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ﬁ ccurate and energy-efficient localization is an ongoing challenge in Anisotropic

NOISIAI

Wireless Sensor Networks (AWSNs), especially when AWSNs are deployed in

irregular topologies (like valleys, coastlines, and mountainous terrain) versus regular
topologies. This extended work presents additional performance evaluation of the previously
introduced Hop-Correction and Energy-Efficient DV-Hop (HCEDV-Hop) algorithm. The
HCEDV-Hop combines an error-correcting step with a hop-constrained broadcasting
approach to improve localization accuracy and reduce energy consumption. In this study, we
evaluate the HCEDV-Hop in anisotropic contexts where radio irregularities are direction-
dependent and deployments in C-shaped fields are representative of real-world scenarios. The
efficacy of the HCEDV-Hop is assessed using both regular and random deployments for a
range of node densities, DOI values, and hop thresholds. Simulation results showed that
localization errors increased in anisotropic fields but were still significantly reduced compared
to conventional DV-Hop. While random deployment at DOI = 0.2 performed best, regular
deployment maintained consistent accuracy. Broadcasting t hops decreased energy use without
diminishing accuracy. Overall, the HCEDV-Hop performed better in ideal circumstances but
remained reliable enough for real-world applications such as disaster management,
environmental monitoring, and military surveillance.
Keywords: AWSN, Localization, DV-Hop, DOI, Accuracy.
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Introduction:

Wireless Sensor Networks (WSNs) are becoming more prevalent for their ability to
innovate various industries and revolutionize the way we live and work. As a versatile
technology, they support a wide range of applications, including environmental monitoring,
industrial automation, and military surveillance [1]. Sensor nodes collect data which is only
useful if the location of the nodes is known exactly. Without accurate location information,
the sensor data loses its significance, as the context of the event cannot be properly determined
[2]. One of the primary challenges faced by WSN researchers is the accurate localization of
sensor nodes. Most applications of WSNSs critically depend on precise location information of
these nodes to ensure the usefulness and reliability of the collected data [3]. Besides this,
geographic routing protocols, fault management, and clustering all utilize location data [4].
Localization algorithms have become the most important research area in WSNs. This is
because sensor node placement is essential to WSN functionality. Although numerous studies
have recently addressed localization, many of them operate under the assumption that only a
small fraction of nodes commonly referred to as anchor nodes have known positions, typically
established using GPS technology or manual configuration [4][5].

In WSNs, other sensor nodes use multi-location techniques and estimate their
distances to the anchor nodes to determine their positions. Even with a limited number of
anchor nodes, these techniques offer a respectable degree of accuracy [6][7]. The cost-
effectiveness of range-free localization techniques for large-scale WSN deployment has
generated considerable research interest in recent years. AWSNs have directional
dependencies or non-uniform wireless communication channels. Deliberate directional
transmission, physical barriers, environmental factors, or antenna design can all lead to
anisotropy. However, the widespread use of range-free localization techniques is hampered by
the practical AWSNs, which operate with significantly reduced accuracy. The occurrence of
large errors in distance estimation is the main cause of this decline in accuracy [8].

The drive to enhance localization accuracy has been a key motivation for the
development of localization algorithms, most of which were initially designed and tested
within two-dimensional (2D) square environments. Nevertheless, the real distribution of
sensor nodes often varies for different kinds of terrains. For instance, some applications like
air quality monitoring that need sensor deployment in flat 2D regions, military surveillance,
and intelligent transportation need sensors in anisotropic and irregularly 2D-shaped shaped.
Therefore, the problem of localizing sensors across such diverse terrains is a major issue [9].
When dealing with field anisotropy, the minimal ways between nodes are changed, which leads
to inaccuracies in localization. Therefore, an in-depth investigation of how field features affect
the behavior of localization algorithms is necessary.

Obstacles, noise, and signal fluctuations make the sensing environment complex,
posing significant challenges for localization research. One widely used method to achieve an
accurate geographic location of sensor nodes is using the Global Positioning System (GPS).
The GPS is among the most precise and widely available positioning technologies. However,
it is too expensive and energy-intensive to make it infeasible to install in every sensor node,
where battery lifetime is a critical factor. Conversely, cellular signals can be interfered with
under scenarios with extreme shadowing effects [10].

Although GPS can offer precise location information, it is not feasible to add GPS to
all micro sensor nodes of WSNs because of its high cost and low performance in some special
environments. In addition, GPS might not work as well in localized indoor and complex
environments [11]. It is a difficult task to design a localization algorithm that is as smart as
well as efficient in restricted conditions. Recent studies are directed towards leveraging the
communication and relationship among sensor nodes to obtain localization [12][13].
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Only a limited number of nodes—referred to as anchors—have GPS modules since
they are the only ones with the extra cost of installing GPS modules to save money and
minimize energy consumption. The other nodes use localization methods to find their
locations. Locating the position of the sensor nodes is the primary goal of WSNs, which are
composed of many low-cost nodes that are highly distributed in a specific region to gauge
diverse phenomena. There exist two forms of node self-localization: range-free and range-
based. Range-free localization employs connectivity or pattern matching to estimate location,
while range-based localization employs measured distance/angle.

WSN localization techniques generally fall into two categories: range-based and range-
free systems [14][15]. Range-based algorithms require information about the distances or
angles between nodes, which can be estimated through methods such as time-of-flight (ToF)
measurements, received signal strength indicator (RSSI), and angle of arrival (AoA). Some of
them include trilateration, maximum likelihood, and multidimensional scaling [16][17][18].
Distance-related metrics in WSN localization can be estimated using a variety of techniques,
including Angle of Arrival, Time of Arrival (ToA), Time Difference of Arrival (TDoA), and
Received Signal Strength Indicator (RSSI). These methods provide the necessary
measurements for range-based localization by leveraging signal properties such as propagation
time, arrival angle, or signal attenuation [19][20][21].

Connectivity- based localization, known as binary measurement, assumes that sensor
nodes are connected if they fall within each other’s radio transmission range. Algorithms of
range-free measurements, such as Centroid [22], DV-Hop [23], Amorphous [24], MDS-MAP
[25], and APIT [26], are gaining popularity due to low cost, low power consumption,
robustness to measurement noise, and simple hardware requirements.

These algorithms can provide a reasonable level of localization accuracy [27]. DV-
Hop, a distance vector routing and localization-based distributed method, is one of the
algorithms having many research due to its simplicity and low hardware requirements [28].

Combining different range-based techniques, or hybrid positioning, is one of the most
classical techniques to improve precision and coverage in localization in multiple applications.
For distributed localization in WSN, the estimation of positions of the sensors with the
neighboring sensors is influenced by hardware defects, environment changes, topology of the
network, density of the sensors, or other distortions [29]. These factors are critical to the
precision of estimation in realistic multi-hop scenarios. There exists a multitude of algorithms
and methodologies developed to address different problems in different applications [4][30].

The DV-HOP protocol [27] is a popular localization protocol that uses a distance
vector approach to estimate the location of the nodes. However, the traditional DV-HOP
protocol assumes that the network is isotropic, which means that the network has the same
characteristics in all directions. In reality, many WSNs have anisotropic characteristics, which
means that the network has different characteristics in different directions. This can be caused
by factors such as obstacles, terrain, and human activity. Generally, multi-hop range-free
localization algorithms are quite effective in topology-independent networks that are isotropic
with evenly and densely distributed sensor nodes. Nevertheless, these algorithms can still be
influenced by the layout of the network, which resulted in a notable drop of accuracy in the
locating process.

Range-free localization algorithms are purely non-deterministic, and they are sensitive
to the node heterogeneity and field anisotropy [31][32][33][34]. Most range-free localization
techniques currently in use assume that all sensor nodes are uniform, possessing the same
communication ranges and transmission powers. Nodes may operate at varying transmission
powers and communication ranges, though, if the manufacturer's specifications and battery
condition. The earlier work, which focused on DV-Hop and its variants, had limitations that
prompted us to create the HCEDV-Hop localization algorithm. This research is essentially an
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extension of the initial study to understand how the HCEDV-Hop method manages the C-
shaped AWNs, hence, by initially measuring the algorithm's accuracy and reliability in the
deployment of such an irregular environment.
Objectives of the Study:
The main objectives of this study are:

To showecase critical findings along with a preliminary framework to be used for
additional research that would support the improvement of the localization algorithms used
in AWSNSs that vary based on the environment.

To come up with a new and effective localization method that can solve the problems
of node localization in AWSNS.

Analyzing how the topologies of the environment influence the efficiency of the
localization process by investigating errors that happen due to a change in the deployment
field from regular to random and from 2D isotropic to anisotropic environments.

To study how the network layout and non-uniform communication affect the
efficiency of the HCEDV-Hop algorithm by examining the influence of anisotropy and
changes in the Degree of Irregularity (DOI) on localization accuracy in irregular deployment
environments.

To demonstrate the ability of the HCEDV-Hop to enhance the accuracy and the time
of the localization in scenarios that are irregular or have a complex deployment.

To assess the outputs of the simulation with reference to essential criteria of
effectiveness, including mean square error (MSE), localization ratio, and running time of
localization.

Novelty Statement:

Generally, multi-hop range-free localization methods manage their work properly in
dense and evenly distributed networks. However, the design of the network has a very
significant effect on the accuracy of these methods. In regular topologies, the geometric and
hop distances match very well; however, in anisotropic networks, the existence of obstacles
results in the distortion of paths and which causes mismatches that further lower the
performance of the localization. Moreover, this performance drop is being deepened by the
Degree of Irregularity (DOI), which is the more irregular node radiation, and thus, the
simulations are more realistic. This paper proposes HCEDV-Hop, an improved DV-Hop
routing algorithm for better disorderly DV-Hop wireless sensor network (AWSN) routing,
which provides an improved DV-Hop solution to the problems mentioned above. The
introduction of anisotropy-aware corrections for the AHD allows HCEDV-Hop to adapt
more efficiently in the case of complex topologies such as C-shaped deployments. Its
performance is verified through simulations and is compared with the standard DV-Hop
protocol and RAL to show the accuracy improvements.

The remainder of the paper is organized as follows: Section II discusses the literature
review, which gives the complete account of the past studies that have been done on WSN
localization by regular and irregular shapes. Besides, it also briefly mentions the problems and
limitations of the existing approaches and points out the gaps that the proposed model can
cover. Section III explains the proposed design, C-shaped topologies, and different DOIs.
Section IV describes the experimental conditions. Besides, it also describes the performance
measures that have been used for different topologies and DOIs. Moreover, this part also
features a comparison being made between the proposed model and the contemporary state-
of-the-art models that show its superiority. Section V details the limitations of the author's
work, elucidating the difficulties faced by the authors, and they also give suggestions about
ways to improve the work. Finally, Section VI is the conclusion of the work, restating the main
ideas, the part of the new model, and the possible projections of furthering the work.
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Literature Review:

In recent years, the literature of WSN localization protocols has undergone significant
development. The distributed-based or DV-HOP protocol is one of the most popular
methods among several others. The DV-HOP technique first measures the distances to
neighboring nodes and then estimates the location of the node. This method has been
experimentally verified to yield accurate localization in isotropic WSNs. Nevertheless, it is not
so effective in those fields that are anisotropic, where the direction changes the irregularities
and distorts the distances that have been estimated.

The DV-hop algorithm finds and estimates distances to unknown neighboring nodes
in a way that does not use traditional ranging methods. Essentially, each sensor node estimates
its distance to the beacon node by using the average hop distance and the minimum hop count.
Then, by multiplying the minimum hops by the average distance of each hop, the distance
between the beacon node and the node itself can be computed. Finally, each node determines
its location coordinates using various estimators, such as maximum likelithood estimation and
triangulation. Actually, the three stages of the DV-hop algorithm are conceptually described
below [27]:

Phase 1: Initially, all anchor nodes broadcast data packets with information in the
format (ID; xi; yi; hop), where ID denotes the anchor node's identity. The neighbor node
raises the hop value by one while storing the information sent by the anchor node. The source
is no longer the recipient of this information. During the flooding communication stage, data
from an anchor node may reach the same unknown node through multiple paths; however,
the unknown node retains only the information corresponding to the minimum hop count.

Phase 2: Based on the minimum number of hops obtained by each anchor node in the
network, the Average Hop Distance (AHD) per hop is calculated by the anchor node. The
AHD is represented by Eq. Error! Reference source not found.)

2. di;
AHD==— (1)

> hi,j

i=j

Anchor node i sends the Hopsizei information to the network through multi-hop. An
AHD is only recorded by the unknown node from the first received message. The relation
between the unknown node and the anchor node is represented by Eq. (2).

du.i = AHD x hu.i (2)

Phase 3: After estimating the distance to the anchor node, the unknown node's
position is determined using maximum likelihood. Where d represents the distance between
each anchor node and the unknown node, and (xn, y») represents the location of the anchor
M. The derivation of Equation Error! Reference source not found.) is:

X, =B 0O
Were,
Xy~ X Yo ™Y
X —X -
C — 2 X n . 2 YII . YZ (4)
anl - Xn y'nfl - Yn

By means of least squares methods, the calculated coordinates can be given as below:
-1
X=(C'c) "B
Although this method is very easy to generalize, it does have some limitations,
including the fact that it must use curvilineal distance instead of distance in a straight line. The
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Average Hop Distance (AHD) is consistently larger than the actual value due to the non-linear
nature of communication paths. In WSNs, the nodes are randomly deployed in space, and
the properties of this randomness ensure that AHD values are always larger than true values
[35][306]. As such, the error rate is generally high. Therefore, it is essential to analyze the sources
of error in DV-Hop to reduce inaccuracies and extend its applicability to a broader range of
scenarios. Therefore, DV-Hop works pootly in extremely uneven or anisotropic topologies,
which in turn restricts its ability to adjust in a complex environment of the real world.

Despite the shortcomings of DV-Hop, numerous researchers have proposed different
variants. These adaptations aim to increase the accuracy of localization, create additional forms
of robustness in difficult scenarios, and decrease the impact caused by varying network
conditions. These alternative forms provide additional modalities and therefore more
flexibility of localization within WSNss, rather than reverting to the limitations of DV-Hop by
innovative techniques and algorithms.

In practical applications, range-free localization algorithms provide significant
advantages in terms of cost and power efficiency, though this comes at the expense of reduced
localization accuracy. If node positions are uniformly distributed, the range-free localization
algorithm can solve the WSN localization problem and improve localization accuracy. The
accuracy of localization is significantly reduced when node positions are not evenly distributed.

However, in AWSNSs, where the nodes have directional radio ranges, the DV-HOP
protocol may not work as well due to the mismatch between the directional distances and the
isotropic distances used in the protocol. In light of this, several researchers have proposed
modifications to the DV-HOP protocol to address this issue.

These modified protocols are designed to enhance localization accuracy in AWSNs
and have demonstrated promising results in both simulations and practical implementations.
Nevertheless, further advancements are still required to address existing limitations.

Anisotropy is represented via two stages, namely at the field level and at the node level.
At the field level, anisotropy has been identified as the main factor of the fields' irregular
shapes. Due to these irregular shapes, the distances are overestimated, thus the localization
algorithms are indirectly affected [37]. The main reason for the overestimation of distances is
the curved paths between nodes, as the shortest paths are not always straight lines due to the
irregular shape. In the localization algorithms, these curved paths become the source of an
error component, which leads to an increase in localization error [37].

Field irregularities and anisotropy have a major impact on node-to-node distance
measurements and, consequently, localization algorithm performance [34]. To eliminate the
impact of field factors on localization accuracy, the localization algorithms are tested in these
regions.

Kouroshnezhad et al. [38] proposed a GPS-equipped drone as a mobile anchor for
sensor-free localization. This drone must be used in conjunction with a range-based
positioning algorithm that uses RSS measurements and range & range-difference
measurements to locate sources [39]. These algorithms perform effectively in terms of
accuracy and computation time; however, they are not well-suited for anisotropic networks
due to their high cost.

S.J. Bhat et al stated another localization algorithm called Range Reduction Based
Localization (RRBL) [34]. The localization accuracy is improved in this algorithm through the
integration of properties from hop-based and centroid methods in a range of fields. Unknown
nodes locate themselves by identifying nearby neighboring nodes within a specified threshold
and reducing the potential range of their location. When insufficient neighbors are present,
the least squares method is used for localization. In comparison to other hop-based and
centroid-based localization techniques, the algorithm is tested under a variety of irregular and
heterogeneous conditions. The RRBL outcomes show an enhancement in accuracy of 28% at
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a 10% reference node ratio and 26% at a 20% reference node ratio. Nevertheless, RRBL
experiences a decline in performance in extremely sparse deployments and in situations where
irregularities have significantly altered the hop- distance estimations. Moreover, the S.J.Bhat et
al. S.J. Bhatti et al. presented a priority-based localization algorithm in [40] that uses AHD to
rank certain reference nodes. The weighted centroid approach is then used to localize the
nodes using high-priority reference nodes. According to the simulation results, the suggested
algorithm's localization results outperform those of the current weighted centroid methods in
anisotropic fields.

Shahzad et al. [41] introduced DV-HopMax, a modified version of the DV-Hop
algorithm that applies to both isotropic and anisotropic wireless sensor networks (WSNs),
which also features a control parameter that can be used to lower errors in distance estimation.
Essentially, the method makes use of the closest reference nodes to calculate the position of
the target node. Nevertheless, its success is very much dependent on the value of the MaxHop
parameter, i.e., the performance is quite sensitive to the setting of the MaxHop value. The
latter sensitivity is what restricts the level of robustness that the algorithm may have, as well
as the extent to which it can be flexible, largely because there is a need for pre-setting the
optimal parameter values in such networks. In addition, there is the issue of static parameter
settings, which the algorithm is quite dependent on that resulting in the algorithm being less
scalable when dealing with large and heterogeneous deployments, hence the possibility of
using adaptive or self-tuning mechanisms for enhancing its reliability.

Introducing multi-objective optimization can increase problem complexity and
computational overhead. To overcome the limitation of DV-MaxHop, Improved DV-
MaxHop [42] was introduced. In improved DV-Maxhop, we take a corrections approach that
modifies the AHD of each link between the anchor and unknown nodes, thereby refining the
distances. Such a method would still be less environmentally friendly and less practical for
AWSN on a large scale due to the increased computational demand.

Asaaf et al. [31] presented a novel anchor choice method for AWSNSs that significantly
improves the distance measurement accuracy, which then gives the overall localization
accuracy to be better. Their method, while exhibiting high precision as compared to typical
range-free algorithms, particularly in scenarios of an irregular non-specular radiation, still
implicates a large computational overhead. The additional processing requirement may result
in more considerable energy usage, which is a major disadvantage in energy-limited sensor
nodes. Besides, the algorithm's reliance on very accurate anchor selection makes it less flexible
in highly dynamic or large WSN deployments. Therefore, the next research work should
concentrate on how to maintain accuracy while increasing computational efficiency so as to
be able to use the method in real-world situations.

Considering this, various variants of the DV-HOP protocol have been proposed in
the literature, including directional virtual coordinates, directional distances, and weighted
virtual coordinates, to improve localization accuracy in AWSNSs. These variants have shown
promising results in simulation and implementation studies, but there is still a need for further
improvement in this area. Most of the techniques mentioned above cannot completely solve
the problem of irregularity in direction and still need some adjustment depending on the
specific context, which lessens their ability to be used in different situations.

In cases like these, the conversion of hop-based predictions into distance
measurements that are accurate becomes a challenge, and as a result, there are overestimations
due to the indirect nature of the paths that lie between the anchors and unknown nodes. The
presence of more obstacles and gaps leads to these errors in distance estimation, which
contributes to a drop in localization accuracy [31][40]. While many studies on WSN
localization have focused on different aspects, we have found that most of the research work
in the area of WSN localization has overlooked the issue of wireless channel characteristics
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[41][42] This gap highlights the need for algorithms that specifically consider the properties
of wireless channels to provide a more accurate and adaptive localization in anisotropic
environments.
Methodology:

Although these developments have greatly advanced knowledge and expertise in WSN
localization, it becomes clear that substantial improvements in accuracy are still needed for
AWSNs.  To tackle the problems noted earlier, this paper presents a new range-free
localization method specifically for addressing the above issues in AWSNSs, to greatly enhance
the accuracy of sensor node localization.

HCEDV-Hop Algorithm:

The HCEDV-Hop algorithm, as shown in Table 1, improves WSN localization
efficiency. We also identified that if a correction step occurs in the localization, it further
improves the algorithm’s accuracy in AWSNSs, as shown in Figure 1. Consequently, in the
analysis of our HCDV-Hop method, we incorporated real wireless parameters intended to be
more reasonable in evaluating this method to ensure the practicality of the proposed method
in practical applications.

The HCEDV-Hop localization technique [43] proposed by M. Fawad et. al, is a
modified distance vector algorithm that uses C-shaped terrain characteristics to facilitate
improved localization accuracy. The use of C-shaped terrain is meant to develop solutions that
better represent the conditions characteristic of the real world. Valleys and coastlines in nature
often demonstrate C-shaped boundaries, and as a result, scientists and engineers take a specific
interest in how WSNs behave, including adaptations in those particular environments.
Importantly, the HCEDV-Hop algorithm has set a boundary on the distance of broadcasting
t hops during the last two phases. Consequently, any packet originating from an anchor beyond
t hops will be discarded. Restricting broadcasting to #e¢ hops not only reduces power
consumption but also enhances localization accuracy in scenarios with uneven sensor node
distributions.

AWSN C-Shape Topology:

Various applications of WSNs demand the placement of nodes across various domains
[44][45]. To illustrate, in smart city applications, sensor nodes must be placed inside various
Business and Industrial units, each having various sizes and shapes. In applications such as
military surveillance, disaster relief, or forest fire detection, the deployment areas often feature
rugged terrain with hills, valleys, and water bodies. Under such conditions, WSN coverage
zones tend to form irregular shapes. However, in current research, the localization algorithms
have been limited to the boundaries of regularly 2D shaped [43][46][42][47][48]. To simulate
a forest fire monitoring scenario, a mountainous terrain was chosen as the deployment area,
with sensor nodes positioned as illustrated in Figure 2.

Table 1. Algorithm: HCEDV-Hop Localization (HCEDV-Hop)

Step Description
Input Total nodes N, Anchor nodes M, Coordinates (Xi, Y1),
Communication range R, Deployment area 500 X 500 m?
Output Estimated positions Xn of unknown nodes
Initialization Set Packet = 0. Select anchors for localization. Initialize hop
counts.

Hop Count Calculation | For each node pair (1,)):
Increment Packet

If distance(i,j) =R — hop =1
Else hop = hop + 1

Update hop table: hij = hji
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BAG Message Each anchor sends a BAG message (N_ID, Coordinates,
Broadcast Hop)
Receiving nodes update H_Table with (N_ID, Coordinates,
Hop)

If the node has = 3 anchors — apply multilateration for the
initial estimate

Distance Estimation For each unknown node:

(RSSI or AHD) If hop = 1 — Estimate distance using RSSI:

d = A - 10n log10(RSSI)

Else — Compute Average Hop Distance (AHD):

AHD = (2 dij) / (Z hopij)

Refined AHD Under threshold t, compute refined AHD:
Calculation AHD_ref = (R - AHD) X HC) / R

Error-Corrected Estimate corrected distance:

Distance di = hop X AHD_ref

Position Estimation For each unknown node u, estimate coordinates:
(Least Squares) (xu, yu) = argmin 2 (sqrt((xu - Xi)* + (yu - Yi)?) - di )?
Threshold Correction Apply threshold-based refinement to reduce error and

energy consumption.

Output Final estimated positions of unknown nodes.

A 2D C-shaped field is illustrated in Figure 3 to demonstrate node deployment over

flat regions with DOI values of 0.2 and 0.5. Due to the anisotropic application and fields'

intrinsic irregularities, variable distance measurements between nodes have an impact on the

accuracy of localization techniques [31][34][42]. Assessing these techniques in these

challenging scenarios enables understanding and mitigating the effect of the factors that
adversely affect localization accuracy.

Start

'

Anchor nodes transmit
position data

!

Compare hop count
with stored table

!

Hop count = 07

=

Update hop count (+1) Hop count = 1 AND < R?

Forward to neighbors
/ /é
Use RSSI for

Hop count > limit? Yos distance estimation

Compute AHD & share Hop count < limit?

with neighbors
\

Ignore message

Correction step
for AHD

l

Estimate coordinates
of unknown node

!

End

Figure 1. HCEDV-Hop Algorithm [1]
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Figure 2. AWSN in C-shape Scenario
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Experimental Setup:

To evaluate the performance of the HCEDV-Hop algorithm, we implemented the
approach proposed by M. Fawad et al. [42] within an Anisotropic Wireless Sensor Network
(AWSN). A C-shaped deployment scenario was designed to simulate irregular network
conditions, and specific configurations were applied to assess the algorithm’s effectiveness
under these settings.

Radio Irregularity Model (RIM):

A node's communication range is influenced by the transmission power of the
sensor as well as the communication environment. Although sensor nodes emit signals with
reasonable power, there are attenuating factors in the environment, such as trees, buildings,
people, mountains, etc. This means that radio signals are always being continuously modified
due to the gradual change in direction. The node’s radiation continued to change due to the
anisotropy of natural networks. In this paper, we employed the well-known DOI model to
analyze the effects of irregularity. Using the DOI model adds realism to the simulation, and it
can also more closely model the real world. The RIM describes the specific behavior of the
radio signal using real data collection from real sensor devices [49]. The RIM model has a
metric called DOI, which correlates to the maximum percentage change in path loss for each
degree of anisotropic change in the radio propagation direction [49][50][51]. Communication
irregularity alters the radio propagation pattern, causing it to exhibit non-linear behavior [52].
The RIM model is expressed mathematically as in Eq.Error! Reference source not found.):

R(Signal) = T(p) — DOI (loss) + F (8)
DOI (1) = loss x K*0 (9)
Were,
K, =1+y*DOI, ye[-1,1] (10)

In equation Error! Reference source not found.), the data variable ¥ shows a random
number resulting from the Weibull distribution defined in [51]. The communication
boundaries exhibit a fully circular shape when DOI = 0. When it comes to the node I's
communication range at DOI=0, this can be CRi. A DOI of zero means there is no
irregularity, indicating the event or phenomenon to which these data belong is fully regular
and stable. When the DOl is 0.2, it reflects a moderate level of irregularity. This means we are
inferring that the patterns or data are not extremely irregular but have some sort of fluctuating
or random nature. A DOI value of 0.5 indicates a high degree of irregularity, resulting in
unpredictable pr opagation patterns. The communications range continually becomes
unstable. Figure 3 shows a node's communications range at different DOls.

Simulation Design and Network Model:

We tested the efficiency of the proposed method using an Intel® Core™ i5 CPU @
2.0 GHz with 8 GB RAM. We applied localization accuracy as the performance measurement.
We used MATLAB 2020a [53] simulators to evaluate the performance of the proposed
algorithm by localization accuracy. The experiment was conducted with AWSN deployed on
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a 500 * 500 area, a total of 500 sensor nodes were used, 50 of which were deployed as anchors.
The deployment includes both regular and random distribution in the field, as illustrated in
Figure 4.

DO1=0.5

Figure 3. Impact of DOI Variations

Regular Deployment:

In regular deployment, sensor nodes are deployed systematically over a 500*%500 area,
as seen in Figure 4a. Thus, there is a uniform distribution of nodes, and an equal distance
between the adjacent nodes.

Random Deployment:

In random deployment, on the other hand, the sensor nodes are positioned randomly
across the 500 * 500 area as shown in Figure 4b. This node distribution exhibited a high DOI,
making it representative of real-world scenarios. A communication range of 100 m was
adopted for both regular and random deployments.
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Figure 4. a) Randomly WSN Deployment and b) Regular WSN Deployment

It is easy to evaluate the performance of both regular and random deployment using
the setup with 50 iterations. Regular deployment has a controlled environment, and random
deploys in an uncontrolled manner. The simulation configuration is shown in

Table 2.

Table 2. Parameters of AWSN
Simulation Parameters | Value
AWSN field (m?) 500*500
Total Nodes 100-500
Anchors 50 — 100
Threshold(hops) 3-7
Radius (m) 100
DOI 0.2 & 0.5
Operating system Window 10
Simulator Matlab 2020a
Packet size 1024 bytes
Communication Range | 100

Performance Analysis:
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In evaluating the proposed approach for AWSNSs, both localization accuracy and cost
parameters were considered. First of all, the simulations are implemented to perform a
comparative analysis between the new algorithm and the most significant existing algorithms
for localization, such as DV-Hop [27] and RAL [29]. The comparison is done considering the
same network settings to ensure the fairness of the results. The efficacy of the HCEDV-Hop
was considered based on the following metrics:

Accuracy:

Localization error is defined as the difference between the computed locations versus
the actual locations, and is used as a measure of accuracy, which can be assessed by changing
parameters like average localization error, node density, etc. The evaluation of the accuracy is
done under the following:

Average Localization Error Analysis (ALE):

The ALE [10][54] represents accumulated localization errors over unknown nodes.
The ALE, used as the evaluation criterion, is computed as presented by Eq. Error! Reference
source not found.).

S (x -x) + (v -y
ALE == (11)
nxR

In equation Error! Reference source not found.), the numerator shows the
Euclidean distance [55] between the estimated (x,y) and actual (xi,yi) locations, which
corresponds to the ALE calculation. Where R indicates the radius and n denotes the total
nodes.

To investigate the impact of anisotropy, location results in an anisotropic field are
compared to those from regular deployment and random deployment. Many different
localization algorithms are used involving 2D fields. From Table 3Error! Reference source

not found., all methods encountered higher errors in isotropic fields, with DOI = 0.5.
Table 3. ALE of AWSN

Proposed Algorithm with different DOI Max Avg. Min Std. Dev
HCEDV-Hop with Uniform topology having | 1.335537 | 0.89813 | 0.48900 | 0.126464
DOI =0.2

HCEDV-Hop with Uniform topology having | 1.426774 | 0.94135 | 0.60968 | 0.157711
DOI=0.5

DV-Hop with Random topology having DOI | Nil 127 Nil Nil

=0.2 '

RAL with Random topology having DOI =0.2 | Nil 1.00 Nil Nil
HCEDV-Hop with Random topology having | 1.386214 | 0.92159 | 0.59657 | 0.101157
DOI =0.2

DV-Hop with Random topology having DOI | Nil 1.40 Nil Nil

=0.5

RAL with Random topology having DOI =0.5 | Nil 1.15 Nil Nil
HCEDV-Hop with Random topology having | 1.489655 | 1.031969 | 0.82601 | 0.114893
DOI =0.5

The performance comparison of the proposed HCEDV-Hop algorithm with DV-
Hop and RAL under different DOI values, as shown in Fig. 12, clearly indicates that it had
the best accuracy of localization. In the case of the uniform topology, HCEDV-Hop reached
the lowest average localization error of 0.8981 at DOI = 0.2, and slightly increased to 0.9414
at DOI = 0.5 while still stable. In the random topology, HCEDV-Hop was always ahead of
DV-Hop and RAL, with average errors of 0.9216 at DOI = 0.2 and 1.0320 at DOI = 0.5. The
standard deviation values were also smaller, indicating more stable and reliable results. At DOI
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= 0.2, HCEDV-Hop achieved 27.43% lower ALE than DV-Hop and 7.84% lower than RAL.
At DOI = 0.5, it remained better by 26.29% and 10.27% respectively. The improvement was
evident with AHD and threshold correction, which reduced estimation variation. The
performance decreased when DOI increased from 0.2 to 0.5 due to stronger path-loss and
link asymmetry, which elevated AHD and worsened multi-lateration, increasing ALE. In
regular deployment, the average error rose by 4.8% (0.94135 vs. 0.89813) and the maximum
by 14.3% (1.526774 vs. 1.335537). The effect was more severe in random deployment at DOI
= 0.5, explained by cumulative irregularities in node placement and communication variability.
Based on the outcomes, the superior performance was achieved in regular deployment at DOI
= 0.2. Regular grids ensured uniform spacing and anchor geometry, making per-hop distance
consistent, reducing boundary effects, and improving localization accuracy. Figure 5 showed
that regular deployment had a lower ALE than random deployment.

Comparison of Algorithms with Different DOI Values
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Impact of Varying Node Density:

Furthermore, we assessed the impact of varying node density on localization
performance under DOI settings of 0.2 and 0.5, which serve as benchmarks for evaluating the
algorithm.

Experiments extracted from the simulation space allow us to vary the total node count
from 100 to 500, whilst the anchor field is held steady at 50. Figure 6 illustrates the ALE for

vatrious nodes.

Localization Error vs Total Number of Nodes (Bar Graph)
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Figure 6. Node distribution under random and regular deployment

Table 4 presents a thorough breakdown of localization errors seen in various node
density situations. This provides a clearer understanding of the influence of node density on
localization performance.

Table 4. Localization Error vs Total Number of Nodes

Ref. 2D Square 2D 2D Square 2D C- 2D C- 2D C-Shaped
Node | (DV-Hop) Square | (HCEDV- Shaped Shaped (HCEDV-
Ratio (RAL) Hop) (DV-Hop) (RAL) Hop)
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10% 0.610 0.118 0.108 0.506 0.131 0.108
20% 0.638 0.147 0.134 0.532 0.141 0.120
30% 0.736 0.21 0.215 0.699 0.226 0.190
40% 0.959 0.343 0.332 0.859 0.47 0.252

The ALE in the C-shaped regular topology increases from 82.78% at 100 nodes to
118.14% at 500 nodes when the DOI is set to 0.2.

Under the same conditions, increasing the DOI to 0.5 further amplifies the error, rising
from 84.63% with 100 nodes to 128.10% with 500 nodes. When the DOI was 0.2, the ALE
for the C-shaped random topology increased from 86.64% at 100 nodes to 155.02% at 500
nodes. Likewise, the error increased from 87.91% at 100 nodes to 171.98% at 500 nodes when
the DOI is raised to 0.5.

Run time Cost of Localization:

The runtime cost of localization is defined by the time required to complete the
localization process. The size and scalability of the network influenced the duration of the
process. In this study, the runtime for localizing a single node using the DV-Hop, RAL, and
HCEDV-Hop algorithms was compared in both 2D square and C-shaped fields.

Table 5. Run Time Analysis of Localization Algorithms

Ref. | 2D Square 2D 2D Square 2D C- 2D C- 2D C-Shaped
Node | (DV-Hop) | Square | (HCEDYV- Shaped Shaped HCEDV-
Ratio (RAL) Hop) (DV-Hop) (RAL) Hop)

10% 0.610 0.118 0.108 0.506 0.131 0.108
20% 0.638 0.147 0.134 0.532 0.141 0.120

30% 0.736 0.21 0.215 0.699 0.226 0.190
40% 0.959 0.343 0.332 0.859 0.47 0.252

Runtime analysis, as represented in

Table 5, indicates that DV-Hop is most expensive in terms of computational cost, and
it runs this way under both 2D Square and 2D C-shaped topologies. On the other hand, RAL
and HCEDV-Hop show limited runs having significantly lower computational costs. As can
be seen in 2D Square topology, DV-Hop moves from 0.610 at 10% reference nodes to 0.959
at 40%, thus RAL, and HCEDV-Hop adjust accordingly, but within limited ranges, RAL from
0.118 to 0.343 and HCEDV-Hop from 0.108 to 0.332, respectively. Just to compare, RAL can
cut off runtime from DV-Hop by approximately 80-65%, where HCEDV can even step it
down further by about 82—66% across different ratios. In the 2D C-shaped topology, we can
also observe a similar trend, where the performance of algorithms is as follows: DV-Hop
(0.506 to 0.859), RAL (0.131 to 0.470), and HCEDV-Hop (0.108 to 0.252). Thus, RAL can
lower runtime by about 74—45%, whereas the proposed HCEDV is the closest to the
optimum, reducing runtime by approximately 79-71% compared with DV-Hop. These
findings show that RAL can considerably lower runtimes; however, the highest and most
stable values of HCEDV always remain below, thus making it the most computationally
efficient algorithm out of the three. When comparing the results overall, they provide evidence
that HCEDV-Hop presents a significant compromise between computational efficiency
across both isotropic and anisotropic 2D deployments, which makes it more suitable for real-
time and large-scale WSN localization, especially with improvements of over 65% as depicted
in Figure 7.
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Run Time Analysis of Localization Algorithms
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Figure 7. Run Time Analysis
Discussion and Analysis:

In this section, we take a close look at the key findings and what they mean. Results
showed that the ALE increased with the number of nodes. In the HCEDV-Hop simulation
configuration, the anchor count was fixed at 50 while the total nodes was increased from 100
to 500, thus the anchor ratio went down from 50% to 10%. This decrease in anchor density
aggravated geometric dilution, as there were fewer well-placed references for each unknown
node and, in addition, a higher dependency on multi-hop communication in the C-shaped
topology, which consequently led to the rise of the AHD error and the cumulative hop
inflation. Besides that, regular deployments with similar DOI values always had lower
localization error than random deployments. The network size and the level of blockage were
also two of the most important factors that influenced the localization accuracy in C-shaped
topologies. The results extend the understanding of the performance of different localization
algorithms in random and regular deployment and indicate their application in a wide range of
scenarios. Besides that, HCEDV-Hop attained over 65% of runtime improvement against
DV-Hop in both isotropic (square) and anisotropic (C-shaped) 2D fields, with the square field
showing slightly lower execution times due to its regular and uniform topology.

Limitations of the Current Work:

Although the HCEDV-Hop showed significant gains in localization accuracy and
energy efficiency in both unobstructed and obstacle-rich scenarios, the simulations were
primarily conducted on idealized conditions, which is one of the work's limitations. Depending
on the context in which they are used, various metrics besides energy consumption and
accuracy, such as bandwidth utilization, scalability, or localization latency, may be as important.
Conclusion:

We proposed a resource-efficient localization technique that utilizes hop distance
measuring for a static AWSN configured in a C-shaped. The proposed solution targets poor
estimation by adding an error-correcting step to the distance measurement. Ultimately, the
system becomes reliable and accurate in the C-shape topology. The proposed model
monitored and controlled the broadcasting to run within predefined thresholds with obstacles.
Our method outperforms and gets the desired results in the C-shaped topology compared to
other benchmarks.

Regularly deploying a DOI of 0.2 lowers the maximum error and enhances localization
performance. Nonetheless, the average and maximum errors are higher with a DOI of 0.5. In
isotropic and anisotropic 2D fields, HCEDV-Hop improves runtime by more than 65%;
execution times are marginally slower in the square field.

WSNss are typically deployed in dynamic scenarios with different levels of interference
and impediments in the real world. Further research is required to assess whether the
algorithms are suitable for real-world use in a range of contexts, specifically complex and
dynamic ones.
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