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NOISIAI

industrialization, the concern in terms of air pollution has become a serious issue. In

most cities, the pollution in the air is mostly comprised of Nitrogen Dioxide (NO»),
Ozone (O3), Carbon Monoxide, and Particulate Matter, all of which can cause serious health
issues. There is an emergent need for a system to detect air pollution. This research presents
a framework that uses Federated Learning to lessen the communication overhead during the
prediction process and ensure data privacy. The research also uses different Machine Learning
algorithms, such as Random Forest, Support Vector Machine (SVM), and Logistic Regression,
to train and evaluate the research.
Keywords: Air Pollution Detection, Federated Learning, Machine Learning Algorithms,
Urbanization and Industrialization Impact, Health Risks
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Introduction:

In the context of smart cities, managing air pollution has emerged as a critical challenge
with the rapid pace of industrialization and urbanization. These cities host a large number of
factories and vehicles that release hazardous pollutants such as CO, NOg, O3, and PM2.5 [1].
Writing such regulations is the responsibility of the government, which bases them on the
proven harm of the pollutants. Given the urgency of the problem, it is necessary to establish a
viable system for air pollution control [2].

Many smart cities have deployed sensors in well- thought- out locations to resolve this

issue. These sensors monitor the pollution levels in the air and generate large amounts of real-
time data [3]. This data contributes to the calculation of the Air Quality Index (AQI), a key
indicator for the state of the air. The Air Quality Index (AQI) offers the public a standardized
and easily comprehensible measure for comparing air pollution levels across different cities
and locations. This enables individuals to make informed decisions, such as whether to go for
walks or avoid high-risk areas, as the information is integrated into various applications for
further processing and dissemination [4].
The application of cutting-edge technology, such as big data and machine learning, is one of
the key contributions to the development of air pollution control. Extensive research has
utilized big data analytics to analyze large datasets, uncover patterns and trends, and provide
deeper insights into pollution dynamics [5]. Moreover, machine learning methods have been
used to enhance the prediction of air pollution-related events. These models can forecast
potential pollution spikes by analyzing traffic patterns, weather conditions, and historical data,
thereby enabling pre-emptive interventions [0].

The integration of sensor networks, data analytics, and machine learning has
transformed the way air pollution is managed in smart cities. This comprehensive approach
not only locates the causes of pollution but also provides the public and government with the
means to confront and lessen the harmful impacts of air pollution on the environment and
human health [7]. This integrated approach serves as a guiding framework for fostering
environmentally conscious and sustainable urban living as smart cities continue to evolve [§].
Problem Statement:

Despite the availability of different methods for the prediction and identification of a
number of air pollutants, some issues still need to be addressed. One of the major issues this
research focuses on is the communication overheads, such as data volume transmission,
frequent updates, model complexity, and scalability, when the data sensed by different sensors
is to be communicated to the central server. Even with different ML algorithms, after the
training and evaluation phase, the results and the data are communicated to the central server,
increasing the communication overhead. A secondary issue is focused on is the security of the
data being compiled at the central server, which, being the only collection point, is susceptible
to a breach that could result in the loss of important data. These issues can lead to increased
latency and operational costs, particulatly in areas with limited infrastructure.

Background:
Air Pollution:

Over the past four decades, rising global temperatures, population growth, and rapid
urbanization have collectively contributed to a steady decline in air quality. In short, air
pollution refers to the alteration of the natural characteristics of the atmosphere, caused by
various physical, chemical, and biological pollutants in both indoor and outdoor environments.
Constituents of polluted air, including nitrogen dioxide (NOZ2), ozone (O3), carbon monoxide
(CO), and particulate matter (PM2. 5), exist due to this alteration. Monitoring and assessing
air quality is crucial, as these pollutants pose significant risks to both human health and the
environment.

In reaction to this environmental issue, various governments have established systems
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to monitor levels of air pollution, including the Air Quality Index. (AQI). The Air Quality
Index (AQI) is A useful summary measure used to provide simple indicators of air quality by
outlining the levels of several air pollutants. The AQI serves to categorize air quality into six
levels, which correspond to different amounts of pollution and the resulting potential health
effects.

These six layers are visualized in Figure 1 below, which shows the different air quality
classes. The categories, which typically range from "Good" to "Hazardous," are designed to
make it easy for the public and relevant authorities to interpret the potential health hazards of
the present conditions of the air quality. The Air Quality Index (AQI) becomes an
indispensable tool when making decisions, influencing laws, and igniting public awareness

campaigns.
Air Quality Index
0-50 Good Enjoy your usual outdoor activities.
51-100 Moderate Extremely sensitive children and adults should

refrain from strenuous outdoor activities.
r activity.

151-200 | Unhealthy Sensitive groups should avoid outdoor exposure
and others should limit prolonged outdoor activity.

Sensitive groups should stay indoors and others
should avoid outdoor activity.
Figure 1. Air Quality Index (AQI) Levels [9]

Additionally, the AQI serves as a vital communication tool, an instrument, making it
casier for the public to receive information on air quality in real time. This equips individuals
with the necessary information to make informed outdoor activity decisions while also
providing a foundation for implementing effective pollution control measures. The
government's dedication to preserving environmental health and public health in the face of
growing pollution challenges is demonstrated by creating and applying AQI systems.
Federated Learning:

Federated Learning (FL) is a branch of Machine Learning (ML) that differs from
conventional ML algorithms by operating in a decentralized rather than a centralized manner.
Authors in [10] introduced the concept of FL, and the idea behind its creation was to ensure
that the data of the local client was not transmitted to the central server after the training and
evaluation using ML algorithms.

If explained in a simplified manner, the data used by ML algorithms for training is
collected from local clients, such as mobile phones, vehicles, sensors, etc. After the training
and evaluation, the data, along with the results from the evaluation, are transmitted from the
local client to the central server for aggregation. Though usually effective, this process presents
several issues, such as a high communication overhead due to data transmission and results.
Another issue is that as the data is transmitted to the central server, it poses a severe risk to
privacy. Compared to this, FL solves both issues by performing evaluation and aggregating
results in a decentralized manner. This decentralized approach reduces communication
overhead by minimizing data transmission and simultaneously enhances privacy by keeping
raw data local while only sharing model updates. The decentralized nature of federated learning
makes it more resilient to attacks.

To better understand the functioning of Federated Learning (FL), it operates iteratively
through multiple rounds of communication between a central server and local clients. In this
terminology, the exchanges are more commonly called Federated Learning Rounds [11]. In
any scenario, the process of FL starts with the central server first sharing the global update
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model with all the local clients. Upon receiving the global model, the local clients would then
use their data to train and evaluate it using different ML algorithms. Once the evaluation is
complete, only the results are forwarded to the central server for aggregation. After aggregating
the results into an updated global model, the central server would then transmit the global
model to all the clients. This process continues for a defined period, after which it terminates,

and the final global model is regarded as the robust model [12], as illustrated in Figure 2.
Central Server

&

Global Model
Federated Learning Rounds
[ O == ] © == [ O == |
—
L L

Local ML Model Training
Figure 2. Federated Learning Process

To ensure the working of the FL. and the federated learning rounds, the process uses
the Federated Averaging Algorithm (FedAvg). The FedAvg algorithm was created by Google,
and it was considered the first vanilla FL algorithm for the distributed training of different
local clients.

In summary, FL provides a more resilient and efficient training paradigm compared to
traditional centralized ML, addressing the dual challenge of efficiency and security. This makes
FL particularly suitable for sensitive domains such as healthcare, finance, and environmental
monitoring.

Literature Work:

For smart cities, air pollution prediction has amassed several research works over the
past few years. These research works range from different types of surveys to experimental
papers. After surveying different literature works after the year 2019, it was discovered that
most research focused on using different ML algorithms. Some of such research works are
briefly discussed below. Authors in [13] presented a research work that details air quality
analysis and smog detection using ML regression models such as the Polynomial regression
model, Random Forest regression model, Decision tree regression model, and Support Vector
Regression model. Using a dataset from the Open Government Data (OGD) Platform India
[14], the authors evaluated various regression models and concluded that the Random Forest
Regression model outperformed the others. Authors in [15] also used regression algorithms
and feature selection techniques to predict PM2.5 in smart cities. In terms of feature selection,
the authors used five different techniques: Analysis of Variance, Recursive feature elimination,
Variance threshold, random forest, and light gradient boosting. As for the ML algorithms, the
authors used six regression and ensemble models: Decision Tree, Extra Tree, Random Forest,
XGBoost, AdaBoost, and Light GBM. Using the dataset from five cities in China, the authors
concluded that the AdaBoost algorithm and the Light GBM feature selection technique
provided the best performance.
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Some researchers have focused their research on case studies for specific cities in [16]
and [15] and implemented ML algorithms such as Multi-layer Perception (MLP) and Random
Forest. These ML algorithms were compared with each other using the Malaysia Air Pollution
Dataset for the prediction of PM2.5. Based on their research, the authors concluded that
Random Forest performed better than MLP in predicting PM2.5. Similarly, some research
works have been done for different cities of India, such as author[15], which tested different
ML algorithms to predict the air quality in the capital city of Maharashtra, Nagpur, from which
the authors concluded that Boosted Random Forest was the best ML algorithm. While
author[16] have tried to analyze the trend in the temporal variations of AQI levels for Pune.
The authors have also tried pinpointing the locations in Pune with the most different air
pollutants. They processed and used 1 year of data from the smart city office in Pune. Then
they used Supervised ML algorithms, Random Forest, and Time-series forecasts to predict air
pollution levels.

Beyond India, air pollution prediction research is also being conducted in other
regions, such as Australia, where author[17] use a real-world dataset from New South Wales
to develop a hybrid deep learning framework for predicting the AQI in smart cities. The
authors employ a deep learning forecasting model that integrates 1D-CNN with Bi-GRU.
Similarly, authors in. [18] used a 10-year air quality dataset of California to explore a pipeline
that stores, processes, and makes predictions using Logistic Regression and Random Forest
Classification ML models to predict the AQI values of California.

Aside from the experimental research discussed above, different reviews have also
been conducted on air pollution or AQI value prediction in smart cities using ML. Author[19]
have extensively reviewed different computing applications in urban environments for air
quality predictions using the Internet of Things (IoT), cloud computing, satellites, and
different AI/ML methods. Authors[20] [21] teviewed different studies on air pollution
prediction using ML algorithms and monitoring based on IoT sensors in the context of
different smart cities. They used deep learning techniques, specifically Long Short-Term
Memory (LSTM) networks with attention mechanisms, to predict urban air quality. Authors
in [22] used different sources when used as monitoring stations and meteorology. With
attention mechanisms, the model can learn to assign varying levels of importance to different
input features, which helps increase the prediction accuracy. In the work for air-quality
prediction in smart cities [23], ensemble-learning algorithms, which include Random Forest,
Gradient Boosting Machines, and Support Vector Regression, are utilized to combine multiple
base learners, achieving a stronger model for prediction. In most cases, ensemble methods
perform better than single models due to the diversity of the base learners. This paper studied
the performance of ensemble learning for air quality prediction. Transfer Learning Based Air
Quality Prediction in Smart City" presented a transfer learning-based approach to predict air
quality in smart cities effectively when the data is scarce or different stationary states between
the source and target. The proposed approach utilizes transfer learning by first training models
on data-rich cities and then fine-tuning them on target cities with scarce data, thereby
improving prediction accuracy through knowledge transfer from source to target domains.

In [24], the problem of generalization and scalability of air quality prediction models
across heterogeneous smart cities was considered. This research explored the use of ground
and satellite measurements to improve the prediction of urban air quality. To synthesize
information from multiple sources, including satellite remote sensing for atmospheric
conditions and monitoring stations on the ground for pollutants, they used deep learning
techniques to capture the complex spatial and temporal patterns efficiently. The combination
of heterogeneous data types enhances urban air quality forecasts by providing more precise
and complete predictions. Multi-objective airborne pollutant prediction in smart cities using
evolutionary algorithms to jointly optimize prediction accuracy, computational cost, and
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model interpretability. By taking into account a set of competing objectives, i.e., minimizing
the prediction errors and maximizing the diversity of solutions, a pair of sets of trade-offs
between different objectives [25].
Table 1. Table describing Air Pollution Prediction Studies

Study Methodology Key Findings Limitations
ML regression models: Random Forest Lack of consideration for
Polynomial, Random regression model spatial or temporal dynamics
[13] | Forest, Decision Tree, performed best for air and potential overfitting of
Support Vector Regression | quality analysis and models due to limited data
smog detection. representation.
Regtression algorithms, The AdaBoost algorithm | Limited generalizability to
Feature selection with Light GBM feature | other regions, potential
techniques: ANOVA, selection provided the biases in data from specific
[15] | Recursive Feature best performance for cities.
Elimination, Variance PM2.5 prediction.
Threshold, Random Forest,
Light Gradient Boosting
ML algorithms: Multi-layer | Random Forest Possible data inconsistencies
[16] Perceptron (MLP), Random | outperformed MLP in and a lack of comprehensive
Forest predicting PM2.5. evaluation of other ML
models.
ML algorithms: Boosted Boosted Random Forest | Limited applicability to
Random Forest was Nagpur's best ML other cities, potential biases
7] algorithm for ai li in data from N
gorithm for air quality | in data from Nagpur.
prediction.
Supervised ML algorithms: | Analyzed temporal Reliance on data from a
Random Forest, Time variations of AQI levels | single source, potential data
18] Series Forecast in Pune and identified quality, or
locations with high air representativeness
pollutant limitations.
concentrations.
Hybrid deep learning Introduced a hybrid DL | The complexity of DL
framework combining 1D- | framework for AQI models may hinder
[19] CNN and Bi-GRU prediction in smart interpretability, pose
cities. potential challenges in
model deployment, and
limit scalability.
Logistic Regression, Developed a pipeline for | Limited evaluation of other
120] Random Forest AQI prediction in ML algorithms, and
Classification California using ML potential biases in data from
models. California.
Review of computing Reviewed various Lack of empirical validation,
applications in urban computing applications, | potential bias in the
21] environments including IoT, cloud selection and interpretation

computing, and ML
methods for air quality
prediction.

of reviewed studies.
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Review of studies on air Reviewed studies on air | Lack of original research,
pollution prediction using pollution prediction potential biases in the
[22](23] | ML algorithms using ML algorithms selection and interpretation
and IoT sensors in of reviewed studies.
smart cities.
Ensemble methods Investigated the The complexity of ensemble
combining Random Forest, | effectiveness of models may increase
Gradient Boosting ensemble learning for air | computational costs and
[24] . . . . :
Machines, and Support quality prediction. potential challenges in
Vector Regression model explanation and
interpretation.
LSTM networks with Improved air quality Potential challenges in
125] attention mechanisms prediction accuracy by model interpretability and
weighing the importance | sensitivity to
of input features. hyperparameters.

The table summarizes various studies on air pollution prediction in smart cities, detailing
their methodologies, data sources, key findings, and associated limitations. Authors in [11]
employed ML regression models to analyze air quality and detect smog, finding the Random
Forest model to perform best, albeit with potential spatial or temporal dynamics limitations.
Author [13] utilized regression algorithms and feature selection techniques to predict PM2.5
levels, highlighting the effectiveness of the AdaBoost algorithm with Light GBM feature
selection while acknowledging limited generalizability and potential biases in city-specific data.
Other studies, such as authors in [15] and [16], focused on comparing ML algorithms for air
quality prediction. However, they may face challenges like data inconsistencies and limited
applicability to other cities. Additionally, review studies by authors [21][22] and [23] provided
comprehensive overviews of the field but are constrained by a lack of empirical validation and
potential biases in the selection and interpretation of reviewed studies. Overall, while these
studies contribute valuable insights, they also highlight the need for careful consideration of
limitations in air pollution prediction research for smart cities.

Methodology:

In this study, we proposed a novel federated learning (FL) enabled framework to
address the critical challenge of air pollution in smart cities. The objective is to enhance the
forecasting accuracy of air pollution levels and AQI value at any instant by harnessing the
power of a number of machine learning (ML) algorithms, such as Random Forest, Support
Vector Machine, and Logistic Regression. This is because Federated Learning offers inherent
advantages for addressing the problem by incorporating key aspects such as optimal model
aggregation frequency, efficient compression methods, adaptive learning rates, and context-
aware participant selection. These methods balance the trade-off between modeling accuracy
and communication costs while providing resilience against attacks such as data forging,
eavesdropping, device masquerading, and denial-of-service.

Unlike the traditional centralized approach, FL allows the model training to take place
on nearby devices or sensors scattered throughout the city. Upon processing by the ML
algorithms, just the merged and anonymized results are sent to the central host. This federated
training scheme addresses the data privacy and privacy-preserving problem at the same time,
it can reduce the communication cost.

This research work proposes an FL-based framework for the prediction of air quality
in a smart city. The framework would consist of 3 layers: (i) Application Layer, (ii) Cognitive
Layer, and (iii) Data Collection Layer. The proposed framework operates using a bottom-up
approach, as illustrated in Figure 3.
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Figure 3. Proposed Federated-Based Framework for Air Quality Prediction in Smart City

As discussed above, the proposed framework operates in a bottom-up manner.
Initially, data are gathered from different sensors in a smart city, which range from humidity
sensors, temperature sensors, CO, sensors, PM2.5 sensors, and NO, sensors. After the
accumulation of the sensor data, it is transmitted to a local client in a specific grid of the smart
city where the sensors are located. Once there, the local client uses the acquired data to train
the global model, received from the central server, through the use of different ML algorithms.
Once the training is completed, the client communicates the results of the training to the central
server present in the cognitive layer. Once there, the results are aggregated and used to update
the global model. This process continues for a defined period of iterations after which it
concludes. Using the final updated global model, predictions are generated regarding the
different air pollutants and transmitted to different air quality monitoring dashboards as
represented in the Application layer. The convergence of the global model within a federated
learning framework relies on factors such as the number of participating devices,
communication frequency, and data heterogeneity. Stopping criteria typically involve maximum
training rounds, model stability, and performance metrics on a validation set. By thoughtfully
considering these factors, it is possible to effectively determine when the global model has
converged.

To better understand the proposed architecture, each layer has been discussed in
detail as follows:
Data Acquisition Layer:

In this layer, it is assumed that there are several sensors located around a smart city
that are used to gather data in regard to CO», NO,, CO, and PM2.5. To simplify the architecture,
a small grid of the smart city is considered as a sample, where all collected data are transmitted
to a local client situated at a weather station. In conclusion, the multi-box of the SSD retains
the top K predictions, which minimize both location and confidence losses. This is elaborated
through Equation 1.

S" = {Sen; + Sen, + Sen; ...Sen,} (1)
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Where, S'Represents all of the sensors located in a specific grid. From the equations,
it can also be considered that there are n sensors overall present in a smart city gathering data.
Once there, the gathered raw data will be trained using different ML. models. In place of the
gathered data, this research makes use of an air pollution dataset, referred to as D.4p. Using this
dataset, the local client (C/) would initiate the training process. This is further shown in
Equation 2.

feer f Dap D @

Where the function f (Dgp , Cl) represents the process of training using the dataset
by each local client for a specific grid. Once trained, the trained model results in the form of
weights (w) will be communicated to a central server located in the cognitive layer.

Cognitive Layer:

In this layer, the results from the trained local model are aggregated with those from

other grids, as shown in Equation 3.
w' = wy, Wy, ws ... Wy, (3)

Through the accumulation of all the weights, the global model can be generated as

represented in Equation 4.
_ vey nfo
Cs - Zakﬂ? Wits1 (4)

Where, Cy represents the central server while Clj, Represents the serial number of the
local client. While n¥ Represents the total size of the dataset being used, with n representing
the sample size of local clients.

Once this is completed, the central server would transmit the updated global model to
a selected number of local clients or weather station terminals, where the global model would
be used to train the next batch of data gathered. The accumulated results in the form of a
global model would also be shared with cloud storage.

Application Layer:

This layer is associated with an application interface showing a detailed description of
the air pollution level and the AQI index level. This application is used by regularly updated
users to the different AQI values for their respective smart cities.

Obijectives:
The main objectives of this study are:

To develop a federated learning (FL)—enabled framework for accurate air quality
prediction in smart cities.

To reduce communication overhead by shifting model training to client devices while
maintaining robust performance.

To preserve data privacy and security by preventing raw data transmission to a central
server.

To evaluate the performance of different regression-based ML algorithms (Random
Forest, Decision Tree, Linear Regression, Support Vector Regression) in both FL. and non-
FL environments.

To provide a scalable and adaptable solution that can be deployed across
heterogeneous smart city environments for real-time air quality forecasting.

Novelty Statement:

This study is novel in that it integrates federated learning with regression-based
machine learning models for air quality prediction; an approach not widely explored in the
literature. Unlike traditional centralized architectures, the proposed framework offers a
privacy-preserving, communication-efficient, and scalable solution. It also provides a direct
performance comparison between FL-based and non-FL-based scenarios, demonstrating that
even simple models such as Linear Regression benefit significantly from federated training.
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Furthermore, the use of the Flower FL framework shows the practicality of adapting open-
source federated platforms to real-world environmental monitoring tasks.
Material and Methods:

To evaluate the proposed framework, this study used Flower [25][26], a tool designed
for analyzing and assessing federated learning applications. The reasoning behind the use of
Flower was that it performs better in terms of system heterogeneity and scalability. Another
good feature of Flower is that it has a strong community and incorporation both TensorFlow
[27] and PyTorch [28]. The dataset used for this research was obtained from Kaggle
(https:/ /www.kaggle.com/datasets /hasibalmuzdadid/global-air-pollution-dataset) to help
train and evaluate ML algorithms. It contained global geolocated information regarding NO»,
Os, CO, and PM2.5 pollutants [29]. The obtained dataset included data about different cities
in different countries across the globe and had values recorded for the last decade.

After acquiring the dataset, different pre-processing mechanisms were applied to clean
and filter the data from empty and null values and those irrelevant values. Besides containing
the different values of air pollutants, the acquired dataset also included the category of each
air pollutant. In light of this, the pre-processing also determined each pollutant category and
assigned a unique value to each category through One Hot Encoder [30]. One-Hot Encoding
was applied because the dataset included categorical attributes for pollutant categories, which
cannot be directly processed by regression models. This transformation converted categorical
labels into numerical binary vectors, ensuring that all models could interpret and utilize the
categorical information without introducing ordinal bias. After this, the final data was
converted to NumPy [31] Arrays to be processed by the Flower framework.

In this study, the features correspond to meteorological and pollutant-related
attributes (NOgz, Oz, CO, and PM2.5 concentrations along with associated contextual
variables), while the target variable is the Air Quality Index (AQI) or pollutant concentration
levels to be predicted. This explicit separation ensures the models learn patterns from input
pollutant data to estimate the output air quality measure. Once the pre-processing was
completed, the final data was partitioned into a 35% split between a set number of clients. The
data was also shuffled before the partition so that the same or sequenced data would not be
provided to different clients. After this, the FL. process was initiated using FL. while using the
FedAvyg algorithm with some specific strategies.

In the initial stage of training, different regression-based machine learning models were
considered to analyze the predictive performance of the proposed framework. The selected
algorithms included Random Forest Regression (RF), Decision Tree (DT), Linear Regression
(LR), and Support Vector Regression (SVR), each offering distinct capabilities for modeling
continuous target variables within the air quality dataset. The overall workflow of the proposed
framework is illustrated in Figure 4, which summarizes the dataset preprocessing, federated
training, and evaluation process.

Results and Discussion:
Results:

The rationale for using regression-based ML algorithms is that the collected data
consist of values suitable for classification-based machine learning tasks. Another reason
behind this choice was that the gathered data contained values that represented real-time data.
To test the efficiency of the results, all the above regression ML models were compared with
each other in terms of an FlL.-based environment and a non-FL-based scenario. The metrics
used for this comparison include Mean Absolute Error (MAE), Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), and R* Score. Table 2 presents in detail the different
results obtained for both scenarios.

Evaluating overall performance improvement, the FL-based scenario demonstrates
much better performance across most ML algorithms compared to non-FL approaches, with
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particularly notable improvements in Linear Regression, as shown in Figuress 5 and 6. First,
assessing the algorithm-specific performance, Random Forest achieved the best overall
performance in both scenarios, with an MAE of 2.13 (Non-FL) vs 2.14 (FL), showing
consistent reliability as shown in Figures 5 and 6. Linear Regression showed the most
significant improvement in the FL scenario, with R* Score improving from 0.106 to 0.416,
indicating better model fit, as illustrated by Table 2 and Figure 5. Decision Tree and SVR
demonstrated moderate improvements in the FL. environment, as shown in Figure 5.
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Figure 4. Workflow Diagram of Proposed Framework
Table 2. Comparison of Non-FL and FL-based Scenarios

Non-FL FL-Based
Mean Mean |[RMSE| R? Mean Mean [RMSE R?
Absolute | Squared Score| Absolute | Squared Score
Etrror Error Etror Error
(MAE) (MSE) (MAE) (MSE)
Random Forest 213 12.500 3.53 | 0.534 2.14 12.84 3.58 | 0.511
Decision Tree 2.356 20.19 4.49 | 0.247 2.43 21.34 4.61 | 0.189
Linear . 2.52 23.92 4.89 | 0.106 2.45 15.35 391 0416
Regression
Support. Vector 2.54 21.93 4.68 | 0.182 2.54 22.46 473 | 0.146
Regression
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Furthermore, analyzing the performance metrics, about MAE, FL-based models
showed competitive or slightly improved absolute error rates. Whereas MSE and RMSE, most
FL models achieved lower squared errors, indicating better prediction accuracy. In the R?
Score, it showed significant improvements in FL scenarios, particularly for Linear Regression
(0.106 to 0.4106) as illustrated in Table 2 and Figure 5.

Additionally, the FL approach achieved these enhanced results while reducing
communication overhead by maintaining data locally and only sharing model parameters.
Discussion:

The findings of this study indicate that a federated learning (FL)) paradigm can provide
competitive predictive performance for air quality forecasting while preserving data privacy
and reducing centralized data transfer. Across the evaluated regression models, Linear
Regression (LR) showed a marked improvement under the FL setup relative to the non-FL
baseline, suggesting that federated aggregation can enhance generalization even for simple
models when data are distributed across heterogeneous clients. Random Forest (RF) remained
consistently strong in both settings, reflecting its robustness to data variability.

The framework also demonstrates a practical balance between privacy and utility:
model parameters, not raw data, are shared with the central server, which limits exposure of
sensitive local records while still enabling global model refinement. This is particularly relevant
for smart-city deployments where sensor networks and municipal datasets are fragmented
across organizations and jurisdictions. The use of Flower as the orchestration layer further
supports scalability to varying numbers of clients and heterogeneous compute environments.

From an operational perspective, the training pipeline (pre-processing, client-side
learning, and Fed Avg aggregation) proved effective without requiring complex architectures,
making the approach computationally tractable. While Decision Tree (DT) and Support
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Vector Regression (SVR) were comparatively less performant than RF and LR, they still
benefitted from the federated setting, indicating that FL can offer gains even for models that
traditionally underperform in centralized scenarios.

Comparison with Existing Studies:

Prior research commonly reports strong performance from tree-based ensembles in
centralized settings. Studies such as [11] and [14] found that Random Forest outperforms
alternative regressors (and even MLP in some cases). Our results are consistent with this trend;
RF remains a robust choice in our experiments, while also finding that LR benefits
substantially from the FL setup, narrowing the gap to ensemble methods in certain cases.

Work such as [13] highlights that boosting-based ensembles (e.g., AdaBoost/gradient
boosting families) with feature selection can achieve state-of-the-art accuracy for PM
forecasting under centralized training. Although our study did not evaluate boosting
algorithms, our FL results suggest a complementary path: privacy-preserving improvements
via decentralized training, even without specialized feature selection and boosting.

Deep learning approaches (e.g., hybrid CNN/RNN architectutes) reported in [17]
demonstrate strong accuracy but at higher computational and deployment costs, and with
reduced interpretability. In contrast, our FL framework shows that classical regression models
can be made competitive and scalable in distributed, privacy-sensitive environments, and an
attractive property for resource-constrained smart-city deployments.

Our study aligns with prior findings that RF is a strong baseline, as shown in Table 3,
compared with existing studies. It extends the literature by showing that LR can gain notably
under FL, improving generalization when data are isolated within specific constraints, which
are difficult to access or share across different parts or areas. It also contributes a privacy-
preserving, communication-efficient training architecture using Flower that is readily adaptable
to heterogeneous clients.

Table 3. Comparison of Proposed Framework with Existing Studies

Study Learning Models Key Findings Relation to Our Results
Paradigm Evaluated Reported
[11] Centralized RF, DT, SVR,|RF reported as | Consistent: RF strong; our FL
others best performer | also boosts simple LR notably
[13] Centralized Tree ensembles | Boosting + FS | Complementary: FL  gives
(+ feature | / boosting achieves top | privacy + generalization gains
selection) accuracy without boosting
[14] Centralized RF vs MLLP RF > MLP Consistent: RF robust; FL
adds privacy and retains
competitiveness
[17] Centralized Hybrid High accuracy, | Our classical ML + FL is
deep learning | CNN/RNN higher lighter, interpretable, and
complexity privacy-preserving
Proposed Federated vs | RF, DT, LR, |LR improves | Shows FL can enhance
Framework | Centralized | SVR under FL; RF | generalization and privacy
remains strong | with modest complexity

Conclusion:

As the issues associated with urbanization and population expansion increase, our
research aims to address the pressing need for accurate systems that can forecast and control
air pollution levels, which substantially influence public health. Using the idea of Federated
Learning (FL) in the context of smart cities, the research presents a carefully thought-out
architecture to precisely calculate the Air Quality Index (AQI) for particular cities. Using the
Flower tool for FL analysis renowned for its skillful management of system heterogeneity and
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scalability, the framework is guaranteed to function reliably in a constantly changing and

dynamic setting. The study uses a large dataset from Kaggle that includes geolocated data on

NO;, O3, CO, and PM2.5 to support the efficacy of the suggested design of five contaminants

worldwide within the last ten years. A series of pre-processing steps, such as grouping and

conversion to NumPy arrays, prepares the data to be analyzed by FL. During experimentation,

a number of regression machine learning models are utilized, such as Support Vector

Regression, Decision Trees, Random Forest Regression, and Linear Regression. The FI.-based

architecture always achieves better results as compared to using a non-FL architecture, which

verifies the flexibility to decentralize and process real-time air pollution data. Given the
urbanization trend, this study underscores the crucial requirement for accurate air pollution
forecasting systems and presents a robust solution, such as the proposed FL-based model.

Our findings demonstrate that FI.-based methods perform well on a large number of possibly

decentralized datasets and enable the development of accurate and reliable models for air

quality prediction.
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