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he construction industry is among the greatest fuel consumers of the world and a major 
source of carbon dioxide. Owing to this, the environmental effect can be minimized 
when focusing on conserving energy in buildings. Misuse of energy in the effort of 

equipment and errors of humans in the work is never considered budget. The use of smart 
buildings will address this problem since it will track the use of energy, detect abnormal 
behavior, and remind the managers that they are supposed to take energy-conservation 
actions. The current paper considers the issue of anomaly detection in the hourly electricity 
consumption level on a real basis and gives a two-step process with a Long Short-Term 
Memory (LSTM) network. In the first step, there will be forecasting of energy consumption, 
and, following this, the anomalies will be identified with the assistance of an LSTM 
Autoencoder. The article draws comparisons between highly complex time-dependent feature 
extraction algorithms like Rough Autoencoder (RAE), Deep Temporal Dictionary Learning 
(DTDL). The other algorithms could not perform better than the proposed method, the range 
of R-squared value was 95.11, MAE was 38.5, the MSE was 2448.94, and the RMSE was 49.49. 
Besides, the paper evaluates the means through which the AI-based anomaly detection 
solutions can provide forecasts of the electricity consumption, and the LSTM networks and 
autoencoders were tested to be more appropriate in forecasting the electricity consumption 
than the other deep learning algorithms. 
Keywords: Forecasting, Energy Efficiency, Predictive Modeling, Building Energy Monitoring, 
Energy-saving Strategies, Anomaly Identification 
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Introduction: 
Buildings lose considerable energy because of equipment faults and human errors, 

making energy-efficient strategies essential to reduce both consumption and carbon emissions. 
Building Energy Monitoring Systems (BEMS) with smart building technologies are used to 
identify abnormal energy usage and guide savings measures. The research proposes an AI-
based model for electric power consumption prediction and anomaly detection. 

Anomaly detection identifies behaviors that deviate from the intended or expected 
patterns and can be applied in domains such as fraud detection, healthcare, and cybersecurity. 
It can utilize both labeled and unlabeled data, labeled datasets provide information to define 
and recognize anomalies, while unlabeled datasets contain data whose anomaly status is 
unknown. Such anomalies are of point kind, contextual and collective. Point anomaly is where 
anomalous single data point occurs from the rest, such as an atypical monthly power cost, as 
described by author [1]. 

 
Figure 1. Point analyst in a monthly electricity bill (author’s own illustration) 

 
Figure 2. Daily Electricity Consumption (a) Low consumption during weekends is normal; 

(b) Low consumption during normal weekdays is anomalous. 
Contextual anomalies consider the context in which the data occurs. For example, low 

power usage on a weekday may be considered abnormal, whereas the same pattern would be 
normal on weekends or public holidays. Collective anomalies occur when a group of data 
points shows abnormal behavior, even if individual points seem normal. This study focuses 
on detecting anomalies in time series data by incorporating contextual and collective 
components alongside periodic patterns. 

Anomaly detection is widely studied across applications like fraud detection, 
healthcare, and aviation. Conventional methods often overlook the sequential nature of data, 
which limits their effectiveness in detecting anomalies within time series datasets. Sequences, 
which can be symbolic or time-based, present unique challenges because anomalies can appear 
as entire sequences or subsequences. Traditional anomaly detection methods struggle to 
handle time series data effectively, particularly in applications such as building energy 
consumption analysis.  
This article makes two main contributions: 
It introduces an LSTM-based prediction model for forecasting future energy consumption 
sequences. 
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It uses an LSTM autoencoder for anomaly detection in building energy data, addressing 
challenges with long time series. The article evaluates model performance across different 
prediction lengths. 
Literature Review: 
Anomaly Detection in Building Energy Consumption: 

Historical building energy data are typically used to identify point anomalies. In 
contrast, the proposed study focuses on both anomaly detection and energy consumption 
prediction.  A blend of neural network ARIMA model was utilised to forecast the 
consumption in [2], and checking the deviations was carried out through the two-sigma rule 
to detect unusual occurrences. In [3], the authors proposed an unsupervised prediction-based 
point anomaly detection algorithm on which they have conducted a learning scheme where 
every reading has been assigned an anomaly score. The author also introduced graphical 
apparatus: time series and measure of anomalies. 

Power consumption variations have been used to identify irregularities in recurring 
building activities. In [4], simultaneous anomalies were detected by analyzing power usage both 
in the frequency domain and over a moving one-week time window. The frequency-domain 
and moving one-week time window approach proposed in [4] incorporated the assumption 
that data were continuously available, which often led to false positive findings. In one study, 
one-step-ahead forecast was suggested to indicate abnormalities [5], however, day of the week 
and holiday factor that could be a potential false positive reducing influence was not 
considered. 

In the study by [5], contextual information was also considered, acknowledging that 
certain values may be normal in one context but truly anomalous in another. It stimulated the 
amount of anomaly detection to consider relative inconsistencies when it comes to collective 
sequential consumption. In other studies [6], multivariate methods are used to construct 
models to explain aspects like climate and building structure, with the expectation of helping 
managers make energy efficiency decisions. An article [7] addresses how the energy consumed 
and supplied is influenced by external variables and explains how it relies on an ARMA model 
to state the boundaries of energy usage and find anomalies. A three-part system [8] identifies 
anomalies in real-time data while continuously adapting to emerging context-specific 
situations.  
Anomaly Detection using Artificial Neural Network: 

In addition to the methods described, the paper also explains how the researchers 
utilize artificial neural network strategies. Another study on anomaly detection using machine 
learning (RML) developed a system that leverages time series data from environmental sensors 
to achieve real-time anomaly detection [5]. Their proposed approach relies on an 
autoregressive data model and its corresponding future prediction horizon. Different 
prediction models employed by the researcher to come up with a one step ahead of a 
predication comprises of the naive predictor, the nearest cluster (NC), multi-layer perceptron 
(MLP) and the single-layer linear network. A value is considered normal if it falls within the 
prediction range, which is determined using the standard deviation of the residuals from the 
applied model; otherwise, it is classified as anomalous. The paper, [9] proposes the potentially 
useful approach anomaly detection in the data on power consumption, which is a combination 
of the ARIMA and Recurrent Neural Network (RNN) architecture more suitable to the data 
area. Each technique employs a predictive model that is defined by calculating the difference 
between the predicted and actual consumption levels. The two models are used on the same 
timesteps so that their residuals fall close together to identify a probable anomaly. The author 
believes that the integration of both prediction models of RNN with the ARIMA leads to 
increased anomaly detection behavior as compared to independent anomaly detection 
behavior. 
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Anomaly Detection with LSTM: 
The specific use of the stacked LSTMs networks in this research is to detect 

abnormalities in the ECG context through formulating an error vector, which indicates the 
deviation between the predicted and actual values. The error vectors are assumed to be 
distributed as a Gaussian to determine a cut-off point between normal and abnormal behavior. 
The presence of LTM models has been experienced in the detection of abnormalities present 
in the ECG readings. The same method was also applied to other time series datasets [10], 
with power usage data achieving a precision of 0.94 and a recall of 0.17.  In intrusion detection, 
the problem described is brought down in [11], where they introduce a solution to it using an 
LSTM RNN approach to detect point anomalies and collective irregularities. A circular buffer 
maintains a record of prediction errors and may be used to label subsequences as collective 
anomalies, with an 86 percent true positive rate. 
Objectives: 
This study pursues the following objectives: 
To forecast hourly electricity consumption using an LSTM-based regression network. 
To design an anomaly detection model based on an LSTM autoencoder capable of identifying 
both contextual and collective anomalies in building energy data. 
To compare the proposed framework with existing statistical, machine learning, and deep 
learning approaches (ARIMA, RNN, RAE, and DTDL) to validate its effectiveness. 
Novelty Statement: 
The novelty of this research lies in combining time series forecasting and anomaly detection 
in a single recurrent deep learning framework. Unlike prior studies that focused only on 
prediction [2] or anomaly detection [3][4], our approach addresses both tasks simultaneously 
using real hospital data augmented with synthetic anomalies. Furthermore, the evaluation 
across multiple prediction horizons provides fresh insights into how input–output sequence 
lengths affect anomaly detection accuracy. 
Methodology: 
Overview:  

This study aims to develop an anomaly detection model using an LSTM-based 
autoencoder, followed by the creation of a power consumption forecasting model employing 
the LSTM algorithm from Deep Learning. This section details the comprehensive 
methodological procedure. 
Dataset: 

This research is based on one year of data collected hourly on electricity usage from a 
hospital located in Phoenix, USA. OpenEI provides the dataset, which consists of 8,760 data 
points representing hourly power consumption in kilowatt-hours (kWh).  The data was either 
used for forecasting or augmented with synthetic anomalies to test the effectiveness of 
anomaly detection, making the dataset a combination of real and artificial data.  
Data Preparation: 

Even though there could be practical anomalies in the data, they were considered too 
small and unimportant to be applied to the forecasting. It was assumed that the original data 
contains no noise, and any noise present results solely from the insertion of synthetic 
anomalies.  No labeled datasets were available to work on anomaly detection thereby synthetic, 
and application specific datasets have been utilized, and it is done to emulate the conditions 
in the real world. The system was tested with these artificial datasets because it came with both 
event-based and periodic anomalies, providing an opportunity to test the performance of the 
algorithms within various contextual conditions.  
Event-Based Dataset (abnormal peak):  

The event-based anomalies dataset was created to test the algorithms' ability to detect 
sudden changes in consumption, such as spikes or drops. These anomalies included a peak 
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consumption period on a weekday (hours 7500-7515) and surge peaks (hours 7900 and 8100), 
which could indicate faulty appliances or extra machines running. 
Periodical Dataset (off-periodic pattern):  

Because the original dataset follows a regular periodic pattern in power consumption, 
a separate dataset of periodic anomalies was generated to identify irregularities in the usage 
curve. The aim of this dataset with off-periodic anomalies was to study the algorithm’s abilities 
to model implicit periodicity and to analyze the behaviors of the modeling when periods in 
such periodical data were missing. Such anomalies can occur in real life due to malfunctioning 
or faulty appliances, or because of an unexpected additional load.  

 
Figure 3. Synthesized Event-Based Anomalies in Test Dataset. 

The test set of the original dataset with an off-periodic usage pattern was created by 
replacing the original power consumption hourly records with random values ranging from 
900 to 2000, taken on 7424th to 7600th hours. The periodic pattern was also disturbed on 
8265th to 8600th hours with a step of 5 hours by adding random values ranging from 500 to 
2000 as the power consumption. Figure 4 shows the synthesized off-periodic pattern test data 
of the original dataset. As discussed earlier, the exploration analysis of our dataset indicates 
periodic seasonality of daily and weekly patterns in the original dataset. The creation of an off-
periodic pattern dataset was an attempt to emulate the scenario of having consumption out of 
the daily, weekday, and weekend periodic patterns. 

 
Figure 4. Synthesized Anomalies Based on Off-Periodic Pattern in Test Dataset. 

LSTM Network for Predictions: 
The objective of the study was to forecast electricity consumption using an LSTM 

regression network.  The block diagram of the suggested arrangement of this component of 
the system is presented in Figure 5, which reveals both input and output components, the pre-
processing of the data, an LSTM network, and the model optimization component. The 
expected power consumption sequence data are the sequence data of expected electricity 
consumption, giving the output data of the input factory data. 
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Figure 5. Proposed Framework for the Forecasting Model. 

The LSTM algorithm is designed to address long-term dependency issues, allowing it 
to handle time series data with significant delays, unlike other machine learning algorithms that 
suffer from vanishing gradients. LSTM networks are built to retain information over extended 
periods [12]. The computational complexity of a deep neural network (DNN) is determined 
by the sum of its layers, with LSTM complexity defined as W = (4IH + 4H² + 3H + HO), 
where I is the input count, O is the output count, and H is the number of neurons in the 
hidden layer. The computation grows linearly with input size, but LSTM processing is more 
efficient compared to other models [13][14]. The LSTM regression model was implemented 
using TensorFlow Keras, a high-level API in Python.  

Yₜ =  f(Yₜ₋₁, Yₜ₋₂, … , Yₜ₋ₚ)                  (1) 
The LSTM model predicts current energy consumption using historical data. The time 

series was converted into X and Y matrices and then reshaped into 3D tensors with 60-time 
steps of electricity consumption, structured as (samples, time steps, input features). To 
enhance the fitting of the model and evade the issue of training, the data was standardized to 
ensure that the standard deviation was optimum, i.e., one, and the mean was also optimum, 
i.e., zero, on a scale of 0 1. 
Data Splits: 

To train the forecasting model itself, the original dataset was used according to the 
information that did not contain any anomalies. The dataset possesses 8760 data points with 
respect to the time series annual data of power consumption per hour. The construction of 
training and test sets was completed through the use of the dataset. The divisiveness is 
achieved under different circumstances. The first trial used a nine-tenth data set of the data to 
train and then evaluated it using a ten-tenth data set test set, followed by a 70- 30 and 50- 50 
combination. 
LSTM Network Anomaly Detection: 

The second objective of the study was to develop an anomaly detection model capable 
of cleaning the collected energy consumption data.  Figure 6 represents the flowchart of the 
suggested system of anomaly detection.  
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Figure 6. Flowchart of the Proposed Anomaly Detection Model 

To detect event-based and off-periodic pattern anomalies, we used an LSTM-based 
autoencoder model. The model compresses input data, reconstructs it, and calculates the 
reconstruction error to identify anomalies. The encoder creates a compressed representation, 
while the decoder reconstructs it over time steps. We trained the model using standard data 
and fine-tuned hyperparameters to minimize data loss. An anomaly detection threshold was 
set by analyzing the reconstruction loss distribution, with records exceeding this threshold 
flagged as anomalies. 
Experiments and Results:  
Overview:  

This section presents the experiments conducted and their corresponding results. The 
training of the LSTM forecasting algorithms is included, and the experimental findings for 
anomaly identification are covered. The analysis of some state-of-the-art temporal time series 
feature extraction models on the given dataset and the applicability of some recent AI-based 
anomaly detection methods are discussed, respectively. 
LSTM for Forecasting: 
Model Training: 

The LSTM model used for forecasting power consumption was trained under three 
different setups: first, using 90% of the data for training and 10% for testing; second, a 70-30 
split; and third, a 50-50 split.  This train set was also divided into a training set and a validation 
set, which was relatively good, and it serves as an overfitting prevention strategy. In the 
architectural configuration, the LSTM model undergoes training, testing, and validation on the 
dataset. The networks were then corrected through parameter tuning, which includes the batch 
size, number of hidden layers, hidden units, activation function, and so on. The optimum 
architecture was then chosen after testing multiple distinct architectural versions. Training 
options that have been specified in the best-performing algorithm are tabulated in Table 1. 
The model was built with five hidden layers, and the layers were specified to have 150 hidden 
units.  The solver was set to Adam optimizer, and MAE was used as a loss metric and trained 
for 5 epochs. The Initial learning rate was set by the adaptive method. The training progress 
is plotted as shown in Figure 7 (a), (b), and (c) with 90%-10%, 70%-30%, and 50%-50% 
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combinations, respectively. The proposed model made use of the Keras framework and ran 
inside Google Collaboratory, a research instrument developed by Google for deep learning 
analysis and network development. Google Collaboratory provided a significant advantage by 
offering free access to GPUs. In this setup, an NVIDIA TESLA T4 GPU with 16GB of 
memory was used. Google Collaboratory provides a significant advantage by offering most AI 
engineers free access to GPUs.  

Table 1. LSTM Layers and Options Specification 

Hyper-parameter Hyper-parameters setting 

Hidden layers 5 

HIDDEN Units 150 

ACTIVATION FUNCTION ReLU 

TRAINING OPTIMIZER Adam 

EPOCHs 5 

Batch Size 5 

Learning RATE Adaptive 

Validation split 0.33 

Forecasting Future Power Consumption: 
After coming up with our final working model, future values of power consumption 

were forecasted on the basis of the future values of time steps using the predict () dense class 
on the Keras model.  The LSTM network generates predictions sequentially, producing one 
step at a time. The first prediction is based on the last observation from the training data, and 
subsequent predictions are made iteratively, one step at a time. The former values of prediction 
were then used as the initial values in the subsequent processes of prediction. Figure 8 (a), (b), 
and (c) show some of the algorithm variations of the LSTM network before achieving the very 
optimized parameters. Figure 9 (a), (b), and (c) depict the training data of the plots with the 
predicted value of different train-test divisions of the perfect architecture. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Training progress on yearly training data taken at: (a) 90%-10% training-test data 
division; (b) 70%-30% training-test data division; (c) 50%-50% training-test data division. 
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(a) 

 
(b) 

 
Figure 8. Training progress on yearly training data taken in: (a) Step-1 setting; (b) Step-2 

setting; (c) Step-3 setting 

 
(a) 

 
(b) 

 
Figure 9. Training progress on yearly training data of the optimum network taken at: (a) 

90%-10% training-test data division; (b) 70%-30% division; (c) 50%-50% division. 
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Comparison of Test Data with Forecasted Values: 
The results of the optimal network forecast were subsequently plotted against the test 

data, as shown in Figures 10(a), (b), and (c).  

 
(a) 

 
(b) 

 
(c) 

Figure 10. Test data and forecasted values of the optimum network at: (a) 90%-10% 
training-test data division; (b) 70%-30% division; (c) 50%-50% division 

Performance Evaluation: 
The model evaluation has shown a remarkable performance as reported in Table 2. 

The accuracy achieved in each setup, reflected by higher R² values and lower errors, is quite 
satisfactory, indicating that the LSTM forecasting model performs well on both the training 
and test datasets.  

Table 2. LSTM for forecasting Evaluation 

Metrics 90%-10% Division 70%-30% Division 50%-50% Division 

R-2 (%) 95.11 94.31 92.49 

MAE 38.45 36.65 41.57 

MSE 2448.94 2514.71 3582.23 

RMSE 49.49 50.15 59.85 

LSTM Autoencoder for Anomaly Detection: 
Model Training: 

For anomaly detection, we trained an LSTM autoencoder on the electricity 
consumption readings in the training set, as 70% of the dataset. We assumed that there were 
no anomalies and that readings were normal. We specified the LSTM autoencoder model 
where the input sequences were of one-time step, one feature, and the output sequences were 
of the same time some feature. Figure 11 shows the training progress, and Table 3 enlists the 
specified training options of the algorithm. 
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Table 3. LSTM Layers and Options Specification 

Hyper-parameter Hyper-parameters setting 

Hidden layers 5 

HIDDEN Units 16 

ACTIVATION FUNCTION ReLU 

TRAINING OPTIMIZER Adam 

EPOCHs 5 

Batch Size 5 

Learning RATE Adaptive 

Validation split 0.33 

 
Figure 11. LSTM Autoencoder Model Training Progress. 

Anomaly Detection: 
We set an anomaly threshold based on the highest value in the training set's computed 

loss distribution. If the reconstruction error in the test set exceeded this threshold, the data 
point was flagged as an anomaly. Figures 12 and 13 show the test loss and reconstruction error 
threshold for event-based and periodical anomalies, respectively. 

 
Figure 12. Training Loss Distribution. 

 
Figure 13. Test loss versus threshold in event-based anomaly 
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Figure 14. Test loss versus threshold in the periodic anomaly. 

Anomaly Detection: 
The anomalies detected in event-based and periodical data were then plotted as shown 

in Figures 15 and 16. 

 
Figure 15. Anomaly Detection in Event-Based Dataset. 

 
Figure 16. Anomaly Detection in Periodical Dataset. 

Comparison with temporal time series feature extraction techniques: 
In this study, we used advanced time-dependent feature extraction methods to 

improve forecasting accuracy. The RAE approach combines autoencoders with rough set 
theory to extract discriminative features from the electricity consumption data. The model 
learns a compressed representation of the data, which is then decoded to reconstruct the 
original input, with the LSTM achieving high accuracy on these encoded features. We also 
employed DTDL, which iteratively improves dictionary representation to capture temporal 
patterns in the data. The DTDL method enhances forecasting by merging dictionary learning 
with deep learning techniques. 

Comparative results indicate that although both RAE and DTDL perform effectively, 
the proposed LSTM model surpasses them, achieving higher forecasting accuracy (R²) and 
lower error rates (MAE), as presented in Table 4.  
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Table 4. Comparative analysis of temporal time series features extraction methods 

Metrics RAE DTDL Proposed Model 

R-2 (%) 84.84 86.25 95.11 

MAE 65.04 64.37 38.45 

MSE 7586.5 6877.95 2448.94 

RMSE 87.1 82.93 49.49 

Applicability of Some Recent AI-based Anomaly Detection Methods: 
The sort and amount of consumption anomalies that may be recognized are just as important 
to the usefulness and strength of AI-based anomaly detection as the accuracy of identifying 
abnormal consumption of energy. Based on their ability to handle and analyze hybrid data, 
deep learning-based detection systems for anomalies have significant outcomes in terms of the 
accuracy of identifying abnormal consumption [15]. The recently published AI-based anomaly 
detection methods are listed in Table 5 along with their advantages and limitations. 

Table 5. Recently published AI-based anomaly detection methods 

Ref. Method Strengths Limitations 

[16] 
One-class 
Random Forest 

Annotated data are not 
required 

Low accuracy and only excessive 
consumption are detected 

[17] 
Variational 
recurrent 
autoencoder 

Annotated data are not 
required 

Assessment of performance is 
challenging 

[18] 
Gradient boosting 
machine 

Power utilizes forecasting 
and anomaly detection 

Only detecting suspicious 
consumption rates and having 
poor interpretability. 

[19] 
Deep autoencoder 
(DAE) 

High accuracy, Power 
utilization forecasting, 
and anomaly detection 

High cost of computing, only 
excessive usage is detected 

Discussion: 
The experimental results demonstrated that the proposed LSTM-based forecasting 

and anomaly detection framework achieved strong performance, with R² values exceeding 
92% across all data splits (Table 2). The MAE remained consistently low, between 36.65 and 
41.57, and the RMSE ranged from 49.49 to 59.85, highlighting the robustness of the model in 
predicting hourly electricity consumption. The anomaly detection component using an LSTM 
autoencoder also proved effective, identifying both event-based and off-periodic anomalies 
with minimal false positives. 

When compared with existing studies, the superiority of the proposed approach 
becomes evident. For instance, [2] applied ARIMA, GRU, and hybrid ARIMA-LSTM 
approaches for peak energy prediction, reporting higher RMSE values (~82) than those 
achieved in this study. Similarly, the hybrid ARIMA-RNN approach proposed by [20] 
produced an MAE of 64.37, whereas the LSTM framework in this research reduced the MAE 
to 38.45 (Table 4). This improvement of nearly 40% underscores the advantage of sequence-
to-sequence deep learning in capturing long-term temporal dependencies. 

Moreover, advanced feature extraction techniques such as RAE and DTDL, while 
effective in extracting discriminative features from time-series data, still fell short compared 
to the proposed model. The RAE method achieved an R² of 84.84, while DTDL reached 
86.25, both considerably lower than the 95.11% obtained in this work (Table 4). These 
comparisons suggest that direct application of the LSTM architecture can outperform complex 
hybrid frameworks, offering a balance between computational efficiency and accuracy. 

The findings also align with recent AI-based anomaly detection studies (Table 5), 
where deep learning approaches such as DAE [19] achieved high accuracy but at a high 
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computational cost. In contrast, the LSTM autoencoder employed in this research offered 
high precision in detecting abnormal consumption patterns while maintaining lower 
complexity. This demonstrates the practical potential of the model for real-world deployment 
in Building Energy Monitoring Systems (BEMS). 

Overall, the discussion indicates that while traditional statistical and hybrid methods 
provide valuable insights, deep recurrent neural networks such as LSTM offer superior 
accuracy and generalization for both forecasting and anomaly detection tasks in energy 
consumption data. 
Conclusion: 

This research focused on predicting energy usage and detecting abnormalities in 
electricity data using LSTM-based models. We took prediction based on the LSTM method 
and anomaly detection based on the LSTM Autoencoder to real hospital power consumption 
data. The actual experiment scores showed near projections and low MSE, and strong anomaly 
detecting skills. Further optimization of models towards their performance hyperparameters 
was done to achieve better performance of the models. 

One of the problems of anomaly identification is the fact that raw world datasets do 
not exist that include anomalies. The solution is tied to the manual addition of synthetic 
anomalies to the normal data, which may be a weakness in the real-world comparison of 
anomalies. The study also compares state-of-the-art feature extraction models like RAE and 
DTDL, and AI-based anomaly detection approaches. Our proposed model outperformed 
DTDL and RAE, with a 1.10x and 1.12x improvement in R², respectively. The proposed 
model also achieved a significantly lower MAE (38.45), MSE (2.80x and 3x lower), and RMSE 
(49.49) compared to DTDL and RAE. 
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