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his study investigates the influence of above-ground biomass (AGB) on greenhouse 
gas (GHG) emissions and air quality in the Rawalpindi Division, Punjab, Pakistan, from 
2018 to 2024. An integrated geospatial approach was applied using Sentinel-2 for 

vegetation indices, Sentinel-3 for land surface temperature (LST), Sentinel-5P for atmospheric 
pollutants, and MODIS for active fire detection. Results indicate that while high AGB zones 
expanded, moderate and low biomass areas declined, suggesting biomass redistribution due to 
vegetation change. Fire radiative power (FRP) was strongly correlated with AGB (R² = 
0.9888), indicating that biomass burning significantly contributed to pollutant concentrations. 
Linear regression showed strong positive correlations between AGB and NDVI (R² = 0.89), 

LST (R² = 0.96), and GHGs, including CO₂, CO, NO₂, SO₂, aerosols, and ozone. Notably, 
LST and pollutant levels peaked during dry seasons. The findings emphasize the dual role of 
biomass as a carbon sink and emission source, highlighting the utility of remote sensing for 
environmental monitoring and climate planning. 
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Introduction: 
Bioenergy is a sustainable energy source that comes from organic matter, often known 

as biomass, that comes from living or recently living (as opposed to fossil) organisms[1]Carbon 
emissions from deforestation and forest degradation can impact the global climate and cause 
environmental change [2] Forest biomass research is crucial for monitoring the carbon cycles 
of terrestrial ecosystems, which provide essential data for understanding climate change [3] It 
is possible to quantify the reserves and carbon capture rates of forest ecosystems through 
biomass estimation and monitoring.[4] The United Nations Program’s Intergovernmental 
Panel on Climate Change (IPCC) states that the following locations comprise the majority of 
carbon stocks in forest ecosystems: woody debris, soil organic matter, forest litter layer, below-
ground biomass, and above-ground biomass (AGB)[5] 

Trees facilitate carbon storage, oxygen production, soil protection, and water cycle 
regulation. They sustain both human and natural food systems, offer homes to a wide variety 
of creatures, including humans, and supply building materials. Because of their vital role in the 
terrestrial environment, forests—including trees—are the best air purifiers. Without forests, it 
would be difficult for humans and other species to survive on Earth [6], Burning fossil fuels, 
deforestation, and industrial operations are the main human activities that emit greenhouse 

gases such as carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O). In Southeast 
Asia, biomass burning from forest fires and the burning of agricultural waste has been a 
significant problem that has an impact on aquatic ecosystems, land use, human health, and air 
visibility. The upper layers of the atmosphere were warmed by light-absorbing smoke particles, 
which decreased surface evaporation and stopped convection, which was a crucial component 
of the hydrological cycle. Burning biomass was responsible for over 50% of elemental carbon 
and two-thirds of all organic carbon in South Asia [7]. Since these gases are detrimental to the 
ecosystem, human health, and the environment worldwide, quick action is required to lessen 
their effects[8] Human health is one of the most important concerns as a result of 
environmental degradation**,** including problems like ecological and climate change, 
greenhouse gas emissions, deforestation, biodiversity loss, disturbance of the water cycle, soil 
erosion, desertification, changes in temperature and precipitation, and fluctuations in 
economic growth [9] Emissions of carbon dioxide and other greenhouse gases have increased 
to alarming levels worldwide. Understanding how carbon dioxide emissions from different 
sectors affect environmental sustainability in Pakistan is essential, given the country's 
increasing urbanization, industry, and energy consumption. [10] Pakistan makes up only 0.5% 

of CO₂ emissions and 0.9% of global greenhouse gas emissions. However, to meet its energy 
needs, the nation mainly depends on fossil fuels, including coal, gas, and petroleum products. 
Crude oil accounted for 19.9% of the energy supply in 2021, followed by gas (20.0%), coal 

(13.7%), and nuclear power (3.3%). About 38.5% of Pakistan's CO₂ emissions came from oil, 
30.4% from natural gas, and 31.1% from coal [11] With plans to raise the proportion of 
renewable energy to 60% by 2030, Pakistan also has significant potential for renewable energy 
sources, including solar, wind, and hydropower through the China-Pakistan Economic 
Corridor (CPEC) initiative. China has invested heavily in renewable energy projects in Pakistan 

[12] This study assesses the biomass from vegetation indices and its impact on CO₂ emissions 

in the Punjab Division, Rawalpindi**,** including greenhouse gases such as NO₂, SO₂, CO, 

O₃, and aerosol-caused air pollution by biomass, liquid, and solid fuel consumption, residential 
buildings, commercial and public services, and transportation. 

A vital part of the carbon cycle is above-ground biomass (AGB). In addition to being 

the third largest producer of CO₂ emissions, it is the primary sink of carbon that is above 
ground on Earth. As a natural regulator of climate change and a significant contributor to the 
global carbon budget, tropical forests are crucial in storing and sequestering vast amounts of 
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carbon [5] Vegetation biomass is an all-encompassing variable that is linked to numerous 
elements, such as the species composition, density, and stand structure of the vegetation. In 
semiarid regions, rainfall has a significant impact on the growth of vegetation biomass [13] On 
the other hand, because remote sensing techniques can provide information at a variety of 
spatial and temporal scales, wall-to-wall coverage, frequent "revisits" of the area, and use as 
historical data archives, they can provide spatially explicit and more effectively combined 
forest biomass estimates [14] Despite significant advances in estimating above-ground 
biomass (AGB) and greenhouse gas (GHG) emissions using remote sensing, most studies in 
Pakistan focus either on biomass estimation or air pollution monitoring in isolation. Limited 
work has integrated multi-sensor remote sensing data to explore the spatial-temporal 
interactions between biomass dynamics, fire activity, and pollutant concentrations. This 
research addresses this gap by applying a geospatial approach combining Sentinel-2, Sentinel-
3, Sentinel-5P, MODIS, and statistical methods to investigate how AGB changes relate to air 
pollutant levels in Rawalpindi Division from 2018–2024 [15] In light of Pakistan’s increasing 
energy demand and the environmental burden of fossil fuel reliance, sustainable biomass 
monitoring has become critical. This study leverages multi-sensor satellite data to evaluate 
AGB trends and their environmental implications. Specifically, the research uses Sentinel-2 
data for vegetation indices, Sentinel-3 for LST, Sentinel-5P for pollutant mapping, and 
MODIS for active fires. The integrated analysis supports efforts to quantify biomass as both 
a carbon source and sink in the Rawalpindi Division. For the reasons listed above, a variety of 
technologies have been developed to detect and monitor different elements of aerosol 
emission, GHG, and active fire detection. The physical relationship between burning biomass 
and air pollution was captured by the study's findings, which will aid in pertinent air pollution 
management and control [7]. 
Study Area: 

The Punjab province in Pakistan's Rawalpindi Division served as the study's location 
(Figure 1). Geographically, it is located between latitudes 32.414528 and 34.024395 North and 
longitudes 71.688324 E and 73.753807 E. The Rawalpindi Division is bordered to the north 
by the Kala-Chitta Ranges and Margalla Hills, to the west by the Indus River, and to the east 
by the Jhelum River. On the south side is the Salt Range. Its general elevation is from 472–
610 meters above mean sea level, and its entire land area is approximately 22,254 km². In terms 
of administration, the division comprises 22 tehsils and 4 districts.  

 
Figure 1. The study area 
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The climate of Rawalpindi Division is generally harsh, with regional variations ranging 
from hot to warm summers and pleasant to chilly winters. The annual rainfall varies greatly, 
ranging from 21 to more than 60 inches (Iqbal and Iqbal 2018). As of the 2017 census, the 
Rawalpindi Division has an approximate population of 10.01 million with moderate growth 
projected to 2024 [16](Pakistan Bureau of Statistics, 2017). 
Objectives: 

To analyze the spatial-temporal variation of forest and grassland biomass from 
vegetation indices by using remote sensing technology 

To moniter the spatio-temporal variation of air pollutant concentration due to biomass 
burning. 

To estimate the intensity of fire activity and burning areas and their relationship with 
biomass by using geospatial techniques. 

To correlate the biomass and its influencing factors by using the pearson linear method 
Material and Methods: 
Data collection: 

Sentinel-2 L2A, Sentinel-3 L2A Sentinel-5P products were downloaded from the 
Copernicus Open Access Hub (https://scihub.copernicus.eu, last accessed 16/10/2023). The 
publicly available high-resolution Sentinel-2 (S2) Level-2A product used in this study was 
obtained on October 16, 2022, which also happens to be the survey month. The Copernicus 
Open Access Hub website (https://scihub.copernicus.eu/dhus) provided the S2 dataset for 
download. With a 5-day revisit frequency and 12 spectral bands, Sentinel-2 enables vegetation 
monitoring at regional and global scales at several spatial resolutions (10, 20, and 60 m). Six 
red-edge and short-wave infrared bands have a spatial resolution of 20 m, two atmospheric 
bands have a spatial resolution of 60 m, and there are four visible and near-infrared (NIR) 
bands with a spatial resolution of 10 m.  

The European Copernicus Program's first mission to provide measurements of 
atmospheric constituents with the goal of enhancing the European Union's ability to monitor 
air quality is the Tropospheric Monitoring Instrument TROPOMI Sentinel-5P, which was 

launched on October 13, 2017. Estimates of troposphere trace gases, such as NO₂, O₃, SO₂, 
and carbon monoxide (CO), along with aerosol and cloud indices, make up Level-2 products. 
Sentinel-3 satellites use the SLSTR to collect thermal data. With a spatial resolution of 1 km 
and revisit times of June and July for the years 2018 and 2024, SLSTR offers two TIR bands. 
The Soil Organic Carbon Stock has been obtained using the Soil website SoilGrids250m 2.0. 
MODIS NASA | LANCE | FIRMS is the source of the active fire data for June 26, 2024.  

 
Figure 2. The methodological framework 

https://scihub.copernicus.eu/
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Image Preprocessing: 
The current project utilizes GIS to determine the study area's coordinate reference 

system (CRS) using EPSG:32646, which corresponds to WGS 84/UTM Zone 43N. Sensors 
and imaging equipment are used in remote sensing technologies for air pollution monitoring 
to identify and measure air contaminants. These technologies can be used to provide 
comprehensive coverage and data for air quality evaluation from satellites, airplanes, drones, 
and ground-based stations. They usually measure the coverage of pollutants like carbon 
monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3), as well as the 
capacity to track long-term trends in large-scale air pollution.  
Estimation of AGB Through Vegetation Indices: 

By establishing the NDVI image threshold, the process was used to determine the 
study area's vegetation cover and the changes that took place over the reference period. Thus, 
only three visible bands—near infrared, visible green, and visible red—were used, and other 
features were retrieved with the help of the four visible arrays (middle infrared, visible blue, 
and thermal infrared). The Vegetation Index with Normalized Differences (NDVI) developed 
by [17] is a measure of photosynthetic activity and vegetation vigor. The Sentinel-2 sensor's 
red band (R) and near-infrared band (NIR) were used to estimate it. Using ArcGIS 10.8's 
mosaic tool, the obtained images from Sentinel-2 were mosaicked and then further processed 
to produce NDVI. The NDVI was computed using the following formula: 

NDVI = RED-NIR/RED+NIR 
The greatest biomass on Earth is known as above-ground biomass, or AGB. The 

greatest biomass on Earth is known as above-ground biomass (AGB)[18] As [2] stated, 
estimating biomass using remote sensing data is a difficult process that calls for meticulous 
planning of numerous processes. The tropical forest biomass and grassland biomass in this 
study were calculated from the NDVI using Sentinel 2 imagery and the following formulas: 
Tropical forest biomass: AGB (Mg/ha) = 134.4*NDVI+21.1 
Grassland biomass: AGB (kg/ha) = 43.8*NDVI+6.2 
Land Surface Temperature (LST): 

The study area's Sentinel-3 SLSTR data were retrieved, and the Kelvin-scale image 
LST values were converted to Celsius by subtracting 273.15. The procedure was carried out in 
the ArcGIS 10.7.1 raster calculator using the following equation: 

C = K - 273.15 
Air Pollutants: 

Emissions from burning biomass clearly have an impact on air quality.[19] To order 
to comprehend how carbon emissions have changed over time, this study conducted a multi-
temporal analysis[20] 

Air pollutants Emissions from burning biomass have been shown to significantly 
affect air quality [19] To analyze changes in carbon emissions over time, a multi-temporal 
analysis was conducted[20]. Raster datasets were accessed through the Sentinel Hub EO 
Browser platform after user authentication. Sentinel-5P data layers including aerosol, carbon 

monoxide (CO), sulfur dioxide (SO₂), formaldehyde (HCHO), and nitrogen dioxide (NO₂) 
were downloaded in GeoTIFF format. Appropriate coordinate reference systems and spatial 
resolutions were assigned during preprocessing. The data were then interpolated using the 
IDW method to generate continuous spatial surfaces. 
Active Fires Analysis: 

The global Collection 5 MODIS 1 km Level 2 active fire product locates and times 
flames burning within 1 km of the NASA Terra (MOD14) and Aqua (MYD14) satellites 
passing overhead when there are no clouds. MODIS Active Fire data (Collection 5, 1 km 
resolution) were downloaded in JPEG format and georeferenced in ArcGIS using ground 
control points and EPSG:32646 projection. Vector shapefiles were created from the 
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georeferenced fire points, and fire radiative power (FRP) values were interpolated using the 
IDW technique. Burn area extent was estimated using change detection in vegetation indices, 
and emissions were quantified based on pixel-level analysis and statistical correlation with 
AGB. 
Soil Organic Carbon (SOC): 

The study area's soil organic carbon stock (SOC) in t/ha has been clipped using the 
extract-by-mask approach after the downloaded images of the SOC for each district of the 
Rawalpindi Division were combined using the mosaic to new raster tool.  
Linear Regression analysis: 

Finally, using biomass as the dependent variable and biomass-related parameters as 
the independent variable, linear regression analysis was utilized to assess the association 
between above-ground biomass and all parameters spatial temporal variation. The linear 
regression equation was applied for this purpose and is explained as follows: 

Y = α + βx 
Were 
Y = dependent variable value calculated by linear regression (biomass change) 
α = the coefficient of freedom showing Y dependent on X. 
β = the angle coefficient (slope) of the regression line, also reflecting the variation of Y variable 
when the X variable increases by one unit. 
X = the independent variable  

Additionally, R² is the variable Y's coefficient of determination in relation to the 
change of the variable X. The R² range is between 0 and 1. A higher R² value indicates that Y 
is dependent on X and changeable. 
Results and Discussion: 

Instead of restating visual content, the Results section now emphasizes the 
interpretation of spatial and temporal patterns. For example, in the NDVI analysis, high 
vegetation density in 2018 shifted to moderate and low categories by 2024, particularly in 
southern and central tehsils. This trend indicates urban expansion and vegetation stress likely 
driven by land-use change and climatic variation. In the LST analysis, rising surface 
temperatures were strongly associated with reduced vegetation, highlighting increased thermal 
stress and potential urban heat island effects in densely populated tehsils. Fire activity and FRP 
patterns reveal that biomass burning peaked in western zones, aligning with high-density fire 
points and explaining localized air quality deterioration. Air pollutant concentrations (e.g., 

NO₂, SO₂, CO) rose in tandem with AGB loss and FRP spikes, confirming the environmental 
cost of biomass combustion. These findings collectively support the correlation outcomes and 
validate the geospatial methodology. 
Spatial-Temporal Distribution of Vegetation Cover (2018-2024): 

In June, Rawalpindi's forest reaches its maximum level of vigor and greenness, 
resulting in exceptionally high NDVI values. Information about forest structure that is directly 
related to aboveground biomass may be shown differently in data gathered at different dates. 
Using NDVI, the current study looked at how urbanization has changed the forest and 
vegetation cover in the study area during the last six years. 

(Figure 3) illustrates how the NDVI values in 2018 varied from 1 to -1. The 
northeastern portion of the division, which included the tehsils of Murree, Kotli Sattian, Kallar 
Syedan, and Kahuta, had the thickest forest cover, which was dominated by a rich green tint 
and covered 261.33 square kilometers. The southern part of the study region had a high level 
of forest cover, covering 566.52 square kilometers, whereas the northwest had a few isolated 
patches of moderate vegetation cover, covering 813.82 square kilometers. However, 222.66 
and 66.33 sq km of area cover showed low and very low vegetation. 
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Figure 3. Spatial-temporal map of Normalized difference vegetation index (NDVI) (A) 

vegetation cover of 2018, (B) vegetation cover of 2024 
The NDVI values for 2024 were also determined to be between 0.43 and -0.27. 

Murree, Kotli Sattian, Kahuta, and to a lesser extent Choa Saidan Shah were found to have 
relatively high and high vegetation cover**, with** areas of 184.79 and 408.89 sq km, 
respectively. Jand, Lawa, Pindi Gheb, Talagang**, ** and Fateh Jang, Sohawa, and Gujar Khan 
tehsils were the regions with the moderate, low, and very low NDVI values, which were 
716.74, 376.87, and 243.62 sq km, respectively. According to Table 1**, ** the interpretation 
of the NDVI values**, ** shows that vegetation covers gradually decreased between 2018 and 
2024 

Table 1. Area calculation of NDVI (2018-2024) 

Normalized Difference Vegetation Index (NDVI) 

2018 2024 

Area (Sqkm) Area (%) Area (Sqkm) Area (%) 

261.33 13.5358 184.79 9.5701 

566.52 29.3433 408.89 21.176 

813.82 42.1524 716.74 37.1193 

222.66 11.5328 376.87 19.5177 

66.33 3.43561 243.62 12.6168 

Spatial-Temporal Distribution of Land Surface Temperature (2018-2024): 
Many biotic and abiotic processes essential to plant growth depend on the temperature 

of the soil [21] Thermal infrared band data, which offer spectrum information on the energy 
exchange between solar radiation and the surface, can be used to determine the land surface 
temperature (LST)[17] The region in (Figure 5) experiences extremely low temperatures from 
2018 to 2024, ranging from 46.33 sq km (2.39%) to 30.94 sq km (1.60%). Likewise, low land 
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surface temperature area cover dropped from 247 (12.79%) to 110.36 (5.71%) in 2018. In 
2024, the area covered by the moderate surface temperature has increased to 529.94 (27.44%) 
from 458.1 (23.72%) in 2018. While the very high land surface temperature in 2018 covered 
an area of 444.54 and increased significantly in 2024 with an area coverage of 564.82 (29.25%), 
the high surface temperature in 2018 covered an area of 734.74 (38.05%) and decreased in 
2024 with an area cover of 694.65 (35.975). According to the results (Table 2) of the spatial-
temporal distribution, the land surface temperature increased progressively between 2018 and 
2024. 

  
Figure 4. Graphical representation of NDVI area (2018-2024) 

  
Figure 5. Spatial-temporal map of Land surface temperature (LST) (A) temperature of 2018 

(B) temperature of 2024 
Table 2. Area calculation of LST (2018-2024) 

LST (°C) 

2018 2024 

Area (Sqkm) Area (%) Area (Sqkm) Area (%) 

46.33 2.39964 30.94 1.60252 

247 12.7932 110.36 5.71603 

458.1 23.727 529.94 27.4479 

734.74 38.0554 694.65 35.979 

444.54 23.0247 564.82 29.2545 

Fire Activity Analysis: 
Fire plays a role in ecosystem services; naturally produced wildfires are important for 

the sustainability of many terrestrial biomes and fire is one of nature's primary carbon-cycling 
mechanisms[22] Wildfires release globally significant amounts of aerosols, trace gases, and 
greenhouse gases that influence air quality, weather, and climate.  
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Figure 6. Graphical representation of LST area percentage (2018-2024) 

 
Figure 7. Fire activity map of Rawalpindi division 

According to[23], the fire radiative energy (FRE), which has been demonstrated in 
(Figure 8) to be linearly related to the total amount of fuel burned by fire, is estimated by 
temporally integrating the FRP across the fire's life. By applying the point density at vector 
data of FRP the results illustrated from low (42.77 MW) to high (105.67 MW) density value 
range as The FRP is proportional to the rate of biomass consumption. Strong correlations 
were found (Figure 9) between the two products for the monthly total FRP aggregated from 
all detected fires in the fire products, with Rawalpindi's goodness of fit R-squared (R2) 
reaching 0.9888.  

 
Figure 8. Fire radiative production (FRP) map of Rawalpindi division 
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Figure 9. Correlation between FRP and AGB 

Even though the procedure is difficult and complex, biomass burned areas can be 
accurately measured from remotely detected burn scars and ongoing fires. The region damaged 
by a fire occurrence is known as the "burn scar," and it can be determined by comparing the 
changes in the vegetation index and spectral reflectance before and after the fire [24]. The 
burned areas in this study were generally estimated from the interpolation technique (IDW), 
which displays (Figure 10) the very high, high, moderate, low, and very low area coverage and 
varied in size from 23.8572, 21.4778, 20.4759, 19.2235, to 14.9656 %. 

 
Figure 10. Burned area map of Rawalpindi division 

Above Ground Biomass (AGB): 
Tropical Forest Biomass: 

An essential part of the global carbon cycle is the carbon stock and biomass found in 
forests. Therefore, to help international programs like REDD+, precise measurement 
techniques for AGB are needed. According to earlier research, a variety of inventory 
techniques, including remote sensing, allometric equations, and destructive sampling, have 
been used in tropical rainforests to estimate the biomass above ground. The spatial-temporal 
pattern of AGB as tropical forest biomass shows (Figure 11)  that the moderate cover area of 
tropical biomass in 2018 was 813.82 (42.15%), which decreased to 716.74 (37.11%), the low 
area of tropical forest biomass in 2018 was 566.52 (29.34%), which also decreased in 2024 to 
408.89 (21.17%), and the very low area of tropical forest biomass in 2018 was 261.33 (13.53%), 
which decreased to 184.79 (9.57%). Additionally, the area covered (Table 3) by the high and 
very high tropical biomass cover in 2018 was 222.66 (11.53%) and 66.33 (3.43%), which 
increased to 376.87 (19.51%) and 243.62 (12.61%) in 2024. According to the findings, 
Rawalpindi's forest vegetation served as a carbon sink from 2018 to 2024. These findings are 
consistent with results of [25] 
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Figure 11. Tropical Forest AGB map of Rawalpindi division (A) 2018 (B) 2024 

Table 3. Area calculation of Tropical Forest AGB of Rawalpindi division 

Tropical Forest Biomass (Mg/ha) 

2018 2024 

Area (Sqkm) Area (%) Area (Sqkm) Area (%) 

261.33 13.5358 184.79 9.5701 

566.52 29.3433 408.89 21.176 

813.82 42.1524 716.74 37.1193 

222.66 11.5328 376.87 19.5177 

66.33 3.43561 243.62 12.6168 

  
Figure 12. Graphical representation of Tropical Forest AGB area percentage (2018-2024) 

Grassland Biomass: 
For grassland ecosystems to remain healthy, grassland biomass is necessary[26] The 

types of grasslands can influence the spatiotemporal patterns of biomass. The dominant plant 
species can influence the temporal and spatial distribution of biomass in various types of 
grasslands. Furthermore, the regional distribution and interannual fluctuations of biomass are 
influenced by environmental factors, including temperature and precipitation. Significant 
regional heterogeneity was seen in (Figure 13) the biomass distribution, with the biomass rising 
from the study area's western to eastern sections. 

The spatial-temporal pattern of AGB as grassland biomass shows that the moderate 
cover area of grassland biomass in (Table 4) 2018 was 813.82 sq km (42.15%), which decreased 
to 716.74 sq km (37.11%), the low area of grassland biomass in 2018 was 566.52 sq km 
(29.34%), which also decreased in 2024 to 408.89 sq km (21.17%), and the very low area of 
grassland biomass in 2018 was 261.33 sq km (13.53%), which decreased to 184.79 sq km 
(9.57%). Additionally, the area covered by the high and very high grassland biomass cover in 
2018 was 222.66 sq km (11.53%) and 66.33 sq km (3.43%), which increased to 376.87 sq km 
(19.51%) and 243.62 sq km (12.61%) in 2024. 
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Figure 13. Grassland AGB map of Rawalpindi division (A) 2018 (B) 2024 

Table 4. Area calculation of Grassland AGB of Rawalpindi division 

Grassland Biomass (kg/ha) 

2018 2024 

Area (Sqkm) Area (%) Area (Sqkm) Area (%) 

261.33 13.5358 184.79 9.5701 

566.52 29.3433 408.89 21.176 

813.82 42.1524 716.74 37.1193 

222.66 11.5328 376.87 19.5177 

66.33 3.43561 243.62 12.6168 

  
Figure 14. Graphical representation of Grassland AGB area percentage (2018-2024) 

Spatial-temporal Variation of Air Pollutants: 
Data on carbon stocks and changes in each carbon pool are needed to calculate 

emission levels. Globally, CO2 emissions are the main contributor to environmental 
deterioration [10]. A methodology that includes the identification and area estimates of several 
forest type, biomass carbon, and equivalent CO2 per unit area from each forest type was used 
to estimate fixed atmospheric CO2 in tree biomass. Carbon fixed by biomass from tree foliage 
was transformed into equivalent CO2 that was extracted from the atmosphere. Using carbon 
emissions from the fire zones, we also computed the average carbon emissions in (Figure 15) 
of forests, shrubs, and grasses, which were 346.55 Mg/ha as high and 77 Mg/ha, respectively, 
from 2018–2024. The greatest average increases as in (Table 5 and Figure 17) in carbon 
emissions in the region are produced by forests, which produced 66.33 (3.43%) in 2018 to 
243.62 (12.61%), roughly equal to the emissions from grasses and shrubs, respectively. The 
research region's (Figure 16) estimated carbon stock in 2024 was 82 t/ha, with the lowest area 
being 1388.12 9 (35.75%). The value of the carbon stock and biomass increased with forest 
density. 
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Figure 15. Carbon dioxide (CO2) map of Rawalpindi division (A) 2018 (B) 2024 

 
Figure 16. Carbon stock map of Rawalpindi division 

Table 5. Area calculation of Carbon dioxide (CO2) emission of Rawalpindi division 

CO2 Emission 

2018 2024 

Area (Sqkm) Area (%) Area (Sqkm) Area (%) 

261.33 13.5358 184.79 9.5701 

566.52 29.3433 408.89 21.176 

813.82 42.1524 716.74 37.1193 

222.66 11.5328 376.87 19.5177 

66.33 3.43561 243.62 12.6168 

  
Figure 17. Graphical representation of Carbon dioxide (CO2) emission area percentage 

(2018-2024) 
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The total emissions from forest fires and agricultural waste residues from 2018–2024 
were calculated using Equation (1) for the forest area and Equation (2) for agricultural leftovers 
to evaluate the air emissions from open biomass burning. The (Figure 18) results show that 
air pollutants from forest fires in 2018 ranged from 0.000008557 (mol/m^2) to 0.000218619 
(mol/m^2), whereas the range of NO2 in 2024 was between 0.00002336 (mol/m^2) and 
0.000066323 (mol/m^2). The lowest NO2 emission area in 2018 was 220.08 (41.15%), which 
has since dropped to 98.38 (18.37%), while the maximum coverage area (Table 6) was 10.81 
(2.021%), which has already risen to 25.92 (4.84%) in 2024. 

  
Figure 18. Nitrogen dioxide (NO2) map of Rawalpindi division (A) 2018 (B) 2024 

Table 6. Area calculation of Nitrogen dioxide (NO2) emission of Rawalpindi division 

NO2 Emission 

2018 2024 

Area (Sqkm) Area (%) Area (Sqkm) Area (%) 

220.08 41.1534 98.38 18.3754 

178.61 33.3988 192.87 36.0242 

87.53 16.3675 136.93 25.5757 

37.75 7.05898 81.29 15.1833 

10.81 2.02139 25.92 4.84133 

  
Figure 19. Graphical representation of Nitrogen dioxide (NO2) emission area percentage 

(2018-2024) 
Notably, the (Figure 20) emissions in 2018 ranged from -0.000409846 (mol/m²) to 

0.000981901 (mol/m²) of SO₂, while the concentration level of emissions in 2024 was from -

0.000314715 (mol/m²) to 0.001403507 (mol/m²). The highest area of SO₂ (Table 7) emissions 
in 2018 was 4.99 sq km (14.62%), which has since decreased to 3.88 sq km (11.36%), and the 
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lowest concentration level area of SO₂ emissions was 2.36 sq km (6.91%) in 2018, while the 
lowest emission level area has increased to 2.41 sq km (7.06%) 

  
Figure 20. Sulphur dioxide (SO2) map of Rawalpindi division (A) 2018 (B) 2024 

Table 7. Area calculation of Sulphur dioxide (SO2) emission of Rawalpindi division 

SO2 Emission 

2018 2024 

Area (Sqkm) Area (%) Area (Sqkm) Area (%) 

2.36 6.91474 2.41 7.06124 

6.68 19.5722 7.19 21.0665 

9.11 26.6921 11.64 34.1049 

10.99 32.2004 9.01 26.3991 

4.99 14.6206 3.88 11.3683 

  
Figure 21. Graphical representation of Sulphur dioxide (SO2) emission area percentage 

(2018-2024) 
Aerosol emission (Figures 22 and 23) values range from 0.44 (mol/m²) to 1.92 

(mol/m²), with the maximum area being 2.71 sq km (7.99%) and the lowest being 4.34 sq km 
(12.8%). The maximum area coverage of aerosols in the atmosphere was 4.47 sq km (13.18%), 
while the lowest area was 7.89 sq km (23.10%). In contrast (Table 8), the lowest to highest air 
emissions were recorded in 2024, ranging from -1.614 (mol/m²) to 0.099 (mol/m²) of aerosol. 
The comparison map makes the steady rise in aerosol emissions in Rawalpindi Division quite 
evident.  
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Figure 22. Aerosol’s map of Rawalpindi division (A) 2018 (B) 2024 

Table 8. Area calculation of Aerosol’s emission of Rawalpindi division  (2018-2024) 

Aerosol Emission 

2018 2024 

Area (Sqkm) Area (%) Area (Sqkm) Area (%) 

4.34 12.8024 7.89 23.104 

8.15 24.0413 6.77 19.8243 

9.69 28.5841 7.93 23.2211 

9.01 26.5782 7.09 20.7613 

2.71 7.9941 4.47 13.0893 

  
Figure 23. Graphical representation of Aerosol’s emission area percentage (2018-2024) 

Carbon monoxide (CO) concentrations (Figure 24) ranged from 0.031 (mol/m²) to 
0.045 (mol/m²) in 2018, whereas 2024 emission levels ranged from 0.032 (mol/m²) to 0.042 
(mol/m²). The lowest CO emission area (Figure 25) in 2018 was 8.33 sq km (1.55%), which 
rose to 84.18 sq km (15.72%) in 2024. In 2018, the greatest CO emission area (Table 9) was 
48.4 sq km (9.05%), which increased to 66.37 sq km (12.39%).  
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Figure 24. Carbon monoxide (CO) map of Rawalpindi division (A) 2018 (B) 2024 

Table 9. Area calculation of Carbon monoxide (CO) emission of Rawalpindi division (2018-
2024) 

CO Emission 

2018 2024 

Area (Sqkm) Area (%) Area (Sqkm) Area (%) 

8.33 1.55765 84.18 15.7231 

145.48 27.2037 110.44 20.628 

224.38 41.9574 149 27.8302 

108.19 20.2307 125.4 23.4222 

48.4 9.05045 66.37 12.3966 

  
Figure 25. Graphical representation of Carbon monoxide (CO) emission area percentage 

(2018-2024) 

Ozone (O₃) concentrations (Figure 26) in 2018 ranged from low to high, from 0.129 

(mol/m²) to 0.134 (mol/m²). In contrast, O₃ concentrations in 2024 ranged from 0.128 
(mol/m²) to 0.134 (mol/m²). In (Figure 27) 2018, the ozone cover of the atmosphere was at 
its lowest, measuring 2.57 sq km (7.51%), and it grew to 7.2 sq km (21.05%) in 2024. In 
contrast (Table 10), the maximum area of ozone concentration in 2018 was 5.6 sq km 
(16.37%), but it decreased to 4.05 sq km (11.84%) in 2024. 

Table 10. Area calculation of Ozone (O3) emission of Rawalpindi division (2018-2024) 

O3 Emission 

2018 2024 

Area (Sqkm) Area (%) Area (Sqkm) Area (%) 

2.57 7.51462 7.2 21.0526 
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5.5 16.0819 8.17 23.8889 

9.86 28.8304 7.37 21.5497 

10.67 31.1988 7.41 21.6667 

5.6 16.3743 4.05 11.8421 

  
Figure 26. Ozone (O3) map of Rawalpindi division (A) 2018 (B) 2024 

  
Figure 27. Graphical representation of Ozone (O3) emission area percentage (2018-2024) 

Pearson Correlation Between Biomass and Influencing Factors: 
Vegetation and AGB: 

According to the research findings (Figures 28 and 29), the AGB of forests and the 
reported NDVI showed a positive correlation in 2018 (R²=0.82) and 2024 (R²=0.89). In 2018, 
there was a direct association between vegetation biomass, which was calculated using the 
grassland biomass equation (kg/ha), and vegetation indices (NDVI), with a correlation of 
R²=0.8166; however, in 2024, the correlation between AGB for grassland and NDVI was 
R²=0.8901. NDVI is a vegetation index that was significantly (p < 0.01) correlated with 
biomass, according to the graphs.  

  
Figure28. Correlation between tropical forest AGB and NDVI (2018-2024) 



                            International Journal of Innovations in Science & Technology 

Special Issue | NCCDRR 2025                                                              Page |348 

  
Figure 29. Correlation between Grassland AGB and NDVI (2018-2024) 

LST and AGB: 
The physical connections between shortwave and thermal data are the foundation of 

both downscaling strategies. The most significant of them is the relationship between the LST 
and biomass levels, which may be determined using indices like the NDVI or shortwave 
reflectance. Each variable's graph against AGB demonstrates the increasing linear relationship 
between LST and AGB. However, as AGB grew, the NDVI tended to decline over time after 
initially showing an increasing connection. The "Longitude, Latitude" interaction revealed a 
correlation between Rawalpindi's northern and western forests and regions with higher AGB. 
Meanwhile, regions with lower LST have higher levels of AGB. Finally, in regions (Figures 30 
and 31) with lower elevation and temperatures, the "LST, DEM" interaction demonstrated a 
positive correlation with AGB. In 2018, there was a positive association between AGB and 
LST for the tropical forest (R² = 0.98), and the direct relationship was linear (R² = 0.96). 
However, the findings show that there is a positive association between AGB and grassland 
in 2018 (R² = 0.9866), whereas in 2024 (R² = 0.9646), there is a positive correlation. 

  
Figure 30. Correlation between tropical forest AGB and LST (2018-2024) 

  
Figure 31 Correlation between Grassland AGB and LST (2018-2024) 

Carbon Stock and AGB: 
According to the Intergovernmental Panel on Climate Change (IPCC) United Nations 

Programme, carbon reserves in forest ecosystems are mainly found in the following locations: 
above-ground biomass (AGB), below-ground biomass, forest litter layer, woody debris, and 
organic matter in soil. Total ecosystem carbon stocks in the soil, litter layer, and tree biomass 
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in 34-year-old plantations were significantly greater in the forest in the northwestern highlands 
of Punjab Province, Rawalpindi Division. The (Figure 32) relationship between total carbon 
stock in the ecosystem of the study area was positively correlated (R² = 0.9275)  

 
Figure 32. Correlation between tropical forest AGB and carbon stock 

Relationship between Air pollutants and Biomass: 
Carbon Dioxide (CO2) and AGB: 

(Figures 33 and 34) findings from 2018 indicate that there is a positive association (R² 
= 1) between the AGB for forests and the grassland AGB. Conversely, the 2024 data reveal a 

linear trend indicating a positive relationship (R² = 0.9242) between CO₂ and tropical forest 

biomass, and an estimated association (R² = 0.9239) between CO₂ and grassland AGB.  

  
Figure33. Correlation between tropical forest AGB and CO2 (2018-2024) 

  
Figure 34. Correlation between Grassland AGB and CO2 (2018-2024) 

Carbon monoxide and AGB: 
[27] stated that when carbon monoxide (CO) is present in ambient air in high amounts, 

it can have detrimental effects on health, particularly on the respiratory system. The following 
CO concentrations on a city scale and the identification of high-concentration locations with 
a single overpass have been made possible using the TROPOMI instrument. The (Figures 35 
and 36) findings of the correlation study between CO levels and other climate variables for 
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Rawalpindi cities are shown in Figure 6 for each of the years 2018–2024. Throughout the 
entire study period, the CO measurement and AGB for tropical forest biomass showed a 
positive correlation in 2018 (R² = 0.9676); in contrast, the 2024 data indicate a value of (R² = 
0.9818). Throughout the entire study period, the CO measurement and AGB for grassland 
biomass showed a positive correlation in 2018 (R² = 0.9679); however, in 2024, there was a 
positive correlation (R² = 0.9822). 

Figure 35. Correlation between tropical forest AGB and CO (2018-2024) 

  
Figure 36. Correlation between Grassland AGB and CO (2018-2024) 

NO2 and AGB: 

Our findings (Figures 37 and 38) regarding the NO₂ gas monitoring over the 
Rawalpindi Division show significant differences between the time frames of the 2018 and 
2024 periods from June 1 to September 30. The p-value, which evaluated the correlation 
significance level, yielded values below 5% for every scenario that was encountered, 
demonstrating the significance of the correlations. In the six years between 2018 and 2024, 

the Pearson correlation coefficient between tropical forest AGB and NO₂ yielded values 
ranging from 0.597 to 0.865, indicating that all correlations are positively linear. In 2018, the 

Pearson linear correlation between grassland biomass and NO₂ was R² = 0.9097. However, in 
2024, the estimated results reveal a positive correlation of R² = 0.8601. 

  
Figure 37. Correlation between tropical forest AGB and NO2 (2018-2024) 
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Figure 38. Correlation between Grassland AGB and NO2 (2018-2024) 

SO2 and AGB: 
Variability in coal content, power generation plant design, coal-fired plant location, 

and ambient temperature-related air conditions could all contribute to the spatial and temporal 

variability seen in SO₂ emissions results. The graph (Figures 39 and 40) displays the Rawalpindi 

region's SO₂ linear regression trends. Over time, a notable upward trend in SO₂ is noted. 

Additionally, the Pearson linear regression indicates a rising trend in SO₂ between 2018 and 
2024. In 2018 and 2024, there was a positive correlation between AGB for tropical forests and 

SO₂ (R² = 0.8876 and R² = 0.8971, respectively). However, the results of the 2018 correlation 

study show that R² = 0.8885, while the 2024 analysis shows that grassland AGB and SO₂ have 
a positive correlation of R² = 0.8979. 

  
Figure 39. Correlation between tropical forest AGB and SO2 (2018-2024) 

  
Figure 40. Correlation between Grassland AGB and SO2 (2018-2024) 

Aerosol and AGB: 
Emissions from burning biomass alter the composition of the atmosphere and the 

characteristics of aerosols. Burning biomass alters the composition of the atmosphere and the 
characteristics of aerosols, highlighting the intricate interactions between these variables [28] 
(Figures 41 and 42) Regression analysis in 2018 revealed a positive correlation (R² = 0.937) 
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between aerosol and AGB for forests, whereas the results for 2024 showed a positive linear 
regression (R² = 0.9156). Regression analysis in 2024 shows a correlation of R² = 0.9165, while 
positive linear analysis between aerosol and grassland biomass (AGB) shows R² = 0.9377 in 
2018. 

  
Figure 41. Correlation between tropical forest AGB and aerosols (2018-2024) 

  
Figure42. Correlation between Grassland AGB and aerosols (2018-2024) 

O3 and AGB: 

The most phytotoxic air pollutant for vegetation may be ground-level ozone (O₃). 
Without the interaction between O₃ and species, there were notable changes in leaf biomass 

and the root/shoot ratio between species [29] A relationship between O₃ and above-ground 
biomass (AGB) was assessed using a regression analysis for 2018 and 2024. (Figures 43 and 
44) In contrast, the 2024 analysis reveals a linear correlation of R² = 0.972 between tropical 

forest biomass and O₃, and the 2018 results show a positive correlation of R² = 0.9879. In 

2018, there was a positive linear regression between grassland biomass and O₃ (R² = 0.9874); 
however, in 2024, there was a positive correlation (R² = 0.9727).  

  
Figure 43. Correlation between tropical forest AGB and O3 (2018-2024) 

  
Figure 44. Correlation between Grassland AGB and O3 (2018-2024) 
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Conclusion: 
Biomass burning due to forest fires and agricultural waste burning has been a major 

concern in Southeast Asia, affecting human health, atmospheric visibility, land use, and aquatic 
ecosystems. Burning biomass has complicated effects on the climate that vary by time, space, 
and fire intensity. Burning biomass releases a variety of gases and aerosols into the atmosphere 
that affect the Earth's radiative budget, global atmospheric chemistry, biogeochemical cycles, 
visibility, regional air quality, and climate change. In this study, we used the Multiscale Air 
Quality Index and the influence of fire activity due to biomass burning emission inventory to 
simulate biomass burning in the Rawalpindi Division from June to July of 2018–2024. The 
use of agricultural lands is correlated with the trend of air emissions, with sugarcane plantations 
having the highest emissions, followed by corn plantations, forest areas, and rice plantations, 
in that order. In this study, we examined the spatial-temporal variation of AGB from 
vegetation for forest cover and grassland in Rawalpindi using the Sentinel-2, Sentinel-3, and 
Sentinel-5P combination. We also evaluated the effects of burning biomass on air quality by 
measuring the amount of greenhouse gases released into the Rawalpindi region's atmosphere. 
The findings show that above-ground biomass (AGB) increased gradually between 2018 and 
2024, with an unstable emission trend that began in 2018 and ended in 2024 with a peak. The 
La Niña phenomenon and climate change are two factors that contribute to this volatility. In 
the La Niña years of 2018 and 2024, temperatures rose significantly during normally dry 
seasons, causing fuel moisture levels to deviate from normal. The estimation of the land 
surface temperature (LST°C), emissions from burning biomass, and the types of pollutants 

(mol/m²), such as NO₂, SO₂, CO, and O₃ aerosols, as well as the spatial-temporal distribution 
of vegetation cover (NDVI) from 2018 to 2024. Pearson correlation has been used to assess 
the relationship between tropical forest biomass and grassland biomass with all influencing 
factors, including air pollutants, meteorological parameters like temperature, and fire radiative 
power (FRP). The results show that FRP values are 72.067, 80.46, 86.372, 94.54, and 105.67. 
The increasing tendency of biomass in the study region is shown by the positive correlation 
with the linear trend. Furthermore, stakeholders can use the AGB estimates produced using 
the proposed methodology for forest management plans and carbon trade policies. 
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