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lectrocardiography (ECG) is crucial for diagnosing cardiovascular diseases (CVDs), 
which cause millions of deaths each year. This study addresses the challenge of CVD 
diagnosis in rural areas, where there is a shortage of skilled healthcare professionals 

and medical equipment. This study proposes a novel method to systematically compare 
different ECG leads using Deep Learning techniques, specifically a 1D CNN Transformer, to 
detect anomalies from minimal disturbances. The analysis was conducted using the PTB-XL 
dataset and further validated with Holter ECG-based records from the St. Petersburg 
INCART database. Minimal pre-processing was applied, limited to baseline wander removal, 
to maintain the intrinsic information of each lead. The results indicate that utilizing all leads 
significantly improves the F1 score, although lead II, V1, and V2 also provide comparable 
results in the INCART database. This study demonstrates that fewer leads can be effectively 
used to diagnose diseases, facilitating the creation of low-cost ECG machines suitable for 
deployment in rural areas. The code is publicly available at https://github.com/nabeelraza-
7/ecg-lead-selection. 
Keywords: Electrocardiography; Cardiovascular Diseases; Deep Learning; PTB-XL Dataset; 
ECG Lead Optimization 
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Introduction: 
Electrocardiography (ECG): 

Cardiovascular diseases (CVDs) can be diagnosed using various methods, including 
chest X-rays, echocardiograms, and computed tomography (CT) scans. However, 
electrocardiography (ECG) is widely used for diagnosing cardiovascular diseases (CVDs) 
because it provides valuable information about the heart’s ability to circulate blood throughout 
the body. This is achieved by recording electrical activity from various anatomical positions 
using multiple leads. The heart’s electrical impulses create potential differences, which are 
detected by sensitive electrodes placed on the body. 

While ECG signals are unique to each individual, they contain recognizable patterns 
that medical professionals are trained to interpret.  The absence of specific waves or the 
presence of minor artifacts in an ECG signal may indicate abnormal or compromised heart 
function. A standard ECG has 12 signals, and each signal is referred to as a lead. A sample of 
a 12-lead ECG is shown in Figure 1.  Among the 12 ECG leads, leads I, II, III, aVF, aVL, and 
aVR are known as limb leads, while leads V1 to V6 are referred to as chest (precordial) leads. 
Each lead records the heart's electrical activity from a different angle, providing a 
comprehensive view of cardiac function. This allows professionals to understand which part 
of the heart is not functioning properly. 

 
Figure 1. A standard 12-lead ECG sample from the PTB-XL dataset 

Literature Review: 
The existing studies use multiple leads for the classification and diagnosis of CVDs. 

However, usually one combination of any two leads, and 12 leads were found frequently for 
the said task.  For better understanding, the literature has been categorized based on the 
number of ECG leads used: single-lead, two-lead, and 12-lead configurations. Additionally, 
with the broad spectrum of machine learning and deep learning algorithms used in the 
literature, the scope has been limited to the deep learning models due to their better results 
than the former. 

To the best of our knowledge, existing literature does not adequately address intra-
comparative analyses of different ECG leads in the context of deep learning-based models. 
This gives insights into the impact of different leads on diagnosing several types of heart 
diseases. The tabular comparison among the discussed studies has been illustrated in Tables 
1, 2, and 3 for single, double, and 12 leads, respectively. 
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Single Lead: 
In [1], Author performed a classification of Atrial Fibrillation (AF) using DenseNet 

CNN for a single lead. They achieved an F1 score of 0.82. Author, in their paper [2], created 
a realistic environment to create a robust model. They added random jitters so the model 
would be robust. Only lead II from the PTB Diagnostic ECG Database was utilized for the 
detection of Myocardial Infarction (MI).  They trained on a single ECG lead with a CNN 
model. This model is trained on both noisy and noise-free datasets, achieving an accuracy of 
93.53% with noise and 95.22% without noise. 

Table 1. Research conducted using a single ECG Lead. 

Ref. ECG Lead Model Dataset Disease Results 

[1] I DenseNet CNN Physionet (2017) AF F1 = 0.82 

[2] II CNN PTB Diagnostic MI ACC-93.53% 

[3] III Student-Teacher 
Model 

Chapman ECG Arrhythmia ACC=97% 

[4] I DNN, Xgboost Physionet (2017) NSR, AF, 
Alternative 
Rhythm, Noise 

F1=0.84 

In [3], Authors demonstrate that arrhythmia can be effectively detected using a single 
lead, rather than relying on all 12 leads. They proposed a student-teacher model with 
knowledge distillation. "The advanced teacher model is first developed using multi-lead ECG 
data, followed by the construction of the student model using a single lead from the 12-lead 
configuration. The experimental results demonstrated that the average accuracy of the student 
model with Lead-III was 97% in the classification of seven rhythms in the Chapman ECG.  

In the paper [4], author used Deep neural networks as feature extractors and then used 
an ensemble of XGBoost models to achieve an F1 score of 0.84. They used a single-lead ECG 
from the Physionet dataset from 2017. 
Double Lead: 

In [5], a bidirectional LSTM is used for the diagnosis of arrhythmia. They used 
morphological features and RR interval. They trained both Bi-LSTM and Bi-LSTM with 
attention mechanisms, achieving 99% accuracy across all classes. The models are trained using 
lead II and V1 from the MIT-BIH Arrhythmia Dataset. Authors worked to improve the results 
from FusingTF and introduced a Low-Dimensional Denoising Embedded Transformer. It 
consisted of the transformer part as it is, but it introduced how low-dimensional denoising 
embeddings can improve performance. They used lead II and V1 from the MIT-BIH 
arrhythmia dataset and achieved 98.39% recall and 98.41% precision [6].  

Authors used a multi-lead ECG to classify AF and Normal Sinus Rhythm (NSR). They 
used the spectrum and Temporal characteristics of the ECG signal to feed features to the 
classifier, which yielded an accuracy of about 98.3%. They used two ECG leads from a Holter 
ECG and tested them on the Physionet dataset [7]. 

Table 2: Research conducted using double ECG Leads. 

Ref. ECG Lead Model Dataset Disease Results 

[5] II and V1 Bi-LSTM MIT-BIH Arrhythmia ACC = 99% 

[6] II and V1 Transformer  MIT-BIH Arrhythmia REC=98.39% 

[7] I and II LSTM Physionet + 
proprietary dataset 

AF and NSR ACC=98.3%  

12 Lead: 
Some researchers utilize all 12 leads of a standard ECG. In [1], author employ an 

ensemble of Transformer models to predict 27 different diseases using 12-lead ECG 
recordings. They also incorporate convolutional neural networks (CNNs) to generate 
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positional encodings. Their approach achieved the highest validation score of 0.533 in the 
PhysioNet Challenge.  In [8], author developed a cascaded convolutional neural network 
(CCNN) that extracts features using a 1D CNN and then cascades the input to feed into a 2D 
ResNet block. They used all 12 ECG leads and achieved an 86.5% F1 Score.  

In the paper [9], authors used a DNN to perform automatic diagnosis. They reported 
an F1 score of above 0 in the diagnosis of all diseases. Their solution, which utilized all 12 
ECG leads, outperformed a medical doctor in diagnostic accuracy. Authors used 12-lead ECG 
signals to train a bi-directional LSTM. They achieved an F1 score of 74.15% [10]. 

Authors of [11] also used PTB-XL for different kinds of models. They reported the 
best results on different disease detection tasks. They achieved an F1 score of 0.891 for 2 
disease classification, 0.68 for 5 disease classification, and 0.332 for 20 disease classification. 
They used entropy-based features and a 1D CNN for this model. Similarly, authors of [12] 
modelled different 12-lead datasets, including the INCART database. They achieved 0.996 
accuracy in all arrhythmia classes.  

Table 3. Research conducted using all 12 ECG Leads. 

Ref. ECG Lead Model Dataset Disease Results 

[1] all  Ensemble 
Transformer 

Physionet Challenge 27 diseases  0.53 
Validation 

Score 

[8] all  Cascaded 
CNN 

China ECG Intelligence Arrhythmias F1=86.5% 

[9] all DNN Telehealth Network of 
Minas Gerais 

6 diseases F1=80%  

[10] all Bi-LSTM China Physiological Signal 
Challenge 

9 diseases  
F1=74.15% 

[11] all  Entropy-
based CNN 

PTB-XL 2, 5, 20 diseases F1=0.891, 
0.68, 0.332 

[12] all  Cascaded 
classifier 

QT, MIT-BIH 
supraventricular database, 
INCART database 

different 
depending on 
the dataset 

ACC=0.996 

Research Gap: 
From the above-mentioned literature and many more [13][14][15], it is evident that 

even though 12 ECG leads are useful, many problems can be solved by just using one or two 
of them. However, the results from these studies are not comparable as the underlying task 
varies. Therefore, this study provides the formal means for comparison between different 
ECG leads. 

Moreover, most existing research focuses on single-label multiclass classification 
rather than multilabel binary classification, possibly due to data sparsity.  Additionally, it is 
notable that transformer models are still not used proactively, even though they are replacing 
RNNs in almost every benchmark. Compared to RNNs, Transformers enable better 
parallelization and global feature learning. The lack of research may be partly since 
Transformer models require significantly more parameters compared to recurrent neural 
networks (RNNs). 
Problem Statement: 

ECG devices can be expensive, and hospitals in remote areas might not have access 
to them. These devices have been designed to be used by humans and require technical 
training, making them more difficult to use in remote areas. The contributions of this study 
are as follows: 
A CNN-Transformer-based neural network architecture to aid in diagnostics. 
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A detailed comparison of different ECG leads and their contributions in disease diagnostics. 
The motivation behind this is to reduce the number of ECG leads used in diagnosis, 

enabling the design of more cost-effective ECG machines. This raises the question “Why are 
12 leads traditionally used?”, and the answer is that perturbations are clearer when viewed 
from different angles. Since the goal is to minimize human involvement, it is expected that the 
models will improve at detecting and predicting these subtle variations. 
Objectives: 

The primary objective of this research is to investigate the feasibility of using a reduced 
number of ECG leads for accurate cardiovascular disease diagnosis, aiming to facilitate the 
development of low-cost ECG machines suitable for deployment in rural areas. To achieve 
this, the study focuses on the following specific aims: 
Develop a robust CNN-Transformer model to aid in the diagnosis of cardiac diseases. 
Systematically compare the diagnostic value of individual ECG leads.  
Novelty Statement: 

The novelty of this work is this formal intra-lead comparison, which has not been 
adequately addressed in prior deep learning research. 

Validate the model's performance and findings on the PTB-XL and St. Petersburg 
INCART datasets to ensure the results are generalizable. 
Material and Methods: 
Methodology: 

An open-access PTB-XL dataset was used as the primary dataset in this study. This 
dataset contains a large number of annotated 12-lead ECG recordings and clear benchmark 
algorithms as opposed to the existing ECG datasets [16]. It covers a broad range of age groups 
and about an equal contribution of both male and female populations, and is available for 500 
Hz and 100 Hz. Additionally, the St. Petersburg INCART database was used to compare the 
model with Holter ECG recordings. It also contains almost equal contributions of male and 
female records. It contains 30-minute-long recordings at 257 Hz. The dataset was 
downsampled and segmented to align with PTB-XL [17]. The proposed experiment is 
illustrated in Figure 2. The raw signals contained breathing and movement-based artefacts. 
For this, signals were pre-processed, and baseline wander was removed. The pre-processed 
signal was then passed to the residual neural network (ResNet), where training was performed. 
Finally, the trained model was tested using testing and validation datasets. 
Datasets: 

Physikalisch-Technische Bundesanstalt (PTB) PTB-XL dataset [16] and St. Petersburg 
INCART database of Holter ECG records [17] were used in this study. PTB-XL is a large 
dataset with a total of 21799 10-second-long 12-lead ECG recordings. The age group covered 
a broad range of 0−95 years with a median of 62. Each record was annotated and validated by 
cardiologists. This dataset was recently released in 2019 with public access.  

The ECG signals are available at sampling frequencies of 500 Hz and 100 Hz. For this 
study, the 100 Hz signals are selected, as they contain five times fewer data points, reducing 
computational complexity. A higher frequency can confuse the model with unnecessary 
complexities. Moreover, the overall morphology of the signal remains intact with a lower 
frequency, and makes the training faster. The distribution of classes in the dataset is 
represented in Table 4. 

PTB-XL provides train, validation, and test splits. For fair evaluation, the same splits 
were selected as recommended by the authors [16]. This dataset is annotated with multiple 
labels, indicating that a single patient can be diagnosed with multiple diseases.  

As for the St. Petersburg INCART database, the 7 classes were treated as a multiclass 
single-label problem. The dataset comprises 75 records, each containing 30-minute-long 
Holter ECG recordings.   Due to the use of Holter monitoring, the recordings exhibit relatively 
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higher noise levels. The dataset includes recordings from 17 men and 15 women, with ages 
ranging from 18 to 80 years and a mean age of 58.  It was downsampled from 257 Hz to 100 
Hz and segmented into 10-second-long records to make it consistent. The distribution of 
classes is given in Table 5. A stratified random split of 60% training data, 20% validation data, 
and 20% testing data was selected for model training and evaluation. 

 
Figure 2. Methodology. 

Table 4. Distribution of the diseases in the PTB-XL dataset. 

Records Class 

9514 Normal ECG(NORM)  

5469 Myocardial Infarction (MI) 

5235 ST/T Change (STTC) 

4898 Conduction Disturbance (CD)  

2649 Hypertrophy (HYP) 

Table 5. Distribution of the diseases in the St. INCART database. 

Records Class 

6120 Normal ECG (NORM)  

1980 Coronary artery disease, arterial hypertension, 
left ventricular hypertrophy (CAD, HTN, LVH) 

1620 Earlier MI 

1260 Transient ischemic attack (TIA) 

1080 Coronary artery disease, arterial hypertension 
(CAD, HTN) 

1080 Acute MI 

360 Sinus node dysfunction 

Preprocessing: 
As previously discussed, dataset visualization revealed that the raw signals contained 

artifacts that caused deviations from the baseline. These artifacts are typically caused by 
respiration, improper electrode placement, and other patient body movements. Such types of 
artefacts are called Baseline Wander. The presence of these artefacts may cause difficulty in 
the detection of ST-segment changes. Additionally, this noise causes the model to learn 
superfluous information, causing hurdles in the accurate diagnosis of the desired deformities 
in the ECG signal. [18].  
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Figure 3. Baseline Wander Removal. 

Different types of features can be extracted from ECG leads, but to maintain a fair 
comparison between different ECG leads, it is important to keep them in their base form so 
that only the intrinsic information from each ECG lead is used for training. Therefore, only 
baseline wander was used as the preprocessing technique. 

To eliminate baseline wander from the signal, wavelet transformation (WT) was 
employed. Unlike Fourier Transforms (FT), WT represented the signal in both time and 
frequency domains using wavelets, basis functions with finite support, and was shown to be 
highly effective in removing low-frequency artifacts [19]. Among different families of wavelets, 
Daubechies or dbN, i.e., N levels, has been proven to be most suitable for the ECG signals. 
N represents the number of vanishing moments. A higher level indicates the low-frequency 
band, i.e., the low-frequency component. If the coefficients of WT are zeroed above a certain 
level N, then the low-frequency component of the time domain signal can be removed, thus 
reducing the noise. The time domain signal can be attained using the inverse of wavelet 
traversal (IWT), afterwards using the equation below, where y[t] represents the original signal, 
y′[t] the reversed signal, IWT(.) the inverse wavelet transform, and WT(.) the wavelet 
transform. The de-trended signal y′[t] is reconstructed after making the wavelet coefficients 
above N equal to zero.  

y′[t]  =  IWT(WT(y[t]), N =  6) 
The Daubechies (db6) wavelet was used with N = 6 decomposition levels, as it is 

morphologically similar to the ECG signal. Some studies have also used db7 and db8. The 
selection of N = 6 levels was made experimentally by testing different levels and observing 
the baseline removal visually. This is a commonly used technique for removing baseline 
wander from the ECG signals [18]. Figure 3 (a) shows the normal signal, and Figure 3 (b) 
shows the same signal with its baseline removed. 

Data imbalance is one of the major problems in medical datasets. Typically, negative 
cases vastly outnumber positive cases, and ECG-based datasets are no exception. In this 
regard, a lot of research has been done to tackle this problem, and a number of techniques 
have been introduced, like under-sampling, Synthetic Minority Oversampling Technique 
(SMOTE, etc. These techniques have been proven to help models generalize [20][21][22]. This 
study opts for down-sampling of the negative class for both datasets. 

 
Figure 4. CNN-Transformer architecture 
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Model Architecture: 
The model used for disease classification uses the residual neural network mentioned 

in [16] as a positional encoder for a transformer encoder head, followed by a fully connected 
layer for classification. The number of filters was reduced by half. It was shown in [23] that 
the residual neural network was the best-performing neural network when it comes to time 
series classification tasks [24]. It is tested on 44 benchmark datasets for time series 
classification tasks.  

The architecture of the model consists of three residual blocks with {32,64,64} filters. 
The global averaging layer is replaced by an 8-layer transformer encoder with 5 attention heads. 
Compared to the residual neural network alone, faster convergence was observed. 
Transformers have been introduced as a replacement for recurrent neural networks, which 
makes them appropriate for the use case [25]. The architecture is illustrated in Figure 4. 
Model Training: 

For training, a random chunk of [N, 250] values is taken from [N, 1000] valued ECG 
signals, where N is the number of ECG leads in consideration. This prevents the model from 
overfitting and helps the model to generalize better. Moreover, a smaller number of values are 
propagated through the network, reducing computational load and training complexity.  
AdamW optimizer was used for training as it is more robust and better than the Adam 
optimizer. The parameters selected for training are mentioned in Table 6. 

Table 6. Training parameters. 

Parameter Value 

Learning Rate 1e-3 

Betas 0.9, 0.999 

Weight decay 1e-2 

Batch size 128 

Epochs 50 

Early stopping patience 10 epochs over validation loss 

These parameters were selected based on experiments conducted that led to faster and 
better convergence. More details about the parameters, model training, evaluation results, and 
other metrics can be found in the GitHub repository: https://github.com/nabeelraza-7/ecg-
lead-selection. 
Result and Discussion: 
Results: 

After a thorough evaluation, the results of testing are presented in Table 7 for the 
PTB-XL and INCART database. The F1 Score was chosen as the evaluation metric due to its 
ability to account for the imbalanced data classes.  

For the PTB-XL dataset, the analysis demonstrates a clear performance advantage 
when using all 12 leads, which achieved a weighted F1 score of 0.7610. This score significantly 
surpasses the results of any single lead. Among the individual leads, V6 and AVR showed the 
strongest performance with F1 scores of 0.6634 and 0.6608, respectively. In contrast, lead III 
was the weakest performer on this dataset, with an F1 score of 0.5592. Confusion matrices for 
the 12-lead configuration are given in Figure 5. 

Interestingly, the findings on the St. Petersburg INCART database present a different 
picture. While the 12-lead configuration still yielded the highest F1 score at 0.9967, several 
individual leads produced highly comparable results. Specifically, lead II, V2, and V1 achieved 
impressive F1 scores of 0.9818, 0.9863, and 0.9803, respectively. This suggests that for the 
types of anomalies present in the INCART database, a single lead can be nearly as effective as 
a full 12-lead ECG.  

https://github.com/nabeelraza-7/ecg-lead-selection
https://github.com/nabeelraza-7/ecg-lead-selection
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Figure 5. Confusion matrices for each class in PTB-XL with 12 leads 

 
Figure 6. Confusion matrix for the INCART database with 12 leads 

The model's high performance on this single-label classification task is further detailed 
in the confusion matrix in Figure 6, which shows minimal misclassification between the 
different cardiac conditions. The study notes that this difference in lead importance between 
the two datasets could be attributed to variations in data labelling methodologies. 

Table 7. Model evaluation results, F1 Score (weighted). 

ECG Lead PTB-XL INCART 

I 0.6209 0.9057 

II  0.6456 0.9818 

III 0.5592 0.9579 

AVR  0.6608 0.9588 

AVL 0.5793  0.9202 

AVF  0.5976  0.9722 

V1  0.5688 0.9803 

V2 0.5818  0.9863 

V3  0.5892 0.9519 

V4 0.6080 0.9564 

V5 0.6513  0.9466 

V6  0.6634 0.9267 

All 12 Leads 0.7610 0.9967  

Discussion: 
At present, it is challenging to directly compare our results with the majority of state-

of-the-art (SOTA) models due to the variation in metrics and the number of classes utilized 
by different researchers in model optimization. Nevertheless, as outlined in the related work 
section, it is noteworthy that the study referenced as [14] obtained an F1 score of 0.68 for a 
five-class classification task. In contrast, our approach has achieved an F1 score of 0.761 under 
similar conditions, demonstrating a notable performance improvement. 
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Regarding the INCART database, it was not feasible to conduct a comparative analysis 
based on the F1 score, as no prior research using this database has reported its results using 
this specific metric. It should be noted that the INCART database is a single-label, multi-class 
classification, whereas PTB-XL is a multi-label, multi-class classification dataset. The results 
in the literature and our study also highlight that the complexity of these tasks is considerably 
different. But, in either case, our introduced CNN-Transformer model performs exceptionally 
well. 
Conclusion: 

The results indicate that the use of all 12 leads is not always necessary, as seen in the 
INCART database, where certain leads provide insights into the detected disease. Reducing 
the number of leads can decrease the resources required for manufacturing ECG machines. 
However, this approach may not apply to all cases of disease detection. Moreover, the 
proposed CNN-Transformer architecture is more robust because of its CNN-based feature 
extraction and Transformer-based classifier part, which is well-suited for temporal modelling. 
The simplicity and speed of the model suggest its potential for use in wearable devices and 
sensors. 

A primary challenge is that this deep learning approach does not inherently provide a 
clear, interpretable reason for a particular diagnosis, which remains a significant hurdle for 
clinical adoption.  
Future Recommendations: 

Future work should therefore focus on integrating explainable AI (XAI) techniques to 
illuminate the model's decision-making process. Further investigation could also explore 
dynamic lead selection, where the model could identify the most diagnostically relevant leads 
for a specific patient or suspected condition, optimizing the balance between performance and 
resource use. 
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