different combinations of variables, thus making the system
adaptive for individual students' assessments.
Automated Code Assessment:

Each question has a corresponding test case defined in JSON format. The test cases
simulate how the code should behave under various inputs. These cases are stored in the same
database table linked to the template and are passed to the automatic assessment module.
When a student submits code, the automated code assessment engine operates as follows:
The predefined test cases are automatically injected into a secure code execution environment.
The student’s code is executed with these inputs, and the resulting output is captured.
This output is then compared against the expected output defined for each test case.
If the actual output matches the expected output exactly, the test case is marked as Pass.
If the outputs do not match, or if the code results in an error (e.g., runtime error, timeout, or
incorrect logic), the test case is marked as Fail.

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1666

Figure 3. Automatic Assessment Method

This module, shown in Figure 3, mimics automatic grading systems (e.g., those used
in coding platforms like HackerRank [41] by executing multiple conditions, evaluating edge
cases, and providing real-time feedback.
Uniqueness Algorithm for Class Assessments:

To ensure fairness and avoid duplication, a randomized variable selection algorithm is
applied. More than 50 variable sets per template are stored in the database, and the algorithm
selects a unique set per student. This ensures that no two students receive the same question
in assessments, personalization, and content diversity.
Experimentation:
Experiments were performed with respect to teachers' perspectives and students’ perspectives.
Dataset Description:

Two groups of students were created to experiment with the effectiveness of our
student assessment methods. All students were enrolled in the first year of their Computer
Science degree program and were taking the Programming Fundamentals course, which spans
16 weeks. The students' ages ranged between 18 and 20 years.
Group A: 150 students from session 2020 1st semester session were selected for the control
group. Out of 150 students, 83 were female and 67 were male. Traditional teaching methods
were used for quizzes, midterms, and final exams for student assessment.
Group B: 150 students from session 2021 1st semester were selected for the test group. Out
of 150 students, 78 were female and 72 were male. Our devised system was used for the
assessment of this group. Quizzes, midterms, and final exams were generated using our
Automated System.
Table 2 shows the division between the test and control group students.

Table 2. Student division for test and control groups

Group Female
Students

Male
Students

Total
Students

Session Semester Duration of Study
(Weeks)

Test 78 72 150 2021 Fall 16

Control 83 67 150 2020 Fall 16

A group of teachers, containing 3 teachers, was selected who applied the traditional
assessment methods to the Control Group. The same teacher group used our proposed
automated student assessment method on the Test Group.

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1667

Teachers Evaluation:
The experimentation was classified into three categories. The same group of teachers

first filled out this survey for the control group, where traditional methods were used for
assessment creation, assessment conduction, and result compilation. Later, the same teachers
filled out the same survey for the test group. The results were compared for both groups to
reach a conclusion.
Assessment Creation: A survey was created with a total of 10 questions. The survey was
divided into 3 sections with 4, 3, and 3-point sections for qualitative analysis, relevancy, and
prerequisites, respectively, given in Appendix A.
Assessment Conduction: A survey was created with a total of 10 questions. The survey was
divided into 3 sections with 4, 3, and 3-point sections for qualitative analysis, motivation, and
prerequisites, respectively, given in Appendix B.
Result Compilation: A survey was created with a total of 10 questions. The survey was
divided into 3 sections with 4, 4, and 2-point sections for qualitative analysis, approach, and
prerequisites, respectively, given in Appendix C.
Student Evaluation:

A survey was conducted among the Control and Test group students to evaluate the
effectiveness of our system based on students’ improvement in their Cognitive and Affective
Skills.
Cognitive Level: To evaluate the cognitive skills of the students, we used the quizzes,
midterms, and final exams of both the Control and Test groups. A comparison was made to
observe any improvement between the two groups.

In a 4-month semester duration, one quiz was taken after 4 weeks, both for the Control
and Test groups. Midterm exams were carried out after 2 months. The second quiz was taken
at the end of 3 months. And lastly, final term exams were conducted at the end of the fourth
month. Therefore, we had a total of two quizzes, one midterm, and one final exam, both for
the Control and Test groups. Also, 2 term projects were part of the experimentation; one after
the midterm, and one after the final exams. Mark's division is given in Table 3.

Table 3. Marks distribution for student cognitive level experimentation

Assessment Type Marks

Quiz-I 10

Mid-term 20

Project-I 15

Quiz-II 10

Finals 30

Project-II 15

Total Marks 100

Affective Level: To evaluate the affective skills of the students, a survey was conducted at the
end of the term for both the Control and Test group students. Students were asked how the
applied assessment method helped them polish their skills and how they were able to perform
in their quizzes, midterm, final exams, and term projects. Survey division is 4, 3, and 3 points
for student performance, assessment approach, and results, respectively, given in Appendix
D.
Result and Discussion:
Teachers Evaluation:

The graphs below give brief details about the survey results for teachers' evaluation.
The horizontal axis represents the number of teachers who took part in our research. The
vertical axis shows the survey question number. The green colours show the number of

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1668

teachers who agreed with the question asked in the survey. The yellow colour represents the
neutral answers, and the red colour shows the disagreement with the questions asked.
Assessment Creation:

Figure 4. Teachers' evaluation for assessment creation - test group

Figure 5. Teachers' evaluation for assessment creation - control group

Table 4 below summarizes the survey responses from teachers for the Assessment
Creation section, divided into three categories: Qualitative Analysis, Relevancy, and
Prerequisites. Three teachers answered each question in the survey, and responses were
categorized as Agree, Neutral, or Disagree. The Total Responses for each section are
calculated as:

𝑇otal Responses = Number of Questions ∗ Number of Teachers
The Total Agree value for each section represents the sum of all Agree responses

across the questions within that section. To calculate the Agreement Percentage, this formula
is used:

Agreement % = (
𝑇𝑜𝑡𝑎𝑙 𝐴𝑔𝑟𝑒𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠
) ∗ 100

The overall improvement between the test and control groups is then calculated as
follows:

Improvement % = Test Group Agreement % − Control Group Agreement %
This highlights the positive or negative change brought by the proposed system.

Table 4. Summary of the survey responses from teachers on Assessment Creation

Section Questions Total
Responses

Test Group Control Group %
Improvement Total

Agree
Agree% Total

Agree
Agree

%

Qualitative Q1-Q4 12 10 83.33% 1 8.33% +75.0%

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1669

Relevancy Q5-Q7 9 4 44.44% 2 22.22% +22.2%

Prerequisites Q8-Q10 9 1 11.11% 5 55.56% -44.4%

Overall Q1-Q10 30 15 50% 8 26.67% +23.33%

Assessment Conduction:

Figure 6. Teachers' evaluation for assessment conduction - test group

Figure 7. Teachers' evaluation for assessment conduction - control group

Table 5. Summary of the survey responses from teachers on Assessment Conducting

Section Questions Total
Responses

Test Group Control Group %
Improvement Total

Agree
Agree% Total

Agree
Agree

%

Qualitative Q1-Q4 12 8 66.67% 2 16.67% +50.0%

Motivation Q5-Q7 9 6 66.67% 1 11.11% +55.56%

Prerequisites Q8-Q10 9 1 11.11% 4 44.44% -33.33%

Overall Q1-Q10 30 15 50% 7 23.33% +26.67%

Result Compilation:

Figure 8. Teachers' evaluation for result compilation - test group

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1670

Figure 9. Teachers' evaluation for result compilation - control group

Table 6. Summary of the survey responses from teachers on Result Compilation

Section Questions Total
Responses

Test Group Control Group %
Improvement Total

Agree
Agree% Total

Agree
Agree

%

Qualitative Q1-Q4 12 8 66.67% 4 33.33% +33.34%

Approach Q5-Q8 12 9 75.0% 2 16.67% +58.33%

Prerequisites Q9-Q10 6 2 33.33% 0 0.0% +33.33%

Overall Q1-Q10 30 19 63.33% 6 20.00% +43.33%

Student Evaluation:
Cognitive Level:

Figure 10. Students obtained an evaluation percentage out of 100 in each assessment for

their cognitive level
Affective Level:

Figure 11. Students' evaluation for their affective level - test group

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1671

Figure 12. Students' evaluation of their affective level - control group

Table 7. Summary of the survey responses from students on the Affective Level

Section Questions Total
Responses

Test Group Control Group %
Improvement Total

Agree
Agree% Total

Agree
Agree

%

Student
Performance

Q1-Q4 600 434 72.33% 149 24.83% +47.50%

Assessment
Approach

Q5-Q7 450 301 66.89% 143 31.78% +35.11%

Results Q8-Q10 450 373 82.89% 93 20.67% +62.22%

Overall Q1-Q10 1500 1108 73.87% 385 25.67% +48.20%

Discussion:
Teachers' Evaluation: The teachers' evaluation results strongly support the effectiveness of
the proposed automated assessment system across all stages: assessment creation, conduction,
and result compilation. Overall, the test group consistently reported higher agreement rates
compared to the control group, confirming a positive shift in teacher satisfaction, engagement,
and process efficiency.

In the Assessment Creation survey, teachers in the test group showed a substantial
increase in satisfaction, as shown in Table 5. The qualitative analysis section saw the highest
gain, with 83.33% agreement in the test group versus 8.33% in the control group, which is a
75% improvement. This suggests that the teachers appreciated the quality, uniqueness, and
structure of the automatically generated questions. In the relevancy section, agreement
improved by 22.2%, indicating better alignment of generated questions with course learning
objectives. However, in the prerequisite section, a drop of 44.4% in agreement was observed,
highlighting concerns around the need for training and resource readiness before adopting the
system. Despite this, the overall agreement rate improved by 23.33%, affirming the positive
reception of the system in facilitating and enhancing the assessment creation process.

In the Assessment Conduction stage, the results were similarly encouraging. As shown
in Table 6, agreement on qualitative aspects rose by 50%, reflecting a smoother and more
streamlined execution of assessments. Teachers in the test group reported that less time, space,
and fewer invigilators were required, and that students asked fewer clarifying questions during
the assessment. The motivation section showed a notable 55.56% improvement, with teachers
expressing increased willingness to conduct assessments more frequently using the proposed
system. However, the prerequisite section showed a 33.33% drop, again reflecting the system’s
dependency on adequate training and infrastructure. Even with this limitation, the overall
agreement improved by 26.67%, reinforcing the system’s benefits in operational efficiency and
teacher confidence during assessment conduction.

In the final stage, Result Compilation, the test group again outperformed the control
group across all sections, as shown in Table 7. The approach section saw the most significant

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1672

rise, with agreement increasing from 16.67% to 75%, which is a 58.33% improvement. This
indicates that teachers found the system effective in automating and simplifying result
processing. The qualitative section saw a 33.34% increase, suggesting improved clarity and
reliability of the results. Even the prerequisites section showed a positive gain of 33.33%,
although it still highlights the need for further training and system familiarization. In total, the
overall agreement rate increased by 43.33%, confirming enhanced satisfaction in result
compilation, reduced manual workload, and quicker access to performance insights.

Overall, teachers in the test group reported that the system was easy to follow, reduced
paperwork, and showed potential for long-term use. They appreciated the user-friendly
interface and the time saved in compiling results and conducting assessments. However, some
concerns were raised about the need for prior training and equipment dependency, especially
for question generation and during initial setup phases. In contrast, the control group
highlighted significant issues in terms of time consumption, lack of motivation, and difficulty
in managing traditional assessment processes, with most teachers expressing disinterest in
continuing with the manual approach.
Student Evaluation:

The evaluation of students comprised both cognitive and affective domains to
measure the overall impact of the proposed assessment system. Cognitive outcomes were
assessed through academic performance in various evaluation components, while affective
outcomes were captured through a structured end-of-term survey measuring students'
attitudes and perceptions.

As shown in Figure 7, cognitive performance consistently favored the test group
across all evaluation stages. Students in the test group outperformed the control group in Quiz
1 (71% vs. 67%), Midterms (74% vs. 62%), Midterm Project (79% vs. 68%), Quiz 2 (80% vs.
56%), Final Exams (82% vs. 70%), and Final Project (83% vs. 65%). The overall improvement
of 13.5% in students' cognitive performance reflects increased content understanding,
problem-solving ability, and skill application, likely influenced by the structured and
transparent approach of the proposed assessment methodology.

On the affective side, as detailed in Table 6, the test group also reported significantly
higher agreement rates across all surveyed dimensions. The Student Performance section saw
a 47.5% improvement, suggesting enhanced confidence and engagement with assessments.
Agreement on the Assessment Approach improved by 35.11%, indicating a better perception
of fairness, clarity, and ease of assessment. In the Results section, agreement increased by
62.22%, reflecting students’ satisfaction with the timeliness, accuracy, and transparency of
result reporting. Overall, the test group achieved a 73.87% agreement rate compared to
25.67% in the control group, which is an overall improvement of 48.20%.

Despite these encouraging outcomes, a few students in the test group expressed initial
difficulty in understanding the new assessment conduction process, which suggests a need for
better onboarding and communication in the early stages.
In conclusion, while the proposed system requires some initial investment in training and
technical setup, the substantial gains in efficiency, engagement, and scalability make it a strong
candidate for broader adoption. The trade-off between initial learning and long-term benefit
appears favorable. Notably, concerns about student unfamiliarity and infrastructure can be
mitigated over time with regular usage and institutional support, ensuring smooth integration
into existing educational workflows.
Comparison with Existing Studies:

When compared to existing systems discussed in the literature, such as AutoLEP[29]
and eGrader [30], our system offers significant enhancements. While AutoLEP provided
useful feedback on assignments, it could not generate adaptive programming questions based
on student skill levels. Our system fills this gap by integrating both automatic question

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1673

generation and adaptive difficulty scaling. Similarly, eGrader focused on code evaluation using
dynamic and static analysis, but its complexity made it less approachable for non-technical
educators. Our system, in contrast, was praised by teachers for its ease of use and user-friendly
feedback mechanisms.

Moreover, systems like JavAssess [31] and FindBugs [33] do not support automated
question generation or adaptive assessment. In comparison, our approach combines question
generation and assessment, offering a more comprehensive educational solution tailored for
classroom environments. Furthermore, Noblitt’s study relied heavily on manual rubric
evaluations; our system provides automated and adaptive assessment, making it more scalable
for large student cohorts. In contrast to Ettles [32], which identified typical student
programming errors using predefined problems, our system generates new and unique
questions for each student based on their learning trajectory. This not only supports skill
development but also discourages rote memorization.
Conclusion:

The growing complexity and scale of computer science education have made
traditional assessment methods increasingly inefficient and difficult to manage. Manual
creation, conduction, and result compilation of assessments pose significant challenges for
educators, particularly in handling subjective programming questions at scale. To address these
limitations, this study introduced an automated assessment system designed to generate
programming questions mapped to student learning outcomes, conduct assessments
efficiently, and compile results with minimal manual intervention.

Comprehensive experiments conducted with test and control groups demonstrated
the effectiveness of the proposed system across all stages of assessment. Teacher evaluations
showed significant gains in satisfaction, efficiency, and engagement. The test group
consistently outperformed the control group, with overall improvements of 23.33% in
assessment creation, 26.67% in assessment conduction, and 43.33% in result compilation.
While there were some concerns about the need for prior training and infrastructure readiness,
the overall feedback from teachers supported the adoption of the proposed system for long-
term use.

On the student side, both cognitive and affective improvements were evident.
Students in the test group showed a consistently better performance across quizzes, midterms,
finals, and projects. The overall improvement of 13.5% reflects better understanding,
confidence, and application of programming skills. Affective survey responses further
confirmed increased motivation, satisfaction with the assessment process, and appreciation
for the clarity and fairness of the system. An overall agreement rate improvement of 48.20%
in the affective survey highlights the students’ positive reception.

Although initial hurdles such as system unfamiliarity and dependency on equipment
were reported, these are transitional challenges that can be addressed through structured
training and gradual integration. The trade-off between initial setup effort and long-term
benefits is favorable.

In conclusion, the proposed automated assessment system significantly enhances both
teaching and learning experiences in computer science education. It not only alleviates the
manual burden on educators but also improves student outcomes by providing a more
streamlined, transparent, and scalable approach to assessments. With continued refinement
and institutional support, this system has the potential to transform traditional educational
practices and promote a more efficient, learner-centered academic environment.
Acknowledgement: The Authors would like to acknowledge the staff and students of the
University of Engineering and Technology, Lahore, for their cooperation during the
conduction of experimentation.

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1674

Author’s Contribution: Author 1 was responsible for the initial write-up of the paper, the
design of examination materials, as well as the review and final formatting of the manuscript.
Author 2 contributed by defining and implementing the templates, designing the research
methodology and experimentation, and participating in the review and formatting process.
Author 3 supported the review of the paper, refinement of the argumentation and logical
structure, re-articulation of the text, and formatting.
Conflict of interest: There exists no conflict of interest for publishing this manuscript in
IJIST.
Project details: This research was not conducted as a result of any project.
References:
[1] D. P. C. & M. M. S. Mary Webb, Niki Davis, Tim Bell, Yaacov J. Katz, Nicholas

Reynolds, “Computer science in K-12 school curricula of the 2lst century: Why, what and
when?,” Educ. Inf. Technol., vol. 22, pp. 445–468, 2016, doi:
https://doi.org/10.1007/s10639-016-9493-x.

[2] Z. O. G. of S. E. in T. P. Radošević, D., Orehovački, T., Stapić, “Automatic On-Line
Generation of Student’s Exercises in Teaching Programming,” Cent. Eur. Conf. Inf. Intell.
Syst., pp. 22–24, 2010, [Online]. Available:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2505722

[3] M. Karakus, S. Uludag, E. Guler, S. W. Turner, and A. Ugur, “Teaching computing and
programming fundamentals via App Inventor for Android,” 2012 Int. Conf. Inf. Technol.
Based High. Educ. Training, ITHET 2012, 2012, doi: 10.1109/ITHET.2012.6246020.

[4] P. Tuomi, J. Multisilta, P. Saarikoski, and J. Suominen, “Coding skills as a success factor
for a society,” Educ. Inf. Technol., vol. 23, no. 1, pp. 419–434, Jan. 2018, doi:
10.1007/S10639-017-9611-4/METRICS.

[5] M. G. S. Prof. Dr/ Eid Abdel Wahid Ali, Hanan Mohammad Maher, “Thinking out of
the box: Educational Applications,” Clin. J. Am. Soc. Nephrol., vol. 37, no. 1, 2022,
[Online]. Available:
https://mathj.journals.ekb.eg/article_216941_10a3b2592ffe6be3ea05528438ac2b5f.pdf

[6] Marlborough, “Why is Problem Solving Important in Child Development?,” 2020,
[Online]. Available: https://www.marlborough.org/news/~board/health-and-
wellness/post/why-is-problem-solving-important-in-child-development

[7] Raad A. ALTURKI, “Measuring and Improving Student Performance in an Introductory
Programming Course,” Informatics Educ., vol. 15, no. 2, pp. 183–204, 2016, doi:
https://doi.org/10.15388/infedu.2016.10.

[8] S. Fincher, “What are we doing when we teach programming?,” Proc. - Front. Educ. Conf.,
vol. 1, 1999, doi: 10.1109/FIE.1999.839268.

[9] H. U. Sezer Kanbul, “Importance of Coding Education and Robotic Applications For
Achieving 21st-Century Skills in North Cyprus,” Int. J. Emerg. Technol. Learn., vol. 12, no.
1, 2017, [Online]. Available: https://online-journals.org/index.php/i-
jet/article/view/6097

[10] Morningside College, “Advantages and Disadvantages of Various Assessment Methods”,
[Online]. Available:
https://www.clark.edu/tlc/outcome_assessment/documents/AssessMethods.pdf

[11] “What are traditional methods of teaching? | ResearchGate.” Accessed: Aug. 06, 2025.
[Online]. Available: https://www.researchgate.net/post/What-are-traditional-methods-
of-teaching

[12] C. Ahn et al., “Stanford Memory Trends,” 2018. Accessed: Aug. 06, 2025. [Online].
Available: https://purl.stanford.edu/nj167fx1481

[13] A. Sutherland, “Grades don’t correlate with a student’s intelligence,” State Press, 2017,
[Online]. Available: https://www.statepress.com/article/2017/04/spopinion-grades-do-
not-correlate-with-a-students-intelligence

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1675

[14] H. Hagger, K. Burn, T. Mutton, and S. Brindley, “Practice makes perfect? Learning to
learn as a teacher,” Oxford Rev. Educ., vol. 34, no. 2, pp. 159–178, Apr. 2008, doi:
10.1080/03054980701614978.

[15] K. Koh and A. Luke, “Authentic and conventional assessment in Singapore schools: an
empirical study of teacher assignments and student work,” Assess. Educ. Princ. Policy Pract.,
vol. 16, no. 3, pp. 291–318, 2009, doi:
10.1080/09695940903319703;WGROUP:STRING:PUBLICATION.

[16] National University of Learning Disabilities, “Transforming Assessments and Learning
from the Ground up.” Accessed: Aug. 06, 2025. [Online]. Available:
https://www.education-first.com/wp-content/uploads/2019/12/Education-First-State-
of-Flux-Part-Two-Assessment-and-Accountability-Landscape-Scan-July-2019-2.pdf

[17] I. Mekterović, L. Brkić, B. Milašinović and M. Baranović, “Building a Comprehensive
Automated Programming Assessment System,” IEEE Access, vol. 8, pp. 81154–81172,
2020, doi: 10.1109/ACCESS.2020.2990980.

[18] J. Hollingsworth, “Automatic graders for programming classes,” Commun. ACM, vol. 3,
no. 10, pp. 528–529, 1960, doi: https://doi.org/10.1145/367415.367422.

[19] Atiq Ur Rehman, “MOST FREQUENT TEACHING STYLES AND STUDENTS’
LEARNING STRATEGIES IN PUBLIC HIGH SCHOOLS OF LAHORE,
PAKISTAN,” Academia, 2016, [Online]. Available:
https://www.academia.edu/26149922/MOST_FREQUENT_TEACHING_STYLES_A
ND_STUDENTS_LEARNING_STRATEGIES_IN_PUBLIC_HIGH_SCHOOLS_O
F_LAHORE_PAKISTAN

[20] N. W. George E. Forsythe, “Automatic grading programs,” Commun. ACM, vol. 8, no. 5,
pp. 275–278, 1965, doi: https://doi.org/10.1145/364914.36493.

[21] P. Naur, “Automatic grading of students’ ALGOL programming,” BIT, vol. 4, no. 3, pp.
177–188, Sep. 1964, doi: 10.1007/BF01956028/METRICS.

[22] N. T. Le, T. Kojiri, and N. Pinkwart, “Automatic Question Generation for Educational
Applications – The State of Art,” Adv. Intell. Syst. Comput., vol. 282, pp. 325–338, 2014,
doi: 10.1007/978-3-319-06569-4_24.

[23] R. A. C. Ming Liu, “G-Asks: An Intelligent Automatic Question Generation System for
Academic Writing Support,” Dialogue & Discourse, vol. 3, no. 2, p. 3, 2012, [Online].
Available: https://journals.uic.edu/ojs/index.php/dad/article/view/10724

[24] P. Armstrong, “Bloom’s Taxonomy,” Vanderbilt Univ. Cent. Teach., 2010, [Online].
Available: https://cft.vanderbilt.edu/wp-content/uploads/sites/59/Blooms-
Taxonomy.pdf

[25] B. P. Tahani Alsubait, “Automatic generation of analogy questions for student
assessment: an Ontology-based approach,” Res. Learn. Technol., vol. 20, no. 8, 2012,
[Online]. Available: https://journal.alt.ac.uk/index.php/rlt/article/view/1366

[26] E. O’Rourke, E. Butler, A. Díaz Tolentino, and Z. Popović, “Automatic Generation of
Problems and Explanations for an Intelligent Algebra Tutor,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11625 LNAI, pp.
383–395, 2019, doi: 10.1007/978-3-030-23204-7_32.

[27] U. S. & S. A.-E. Ghader Kurdi, Jared Leo, Bijan Parsia, “A Systematic Review of
Automatic Question Generation for Educational Purposes,” Int. J. Artif. Intell. Educ., vol.
30, pp. 121–204, 2020, doi: https://doi.org/10.1007/s40593-019-00186-y.

[28] K. Terada and Y. Watanobe, “Automatic generation of fill-in-The-blank programming
problems,” Proc. - 2019 IEEE 13th Int. Symp. Embed. Multicore/Many-Core Syst. MCSoC
2019, pp. 187–193, Oct. 2019, doi: 10.1109/MCSOC.2019.00034.

[29] T. Wang, X. Su, P. Ma, Y. Wang, and Kuanquan Wang, “Ability-training-oriented
automated assessment in introductory programming course,” Comput. Educ., vol. 56, no.
1, pp. 220–226, 2011, doi: https://doi.org/10.1016/j.compedu.2010.08.003.

[30] A. E. Fatima Al Shamsi, “An Intelligent Assessment Tool for Students’ Java Submissions

 International Journal of Innovations in Science & Technology

July 2025|Vol 07 | Issue 03 Page |1676

in Introductory Programming Courses,” J. Intell. Learn. Syst. Appl., vol. 4, no. 1, p. 2, 2012,
[Online]. Available: https://www.scirp.org/journal/paperinformation?paperid=17557

[31] D. Insa and J. Silva, “Automatic assessment of Java code,” Comput. Lang. Syst. Struct., vol.
53, pp. 59–72, 2018, doi: https://doi.org/10.1016/j.cl.2018.01.004.

[32] A. Ettles, A. Luxton-Reilly, and P. Denny, “Common Logic Errors Made By Novice
Programmers,” ACM Int. Conf. Proceeding Ser., pp. 83–89, Jan. 2018, doi:
10.1145/3160489.3160493;JOURNAL:JOURNAL:ACMCONFERENCES;PAGEGRO
UP:STRING:PUBLICATION.

[33] B. Cole, D. Hakim, D. Hovemeyer, R. Lazarus, W. Pugh, and K. Stephens, “Improving
your software using static analysis to find bugs,” Proc. Conf. Object-Oriented Program. Syst.
Lang. Appl. OOPSLA, vol. 2006, pp. 673–674, 2006, doi: 10.1145/1176617.1176667.

[34] M. L. D. S. Lynnette Noblitt, Diane E. Vanc, “A Comparison of Case Study and
Traditional Teaching Methods for Improvement of Oral Communication and Critical-
Thinking Skills,” J. Coll. Sci. Teach., vol. 39, no. 5, 2010, [Online]. Available:
https://www.researchgate.net/publication/234678040_A_Comparison_of_Case_Study_
and_Traditional_Teaching_Methods_for_Improvement_of_Oral_Communication_and_
Critical-Thinking_Skills

[35] Y. A. et al Ters-Yüz Edilmiş Öğrenme, “The Effect of Flipped Learning Approach on
Academic Achievement: A Meta-Analysis Study,” Hacettepe Üniversitesi Eğitim Fakültesi
Derg. (H. U. J. Educ., vol. 34, no. 3, pp. 708–727, 2019, doi: 10.16986/HUJE.2018046755.

[36] N. K. Stephen H. Edwards, “Investigating Static Analysis Errors in Student Java
Programs,” ICER ’17 Proc. 2017 ACM Conf. Int. Comput. Educ. Res., pp. 65–73, 2017, doi:
https://doi.org/10.1145/3105726.3106182.

[37] Y. W. Yuto Yoshizawa, “Logic Error Detection System based on Structure Pattern and
Error Degree,” Adv. Sci. Technol. Eng. Syst., vol. 4, no. 5, 2019, [Online]. Available:
https://www.astesj.com/v04/i05/p01/

[38] P. L. S. Barbosa, R. A. F. do Carmo, J. P. P. Gomes, and W. Viana, “Adaptive learning in
computer science education: A scoping review,” Educ. Inf. Technol., vol. 29, no. 8, pp.
9139–9188, Jun. 2024, doi: 10.1007/S10639-023-12066-Z/METRICS.

[39] Ö. Aydın and E. Karaarslan, “Is ChatGPT Leading Generative AI? What is Beyond
Expectations?,” SSRN Electron. J., Jan. 2023, doi: 10.2139/SSRN.4341500.

[40] F. de O. S. Rodrigo Elias Francisco, “Intelligent Tutoring System for Computer Science
Education and the Use of Artificial Intelligence: A Literature Review,” CSEDU, 2022,
[Online]. Available: https://www.scitepress.org/Papers/2022/110844/110844.pdf

[41] S. Vamsi, V. Balamurali, K. S. Teja, and P. Mallela, “Classifying Difficulty Levels of
Programming Questions on HackerRank,” Learn. Anal. Intell. Syst., vol. 3, pp. 301–308,
2020, doi: 10.1007/978-3-030-24322-7_39.

Copyright © by authors and 50Sea. This work is licensed under the
Creative Commons Attribution 4.0 International License.

