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he present research paper contributes the slip effects on a three-dimensional viscous 
fluid flow for free convective boundary conditions with periodic permeability. Free 
convection fundamentally involves some heat transfer methods. In this work, the 

Cattaneo-Christov heat transfer method has been employed to develop the knowledge of heat 
transfer actions in complex flow porous system with periodic permeability. Moreover, the 
impact of the slip effect is investigated to more effectively deal with the boundary conditions. 
The mathematical model has designed for incompressible, viscous and laminar flow with free 
stream specifications. By using the regular perturbation approach, governing highly nonlinear 
partial differential equations are transferred into the ordinary differential equations in linear 
form together with certain linear partial differential equations. The separation variables 
approach is then used for transforming the linear PDEs to ODEs. Analytical solutions are 
obtained for the pressure, velocity field, components of skin friction, and temperature field. 
The influence of physical attributes existing in the mathematical representation of the physical 
occurrence is investigated and illustrated. Both the slip parameter and the Cattaneo-Christov 
heat flux have an impact of thickness on the thermal boundary layer of observed fluid flow. 
Keywords: Cattaneo-Christov Heat Transfer; Free Convective; Periodic Permeability; Slip 
Effect; Perturbation Method 
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Introduction: 
The occurrence of flows through porous media in nature either for simple fluids or 

for nanofluids has given high attention in recent years. Numerous scientific and engineering 
fields have utilized these fluxes, for instance investigations about subterranean supplies for 
water, riverbed spotting, purifying and filtering techniques in the field of agricultural 
architecture. The permeable media might have variety of inhomogeneities because it is often 
not a homogenous channel, in this context, researchers [1][2] examined three-dimensional heat 
transmission via periodic permeability in a porous material, it might not be required to assume 
that the porous medium’s permeability or suction remain constant. As a result, a sinusoidal 
permeability of the porous material has been chosen in this research. Vidhya et al. [3] have 
examined convection between two inclined plates that is laminar arranged parallel by supply 
for warmth and a porous material. 

Permeability in free convective fluxes with periodicity appear in variety of engineering 
and natural phenomena, from geothermal systems to microfluidic devices. The impact of 
transmission of an incompressible viscous fluid flowing freely convectively when dissipative 
heat is present has been examined by Manohar et al. [4]. Furthermore, the slip effect has been 
recognized as a critical factor in effectively simulating the boundary conditions in such flows, 
allowing for a fluid slip at the solid-fluid interface. Makinde [5] examined transmission of mass 
and heat radiant occur during flow of radiant heat in past traveling through a vertical porosity 
strip. Singh et al. [6] have conducted a systematic investigation into transverse periodic 
variation’s impact in permeability in relation to heat transfer and free convective flow through 
a porous medium. 

In spite of significance via engineering, particularly aeronautical engineering, laminar 
flow is a frequently studied field of research that has been the focus of a lot of studies 
conducted recently. Calculating the drag from frictional objects in a current, such as a plate’s 
drag at zero occurrences or surface drag of an aircraft, is among the most crucial uses of flow 
that is laminar.  Thermal energy is transferred from a hotter to a colder object through heat 
transfer. Many engineering uses as well as natural phenomena depends on this process. 
Choudhury et al. [7] analyzed transmission of mass and heat via convection floating visco-
elastic motion via periodic permeability in a medium that is porous.  

Conductivity, which comes from Fourier's law, continues to be main method of 
transferring heat in convection. Numerous other fundamental interactions in continuum 
mechanics, such as the correlation within elasticity or viscous liquids in the tensors of stress 
and strain, utilize the idea of a straight line between certain quantities. The Christov Cattaneo 
thermal transmission model for heat in fluid flow is an extension of the law of heat by Fourier's 
presented by Cattaneo and Christov [8]. Extending the work on heat transfer phenomenon, 
Nadeem et al. [9] analyzed fluid with stiffness flow using Christov Cattaneo flux mode in the 
Newtonian fluid presence. 

The buoyancy analysis by chemical species and thermal diffusion result in heat transfer. 
Latif and Rana [10] insight free Convection Jeffery’s fluid within Periodic Permeability with 
the use of the Cattaneo-Christov thermal transfer techniques. Rana and Latif [11] revealed 
significant finding about free convective flow in three dimensions with periodic permeability 
of non-Newtonian fluids. The physical aspects of the solid material and fluid of the porous 
medium are now established to have substantial impact on heat transmission. Han et al. [12] 
examined the heat transfer and flow in viscoelastic fluid are linked in the heat flow Christov 
Cattaneo template. The Christov Cattaneo scheme of heat transmission is used to describe 
thermal transmission in flexible flow affected by an exponentially stretched sheet. There is a 
narrower hydrodynamic layer at boundary in flexible fluid is thinner. Khan et al. [13] described 
the flow of three-dimensional and thermal transmission to burg fluid made with Christov 
Cattaneo thermal flow scheme.  
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Free convection is a form of heat spread that occurs as a result of changes in fluid 
density carried on by temperature differences. It emerges when buoyant forces dominate 
above external forces such as fans or pumps that push the fluid flow like the slippage of fluid. 
Cao et al. [14] investigated the impact of slip on the transmission of heat from vertical plate 
and mixed convective flow. Vieru et al. [15] discussed the impact of slippage on second-grade 
fluids’ flow of free convection as the exterior temperature rises. Mixed convection occurs 
when the fluid motion is affected by both buoyant forces and external forces. Javed et al. [16] 
elaborated the effects of slippage on a third-grade mixed fluid convection flow on an inclined 
plane near the orthogonal stagnation point. The purpose of the communication of Khan et al 
[17] is to use the Christov Cattaneo heat flow motion to investigate the stable 3-D boundary 
layer flow and heat transfer properties to Jeffrey’s fluid. The effects of the ratio of stretching 
rates parameter α and the thermal relaxation time β on the temperature field are examined and 
shown graphically. Maxwell fluid flow over 3-D boundary barrier in the plane of a bidirectional 
stretching surface has examined by Abbasi and Shehzad [18] in relation to the Cattaneo-
Christov heat flux model. 

Additionally, effects of heat generation or absorption are considered that the fluid's 
thermal conductivity varies with temperature. A new Christov Cattaneo heat flux template for 
Jeffrey fluid flow in three dimensions has investigated by Hayat et al [19]. A bidirectional 
extending surface enclosed the flow and the characteristic of thermal relaxation is 
characterized by warmth transfer using the Cattaneo-Christov heat flux. The results showed 
that a bigger thermal relaxation parameter has increased a higher heat transfer rate. Shehzad et 
al [20] for 3-D Maxwell liquid, Christov Cattaneo theory of thermal and mass flow towards a 
moving surface remained the main focus of this study. They created formulations of energy 
and mass species using the Cattaneo-Christov model of heat and bulk diffusion. The 
computed results convergent values have visualized using a numerical benchmark. Vasu et al 
[21] using the Cattaneo–Christov heat flux and Buongiorno models, this work examined the 
free convection flow of Jeffrey nanofluid via a vertical plate with sinusoidal surface 
temperature and concentration. In contrast to Newtonian nanofluid, Jeffrey nanofluid exhibits 
a faster velocity but a lower temperature and concentration. Applications for the topic can be 
found in geothermal systems, petroleum, thermal insulation, and solar collectors. 

On various fluidic models, researchers applied Cattaneo-Christov heat transfer 
technique to discover the new era of heat absorption.  Such as, the effects of mass fluxes and 
Cattaneo-Christov heat on the peristaltic transport of Bingham alumina nanofluid between 
coaxial vertical tubes have been investigated by El-Dabe et al [22]. They observed that with the 
rise of Bingham parameter there increased the size of trapped bolus and simulating the 
movements of the stomach fluid during endoscopy. Mabood et al [23] elaborated triple 
diffusion in the natural convection motion of fluid viscosity above horizontal plate in a porous 
media has in this work. Cattaneo-Christov theories are used to model heat and mass transfer 
while taking local thermal equilibrium into account.  

A three-dimensional mixed convective mass transfer flow over a semi-infinite vertical 
plate immersed in a porous material has been theoretically studied and described by Ahmed 
and Choudhury [24]. The novelty of their work has examined how periodic permeability 
affects flow and transport properties when viscous dissipation and chemical reactions are 
present. Gupta et al. [25] investigated the solutions with different intensities of magnetic fields 
Jeffrey nano liquid Darcy–Forchheimmer flow across a permeable cone using Christov 
Cattaneo bulk and heat flux theories. The impact of Christov Cattaneo mass and warmth flow 
techniques on transmission of warmth and mass in single-phase Jeffrey nanofluid flow across 
a porous sphere has examined by them.  

The goal of current study is to investigate 3-dimensional free convection flow via 
Periodically exposed extremely porous media to permeability and its implications on the 
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Cattaneo- Christov method of thermal transfer rate. The fascinating dynamics of the 
convective transfer of heat process are introduced by the phenomena of slip when fluid 
particles adjacent to the solid surface encounter reduced friction. Three-dimensional fluid 
flows are essential to study because most real-world motions are intrinsically three-
dimensional. Few main objectives can be discussed for studying 3D slip effect of periodic 
permeable fluid flow through porous medium such as realistic flow behavior around aircraft 
wings, in blood vessels or in turbines can be captured with accurate description of velocity, 
pressure, and temperature fields. Cross flow effects which normally negligible in 2D flows but 
3D models clearly identify the effects of cross flow as well as vortices and swirl motions.  
Mathematical Representation: 

Suppose that a highly porous and permeable material encircled by an infinitely 
permeable plate is being used to study whether a viscous, incompressible fluid behaves as it 
passes through it. The x-axis is associated with the plates of vertical surface, and the plate is 
vertically oriented in the x-z plane. The y-axis is designated as being in line with the plane of 
plate, parallel to its surface, and pointing in the guidance of the consistent free streaming 

velocity U. Suppose that the permeable medium displays periodicity (Figure1 ), which has the 
following form. Consider 

 
Figure 1. Geometry of Flow 
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is the presence of periodic permeability variation in the medium of pores, permeability 

variation's wavelength l , and ( <<1) is its amplitude. The change in permeability introduces 
the possibility of a three-dimensional nature to the problem. In the body force term, just the 
impact of the density   fluctuation with temperature distribution T is evaluated, and all flow 

rates are believed to be constant. 
Modeling in Mathematics: 

We have the equation for energy, continuity and momentum for viscous 
incompressible fluid as: 

. 0,                                                            (2)V =  

. ,                                                     (3)
dV

dt
 =  



                                 International Journal of Innovations in Science & Technology 

Oct 2025|Vol 7 | Issue 4                                                                    Page |2417 

. ,                                                   (4)
d

q
dt


 = −  

Where ,pc T k T = = −   T is the temperature, pc  is the specific heat at constant 

pressure  is the vector operator, k  is the thermal conductivity,   is the density of the fluid,  

and  is the Cauchy stress tensor. 
The velocity component suggested by, the following procedure control the flow via 

highly porous material. , ,u v w  
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The variables that follow are the problem's boundary conditions: 
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where wT
 and T 

  are the temperature distant from the plane and the plate's 

temperature at fixed pressure p 

 in the free stream. g be the fluid flow’s force of gravity in 

the x-axis, and V>0 is the fixed vacuum velocity and adverse indication typically from the 
plates suction. 
The non-dimensional variables defined below are given. 
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The equations (5) to (9) consequently have the following form: 
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The designing boundary conditions vary: 

 0;  1,  ,   0,  1,  
                            (17)

 ;  0,  1,   ,  0.

u
At y v u w

y

At y w u p p

 



 
= = − = = = 

 
→ = = = = 

 

Even the Prandtl, Grashof, and elastic parameters, as well as the permeability and 
Reynolds numbers, are all assigned as below: 
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The Mathematical Formulation for Solution: 
We assume preceding for solution of equations in the locale of the medium (12) - (16): 

2

0 1 2+ + +...                                                                        (18)d d d d =  

Where 𝜀 is a microscopic factor and d represents any of v, w, p, u and 𝜃. 
Model in Two-Dimensions: 

When 𝜀 = 0, the three-dimensional problem's complexity decreases by reducing it to 
a two-dimensional analysis flow of free convection within a permeable medium. The system's 
behaviors are controlled by the following equations: 
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The suitable boundary conditions vary: 
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We obtain the solution to the two-dimensional problem after significant calculation: 
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Three-Dimensional Model: 

When 0  the resulting equations are a set of initial order differential equations. 
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The suitable conditions at the boundary are as follows 
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The Flow Field Solution: 
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PDEs that clarify 3-D flow of free convection are expressed via equations (29) to (33). 

We presume 𝑣1, 𝑤1 𝑎𝑛𝑑 𝑝1 of the form that follows: 
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To get rid of the pressure 11p , equations (35) and (36) have to be resolved 

simultaneously to yield the differential equation given as follows: 
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Temperature & Pressure Profiles: 
Equations (35) and (36) can be solved concurrently with the updated conditions at the 

boundary (33), the pressure value can be obtained as follows: 
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To find an expression, we employ the temperature distribution. 
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Main Flow: 
To attain result of velocity of primary motion, we presume that 

1 11( , )= ( )cos .                                                                                        (43)u y z u y z  

We may answer this for 1u by putting the expressions (43) into (29) under the following 

equivalent improved conditions at boundary 

11 11(0) 0,  ( ) 0,u u=  =  

yields 
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The fixed involved in the solution of equations (42) & (44) are below here: 
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Skin Friction: 
Deriving essential specific parameters like the component of skin friction becomes 

attainable once the velocity profile is obtained. The non-dimensional skin friction component 
in the x-direction can be expressed as fellow: 

0
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Eliminating the sign of “ ” for convenience, we have result: 
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Heat Flow: 
The Nusselt number, which indicates the rate of heat transmission, can be determined 

by comparing transfer of heat factor of the temperature field. 

.                                                                                      (47)
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While we nondimensional and ease the result equation (48), we get 
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Results and Discussion: 
This research model aimed to investigate the theoretical aspects of the Christov 

Cattaneo heat transfer method involving slip effects in the context of 3-D flows of free 
convection occurring in a periodic permeable medium that is porous. Analytical solutions 
occured for the pressure, temperature distribution, velocity field and components of skin 
friction. Graphical illustrations showed the impact of dimensionless parameters on various 
parameters including Grashof number (G), Reynolds number (Re), Prandtl number (Pr), 

Permeability parameter𝐾0, and elastic parameter (L). 

 
(a) Velocity profile u 

 
(b) Velocity profile v 

 
(c) Velocity field w 

 
(d) Pressure p 

 
(e) Temperature  

Figure 2. Velocity, pressure and temperature fields are impacted by Reynolds number 
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If the values of all other nondimensional parameters remained the same and ( =0.01, 

Pr =7, 𝐾0=1, L=0.01, G =1, z =0,  =1) with slip conditions and the Reynolds number varies: 

Re = 1, 3, 5. Figure 1 illustrated the influence of Reynolds number on temperature distribution, 
pressure and velocity field. When the Reynolds number rises, that is seen that the primary flow 
velocity component, u Figure 1(a), increases. Furthermore, the Figure 1(a) showed both effects 
that is with slip and without slip and clearly the presence of a slip parameter velocity 
significantly improves the primary flow velocity. From a mathematical point of view, it is 
definitely appropriate to claim that the presence of slip at the plate in the direction of primary 
motion results to a decrease in adhesive forces. Therefore, the decreasing behaviour resulted 
in an expansion of the velocity component in the direction of the main flow. The point of 
most significant velocity is observed at the free layer. Moreover, the inclusion of a slip 
parameter reasons a decrease in the thickness of the boundary layer. The Reynolds number 
rises as the dimension of velocity field v Figure 1(b) rises. However, it is mentioned that as we 
travel away from the plate, the amplitude of this velocity component reduces, which seems to 
be a physically reasonable result. The velocity component w Figure 1(c) increased rapidly as it 
approached the plate, reaches its highest value, then rapidly decreases until it ultimately 
converges to zero as y →∞. It should be observed that this velocity component increased as 
Re, the Reynolds number, increases. Physically, this suggests that gravitational forces have 
become more beneficial than viscous forces nearby to the plate. In Figure 1(d), the pressure 
increased in addition to rise in the Reynolds number Re adjacent to the plate. At the free 
surface it becomes more valuable. The Reynolds number Re affected the temperature 
distribution is shown in Figure 1(e). It demonstrates that the temperature boundary surface 
falls as Re increased. 

 
(a) Velocity field u 

 
(b) Temperature profile  

Figure 3. Temperature and velocity field is influenced by Prandtl numbers 
Figure 2 illustrated the way the temperature field and the main flow u affected by the 

Prandtl number. Figure 2(a) demonstrates that the slip parameter and the Prandtl number have 
an impact on the main velocity profile u. The results of this study show that falls in the velocity 
component is correlated with a rise in the Prandtl number. The graphic represented in Figure 
2(b) has readily apparent that when the Prandtl number Pr increases, the temperature of the 
fluid falls. Figure 2(b) causing thermal boundary layer to become thinner. The fluid's low 
thermal conductivity at high Prandtl numbers caused a drop in the thermal layer’s thickness. 
The result consequently provided persuasive proof for the physical principle that the Prandtl 
number increases as the boundary layer thickness reduces. 

In Figure 3, the Permeable parameter is varied: 𝐾0=0.1, 0.5, 1. whenever any beyond 

no dimensional parameters under fixed (=0.01, z=0, Pr=7,  𝐾0=1, L=0.01, G=1). 

Figure 3(a) showed how permeable parameter 𝐾0  impact on velocity profile u. It can be seen 

that the primary flow velocity begins to falls as 𝐾0 rises. The slip parameter remained to exert 
an important effect on the increase of component of velocity. According to Figure 3(b), the 

permeability parameter 𝐾0 has a comparable impact on the velocity profile v. The velocity 
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profile w, according to Figure 3(c) increased exponentially adjacent to plate, obtains its extreme 
value, decreases swiftly, and eventually converges to zero as y →∞. This is valid for a fixed 

value of 𝐾0. As the permeable parameter 𝐾0 near plate increased, the pressure rises Figure 

4(d). The influence of permeable parameter 𝐾0 on the field of temperature is perceived in 

Figure 3(e). It has been perceived that the permeable parameter  𝐾0 and the temperature 
profile was not correlated well. 

 
(a) Velocity profile u 

 
(b) Velocity field v 

 
(c) Velocity distribution w 

 
(d) Pressure p 

 
(e) Temperature Field  

Figure 4. Velocity, pressure and temperature fields affected by Permeability parameter 

 
Figure 5. The main flow is impacted by Grashof number 
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Figure 4 displayed the Grashof number and how it affects the main velocity u for plate 
conditioning. The impact of the free convection parameter, namely the Grashof number, on 
the primary motion velocity field u due to planes low temperature. 

 
(a) Velocity profile u 

 
(b) Temperature field θ 

Figure 6. The main flow and temperature field are impacted by Elastic parameter 
In Figure 5, the Elastic parameter varied: L=0.01, 0.07, and 0.09. Whenever any 

additional dimensionless limitations remained constant (=0.01, z=0, Pr=7,  𝐾0=1, Re=1, 
G=1,  =1). The main flow u Figure 5(a) are affected by the Elastic parameter. The presented 

graph in Figure 5(a) illustrated a negative correlation between the Elastic parameter and the 
velocity component, indicating that an increase in the former results in a decrease in the other. 
The graphical representation clearly demonstrated that an increase in the Elastic parameter L 
correlates with a decrease in the temperature of the fluid field, as shown in Figure 5(b). 
Consequently, this leads to a decrease in the level of the thermal boundary layer. The low 
thermal conductivity of the fluid at high elastic parameters resulted in a decrease in the 
thickness of the thermal layer. 

 
Figure 7. The Main flow impact of Reynolds number along z-axis 

Figure 6 demonstrated the influence of Reynolds number on main flow velocity profile 
along z-axis.  Figure 6 depicted the horizontal view of main flow velocity where the normal 
value was flat and it was appropriate to claim that the presence of slip at the plate in the 
direction of primary motion resulted to a decrease in adhesive forces.  
Here in this study, it is observed that a strong correlation exists the current and earlier results 
described [6][11] which supports the correctness of the computational approach. 
Conclusion: 

A detailed description of Christov Cattaneo heat transfer method with slip effect 
through porous medium with periodic permeability is presented analytically. Through a 
comprehensive analysis, the main observation can be drawn:  
The Cattaneo-Christov thermal transfer model, that includes non-local heat conduction into 
consideration, exerted an important effect on the fluid's temperature distribution.  
Compared to the classic Fourier's law, the Cattaneo-Christov model introduced a delay to the 
fluid's thermal response. As a result, there was a change in the time it required for the fluid to 
attain its steady-state temperature.  
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Slip conditions at the solid-fluid contact exerted an effect on the fluid velocity 
distribution, modifying the boundary layer's viscosity and the flow properties.  

Both the slip conditions and Christov Cattaneo heat transmission method have an 
impact on depth of thermodynamics boundary layers. The combined impact of these effects 
changed how quickly heat flowed from the solid surface into the fluid, and exerted an impact 
on the convective heat transfer process as an entire.  

The Cattaneo-Christov model and slip effect may improve or suppress heat transport, 
depending on the particular conditions and variables. 
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