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he integration of Artificial Intelligence (AI) with remote sensing has transformed Land 
Use and Land Cover (LULC) classification, enabling more accurate, efficient, and 
scalable environmental monitoring. This review synthesizes recent advancements in 

AI-driven LULC classification, with a focus on deep learning, transfer learning, hybrid 
approaches, and explainable AI (XAI). Recent studies demonstrate that AI techniques 
significantly enhance classification accuracy and adaptability across diverse geospatial datasets, 
supporting applications such as urban expansion monitoring, ecological assessment, 
reforestation analysis, and real-time land management. Despite these advancements, 
challenges remain regarding spectral resolution, model interpretability, computational 
efficiency, and data scarcity. This review highlights these limitations and discusses emerging 
solutions, including multimodal data fusion, lightweight AI models, and scalable MLOps 
frameworks. The findings provide insights for researchers, practitioners, and policymakers to 
guide future work in sustainable land management and environmental monitoring. 
Keywords: Land Use and Land Cover (LULC); Remote Sensing; Artificial Intelligence (AI); 
Deep Learning; Machine Learning; Satellite Imagery; Image Classification   
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Introduction: 
Land use and land cover (LULC) classification has long been a focal point in Earth 

observation studies [1]. Land cover refers to the observable physical characteristics of the land 
at a given time, while land use indicates the extent of human activities related to the utilization 
of land and its resources [2]. Land use is closely linked with changes in land cover, both of 
which play a significant role in altering the environment [3]. Land cover, in particular, is 
continuously modified by urbanization processes [4]. Mapping land use and land cover 
consistently draws the attention of researchers, governments, and international organizations 
due to its strong association with diverse environmental conditions [5]. The most obvious 
manifestation of changes to the surface of the Earth is the change in land use and land cover 
(LULC) [6]. Investigation of land use and land cover (exploration of LULC) is required in 
order to understand the complicated interconnection between human activity and the 
environment. It highlights the diverse ways land is utilized, such as in forestry, modern 
agriculture, urban and rural planning, disaster response, environmental protection, and the 
promotion of sustainable practices [7]. LULC data is important in many geospatial applications 
such as urban and regional planning, monitoring of the environment, and management [8]. 
The design of infrastructure projects in urban and rural areas needs an understanding of land 
use and land cover (LULC) [9]. Effective land management plans can be formulated by 
policymakers and academicians by conducting their studies on change analysis of land use and 
land cover [7]. Therefore, it is essential to conduct regular observations and assessments of 
land use and land cover worldwide to understand both the positive and negative changes 
occurring on the land [10]. 

Satellite-derived information is widely recognized for its significant impact on 
scientific investigations [11]. LULC mapping has heavily applied the use of remote sensing 
[12]. Satellite imagery and other remote sensing data are applied in r-s (remote sensing) analysis 
for land cover (LC) classification in an attempt to group different types of land cover [11]. 
Advancements in technologies for remote sensing have greatly promoted the availability of 
satellite imagery at anyone’s reach, hence triggering innovativeness and entrepreneurship [13]. 
With its cost-effectiveness, high efficiency, and broad applicability, remote sensing technology 
offers robust technical support for the classification of land use and land cover [14]. 
Traditional LULC classification methods have evolved from manual visual interpretation, 
which was often subjective and inefficient, to more automated approaches that utilize remote 
sensing and advanced image processing techniques [15]. 

Currently, the majority of techniques used to classify land cover may generally be 
categorized into two classes. Machine learning and deep learning are the two chief sub-
categories of AI [14]. Artificial intelligence (AI) has attracted the attention of academics, 
researchers, and professionals across various fields, whose work and innovations continue to 
drive the advancement and success of AI techniques [16]. Instead of conventional methods, 
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researchers suggest the use of powerful and efficient AI-based machine learning algorithms to 
go beyond the intrinsic limitations and attain the necessary degrees of precision [17]. Land use 
classification can now be automated using machine learning, which employs both supervised 
and unsupervised approaches to deliver significant improvements across various applications 
[15]. However, these techniques lack in respect of scalability and precision. 

The abstract term "deep learning" (DL) describes a set of various algorithm 
architectures based on neural networks [18]. The field of computer vision has been 
significantly impacted by deep learning [19]. Deep learning algorithms have also been widely 
used in many different use cases related to remote sensing [20]. Unlike traditional methods, 
they can automatically extract image features, capture complex non-linear relationships while 
offer enhanced generalization capabilities. This advancement enhances the interpretability of 
land cover classifications, providing not only higher accuracy but also clearer insights into the 
model’s decision-making process [14]. Several key challenges remain, including improving 
classification performance in terms of efficiency and accuracy, reducing computational costs, 
and enhancing adaptability to diverse geographical contexts.  

To address the growing need for accurate, efficient, and scalable LULC classification, 
this review explores recent advances in AI-based approaches, particularly those leveraging 
deep learning and remote sensing technologies. It highlights the evolution from traditional 
classification methods to sophisticated AI models such as convolutional neural networks 
(CNNs), vision transformers (ViTs), and hybrid architectures. The study integrates insights 
from recent research, evaluates model performance across various datasets and regions, and 
examines the impact of explainable AI alongside cloud-based computational approaches. By 
doing so, this review aims to provide a comprehensive understanding of current capabilities, 
key challenges, and future directions in AI-driven LULC classification to guide researchers, 
policymakers, and practitioners in land management and environmental monitoring. 
“From Traditional Methods to AI-Driven Approaches”: 

While traditional remote sensing and manual classification approaches have laid the 
foundation for LULC studies, they are often limited by subjectivity, scalability issues, and 
reduced accuracy in complex or heterogeneous landscapes. The emergence of Artificial 
Intelligence (AI), particularly machine learning and deep learning methods, represents a 
transformative shift in this field. Unlike conventional techniques, AI-based approaches can 
automatically learn spatial and spectral patterns, adapt to diverse geographical contexts, and 
process large-scale satellite data with greater efficiency and precision. This transition 
underscores the significance of reviewing AI-driven methodologies, as they not only overcome 
the limitations of earlier techniques but also open new possibilities for real-time monitoring, 
explainability, and integration with cloud-based platforms. 
A general workflow diagram of how the process of LULC classification takes place is shown 
in Figure 1. 
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Figure 1. General workflow diagram for AI-based LULC classification 

Objectives: 
The primary objectives of this review article are as follows: 

To provide a comprehensive overview of recent advancements in Artificial 
Intelligence (AI) techniques, particularly machine learning and deep learning models, for Land 
Use and Land Cover (LULC) classification using remote sensing data. 

To critically analyze and compare the performance of different AI models (e.g., CNNs, 
Vision Transformers, AutoML, and hybrid approaches) across various datasets, spatial 
resolutions, and numbers of land cover classes. 

To highlight the strengths, limitations, and challenges encountered in AI-based LULC 
classification, including issues of scalability, computational cost, spectral variability, and model 
interpretability. 

To synthesize future research directions by identifying potential solutions, such as the 
integration of Explainable AI (XAI), lightweight architectures, multi-spectral and 
spatiotemporal data, and MLOps-driven frameworks. 

To support researchers, policymakers, and practitioners by presenting consolidated 
knowledge that can guide sustainable land management, environmental monitoring, and urban 
planning through improved LULC classification. 
Literature Review: 
Transformer-Based Approaches: 

The author [7] proposed an efficient framework for Land Use and Land Cover (LULC) 
analysis using transfer learning and strategic fine-tuning on transformer-based models. The 
study integrates insights from recent research, evaluates model performance across various 
datasets and regions, and examines the impact of explainable AI alongside cloud-based 
computational approaches. Experiments were conducted on the EuroSAT and PatternNet 
datasets using models pre-trained on ImageNet-21k and run on Google Colab Pro GPUs. Ten 
models from CNN and transformer families were compared—ResNet50, ResNet101, 
Inception V3, DenseNet161, GoogleNet, ViT Base, ViT-Large, DeiT-Base, SwinT-Small, and 
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SwinT-Large—with the proposed method showing competitive performance. Preprocessing 
steps included image resizing and normalization. Explainable AI (XAI) was implemented using 
Captum, whose model-agnostic framework generates detailed attribution maps without 
modifying the network, offering greater interpretability compared to Grad-CAM. This 
framework demonstrates the potential of combining transformers and XAI for scalable, 
transparent LULC classification. Future work includes expanding to more spectral bands and 
broader computer vision tasks. 

The author in [13] presented a transformer-based framework for remote sensing scene 
classification, achieving 99.19% accuracy using transfer learning (TL) and fine-tuning on RGB 
bands. Using the EuroSAT dataset, which comprises 27,000 georeferenced Sentinel-2 images 
across ten land use classes, Vision Transformer (ViT) models pre-trained on ImageNet-21k 
were trained both with and without data augmentation. Augmentation techniques such as 
cropping and flipping enhanced generalization, particularly for the Forest and Sea/Lake 
classes, whereas the Pasture class exhibited the lowest classification accuracy. Training was 
limited to 15 epochs using cross-entropy loss, Adam optimizer, early stopping, dropout, 
weight decay, and gradient clipping (1.0), all within a PyTorch-GPU environment on Google 
Colab. ViT outperformed ResNet50 and VGG16 in accuracy, though VGG16 trained faster. 
The model was further evaluated on Sentinel-2A imagery (2018–2020) over Kreis Borken 
using Google Earth Engine, where 64 × 64 image tiles were classified and color-mapped. 
While effective, the RGB-only input limits the model's full potential; future work will explore 
multi-spectral data, other pre-trained models, and applications like change detection and land 
cover prediction. 

The author in [14] presented a deep learning-based approach to extract large-scale land 
cover data from medium-resolution Landsat imagery (2000–2023) for assessing the ecological 
health of coastal regions along the China-Pakistan Economic Corridor (CPEC). Land cover 
classification was conducted using the MSNet model, trained on 24,000 samples and validated 
on 10,300, incorporating NDVI and NDWI indices along with cloud-free imagery processed 
through the CFMask algorithm on the Google Earth Engine platform. The model 
outperformed U-Net, SegNet, RF, and SVM in accuracy. Land cover data from six time 
periods were analyzed using ArcGIS, and ecological health was assessed through the VOR 
model, evaluating ecosystem vigour, organisation, and resilience (EV, EO, ER). Results of the 
study presented by the authors in [14] showed the CPEC coastal region to be “Unhealthy” but 
with signs of moderate improvement. Supporting datasets, including ESA_WorldCover, 
GlobeLand30, and GLC_FCS30, were incorporated alongside data augmentation and spatial 
processing techniques. Despite limitations such as sample optimization and a lack of 
spatiotemporal modeling, the framework demonstrates strong potential. Future work includes 
testing DDPM-SegFormer, incorporating higher-resolution and spatiotemporal attention 
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modules, and exploring lightweight model enhancements and causal mechanisms driving 
landscape changes. 
CNN-Based and Joint Deep Learning Frameworks: 

The author in [10] investigated LULC changes in Nanjangud taluk, Mysuru district, 
India, using LISS-III satellite imagery from 2010 and 2020 with a CNN-based deep learning 
model. Traditional manual classification methods lack accuracy, while the proposed CNN 
approach achieved 94.08% and 95.30% accuracy for 2010 and 2020, respectively. The LISS-
III sensor provides medium resolution (5.8–23.5 m) multispectral data with a 24-day revisit 
cycle. Preprocessing included radiometric, atmospheric, and geometric correction, followed 
by band composition and feature extraction using spectral indices. The inclusion of auxiliary 
data, such as topographic and soil maps, further improved classification accuracy. Using a 
60:20:20 data split, the model outperformed traditional machine learning methods and existing 
approaches in both accuracy and computational efficiency. Results of the study conducted by 
the authors in [10] showed increases in built-up areas, agriculture, and water bodies, while 
forest cover declined. Despite computational demands and resolution limitations, the model 
proved effective for medium resolution, mixed-region classification. The study employed tools 
such as MATLAB, QGIS, and Python. Future work will explore deeper models, utilize higher-
resolution data, and expand the analysis to a district-wide scale to provide enhanced insights 
for land management. 

The author in [4] developed an AI-based land cover classification model using high-
resolution remote sensing (HRRS) images to enable rapid land cover mapping. The model 
consists of three modules: pre-processing, classification, and post-processing. In the pre-
processing stage, a sliding window algorithm partitions HRRS images into overlapping 
segments, while the classification stage employs a FusionNet-based convolutional neural 
network (CNN) to perform image classification. The post-processing module aggregates the 
results to generate final land cover maps. The model was trained using land cover maps from 
Jeonnam province, Korea, with validation conducted at two different sites. Results of the study 
introduced by the authors in [4] showed overall accuracies of 0.81 and 0.71, with higher 
performance in agricultural areas. The model shows strong potential for rapid updates in 
agricultural regions but highlights the need for further refinement, including the integration of 
field boundary delineation and training with specialized datasets for wetlands and barren lands. 
The CNN-based model classifies land cover on a pixel level, and future improvements could 
involve integrating land parcel boundaries for better accuracy. 

The researcher in [19] proposed a hybrid HEVGG19 deep learning model for land 
cover classification and change detection, combining one-hot encoding with transfer learning 
from a pre-trained ResNet50. Drawing on datasets from the National Remote Sensing Centre 
and Sentinel-2 (27,000 images across 10 classes), the model applies transfer learning, fine-
tuning, and a modified VGG19 architecture, attaining an accuracy of 98.5%. Historical satellite 
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and aerial imagery from Chennai and Coimbatore (spanning 20 years) are preprocessed, 
augmented, and segmented using a Feature Pyramid Network with EfficientNet-B3, and 
converted into textual data for land cover change tracking. The model outperforms other 
CNN-based approaches and aids in predicting urban expansion to support environmental 
planning and climate mitigation efforts. 

The author in [8] presented the Scale Sequence Joint Deep Learning (SS-JDL) method 
for joint Land Use (LU) and Land Cover (LC) classification, addressing key challenges in 
traditional pixel- and object-based approaches, including scale selection and classification 
hierarchy. SS-JDL introduces a sequence of image patch sizes (scales) derived using a Forward 
Scale Sequence (FSS) sampling scheme, enabling progressive information transfer from small 
to large scales. At each scale, LU and LC are jointly classified using a pixel-based MLP and a 
patch-based OCNN. When tested on aerial imagery from Bournemouth, Southampton, and 
Manchester, SS-JDL outperformed state-of-the-art methods, including JDL, achieving LU and 
LC overall accuracies of 88.94% and 91.06%, respectively, for S1. The method is simple, 
generalizable, and offers a robust framework for higher-order feature classification in remote 
sensing. 
AutoML and Hybrid ML Approaches: 

The author in another study [15] applied automatic machine learning (AutoML) 
techniques to classify land use changes in the Qarhan Salt Lake area from 2000 to 2020 using 
Landsat-5 TM and Landsat-8 OLI imagery. Eight land cover classes, exposed lakes, saline 
lands, salt flats, salt fields, construction land, water, and agricultural land were identified, with 
400 stratified sample points selected annually. Using FLAML and Scikit-learn, six machine 
learning algorithms (LRL2, RF, ET, LGBM, XGBoost, and XGBLD) were compared, with 
XGBLD outperforming the others by reaching 77% accuracy. Bayesian optimization is used 
for hyperparameter tuning, offering efficiency over traditional methods. AutoML proved 
effective in handling spectral variability and limited data in this arid, complex environment. 
Image preprocessing includes atmospheric correction, normalization, and resampling to 90m 
resolution, while classification results are integrated into GIS for spatial analysis. Land cover 
changes are analyzed in relation to human water usage, temperature, precipitation, and 
evaporation, revealing strong anthropogenic and climatic influences. Despite challenges like 
computational demands, data sensitivity, and model interpretability, the study demonstrates 
AutoML's value for dynamic, large-scale environmental monitoring. Future work should focus 
on improving model explainability, addressing exposed lakes as key indicators, and advancing 
sustainable land and water management strategies. 

The author in [16] aimed to enhance the accuracy of land use/land cover (LULC) 
classification by combining artificial neural networks (ANN) and random forest (RF) 
techniques into a novel approach called ANN_RF, applied to Sentinel-2A and Landsat-8 
multispectral satellite data for Sana’a city in 2016. The proposed method outperforms 
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individual ANN classifiers, offering better performance in both speed and accuracy. The study 
utilizes SAGA GIS software for data processing, which includes geometric and radiometric 
corrections of the satellite images, and a confusion matrix and kappa coefficient are employed 
to evaluate classification accuracy. Results show an accuracy of 82.52% and a kappa of 0.58 
for Sentinel-2A, and 80.00% accuracy with a kappa of 0.71 for Landsat-8. The study 
demonstrates that merging ANN and RF techniques improves LULC classification compared 
to other methods like RF+SVM, MLC+SVM, and ANN+SVM. Future work is suggested to 
further explore the integration of RF and ANN with other satellites and under different 
environmental conditions to enhance model performance. 

In [2], the researcher models Uttarakhand’s land use and land cover (LULC) patterns 
for 2032 and examines changes from 1992 to 2022 using 30 m Landsat imagery, applying a 
semi-automated hybrid classification that integrates Maximum Likelihood and Object-Based 
Image Analysis (OBIA) for improved accuracy. Future LULC prediction is performed using 
the Cellular Automata–Artificial Neural Network (CA-ANN) model within the MOLUSCE 
plugin in QGIS, leveraging its spatiotemporal simulation capabilities and transition probability 
matrices. The study incorporates population, road network, and satellite data to assess six 
LULC classes in this mountainous region. Results of the study presented by the authors in [2] 
highlight the effectiveness of CA-ANN in forecasting complex landscape dynamics, though 
challenges include model opacity, potential ANN overfitting, resolution discrepancies among 
datasets, and sample bias. Future work should explore integrating multi-resolution satellite 
data, advanced remote sensing techniques, and ensemble machine learning approaches to 
enhance spatial detail, classification accuracy, and robustness of LULC change analysis. 
Explainable and Interpretable AI: 

The author in [9] presented an interpretable deep learning framework for land use and 
land cover (LULC) classification using Shapley additive explanations (SHAPs) to improve 
classification results from satellite images. The framework utilizes a compact convolutional 
neural network (CNN) trained on the EuroSAT dataset, with three-band combinations (red, 
green, near-infrared, and short-wave infrared) instead of the full 13 spectral bands. The 
proposed approach achieved an overall accuracy of 94.72%, outperforming standard methods 
with larger trainable parameters. By incorporating SHAP, the framework provides both local 
and global explanations, offering insights into how different spectral bands influence 
classification, particularly in urban and rural areas. The model was compared to several CNN 
architectures (e.g., GoogleNet, DenseNet121, ResNet50), and results demonstrated that the 
use of three-band combinations significantly improved classification accuracy. Additionally, 
SHAP’s explainability enhanced the interpretability of model predictions, revealing 
correlations between image features and LULC classes. 

In [20], Land Cover/Land Use (LCLU) in Talassemtane National Park (TNP) is 
classified using Sentinel-2 imagery and a Deep Neural Network (DNN) model, which employs 
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five spectral indices—NDVI, GNDVI, SAVI, MNDWI, and NDWI—to separate six distinct 
land use classes. The DNN model is optimized using three hyperparameter optimization 
algorithms: Random Search, Hyperband, and Bayesian optimization. The results showed that 
spectral indices significantly improved classification, especially for classes with similar 
reflectance. The Hyperband optimization method outperformed the others, increasing 
classification accuracy by 12.5%, achieving an overall accuracy of 94.5%. Dropout 
regularization was applied to prevent overfitting. The study conducted by the authors in [20] 
aimed to classify the 2022 LCLU in TNP, evaluate optimization methods for DNN, and 
provide an updated LCLU map. The study employs Sentinel-2 MSI Level 2A imagery at 10 m 
resolution, supplemented with ground truth data provided by local managers. The study 
highlights the challenges of selecting spectral indices, DNN model sensitivity, and data 
limitations, and suggests future improvements through advanced deep learning architectures 
and multi-source remote sensing data integration to enhance classification accuracy. 

The author in [11] outlined the development of an end-to-end MLOps workflow 
integrating land cover classification models using Big Data strategies to process large-scale, 
high-resolution spatial data. The workflow, implemented in a Kubernetes environment, 
ensures on-demand auto-scaling, distributed computing, and load balancing for efficient 
satellite imagery processing. By incorporating automated data ingestion, preprocessing, model 
training, and evaluation, this MLOps framework ensures that land cover models remain up-
to-date and reflect current conditions. An AI-as-a-service (AIaaS) solution, using Sentinel-2 
and ASTER data with over 40,000 manually validated locations across nine classes, achieves 
over 75% pixel-level classification accuracy. The system allows users to obtain terrain 
classification through a REST or gRPC API. Future work focuses on integrating drift 
detection mechanisms to autonomously identify shifts in data distributions and incorporating 
explicability components to improve model transparency and reliability. 
Other Machine Learning and Specialized Applications: 

In [17], coal mine overburden reclamation through reforestation is assessed using high-
resolution Sentinel-2 imagery, with classification performed through multiple machine 
learning (ML) techniques, including SVM, RF, ANN, and MLC.  The results show that SVM 
outperforms RF and MLC in accurately delineating land use and vegetation classes, particularly 
in distinguishing reclamation plantations into age classes (young, middle-aged, and mature). 
The study, carried out in the Korba coalfields, applies Sentinel-2 imagery (10 m resolution) 
from 2020 to 2022 to map nine land cover categories: forests, plantations at various growth 
stages (young, middle-aged, mature), agriculture, fallow land, built-up areas, water bodies, 
mining zones, and barren overburdens without vegetation. SVM achieved the highest accuracy 
of 96.4%. The study highlights gaps in plantation development and soil reclamation in coal 
mine overburdens, with the recommendation to integrate advanced ML and AI techniques to 
overcome spectral and spatial limitations and improve classifier performance. 
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The author in [3] analyzed land use and land cover change (LULCC) in the River Tea 
SCI (Galicia, NW Spain) between 2015 and 2023, utilizing Sentinel-2 and Planet Labs 
(RapidEye, PlanetScope) imagery in combination with Object-Based Image Analysis (OBIA) 
and Artificial Neural Network (ANN) classification methods. The fragmented and low-
variability landscape posed challenges to achieving high classification accuracy. OBIA with 
Planet Labs data achieved the highest accuracy (80%), followed by Sentinel-2 + OBIA (77%) 
and Planet Labs + ANN (55%). The methodology incorporated multispectral indices (NDVI, 
NDWI), PCA, and post-classification analysis using QGIS’s MOLUSCE tool to simulate land 
cover for 2031. The approach integrated both free (QGIS, SNAP, OTB) and proprietary 
(Erdas Imagine, MATLAB) tools. Eight land cover classes are identified, and models are 
trained using 21 images (10 Sentinel, 11 Planet Labs) across seasons. The study highlights the 
potential of combining optical sensors of varying resolutions and object-based techniques for 
accurate classification of riparian zones. Limitations of the study introduced by authors in [3] 
include randomized parameter selection (e.g., ANN layer size), and future improvements may 
involve adopting CNN architectures for better pixel-patch analysis and adapting the 
framework for different terrain and land cover types. 

In [21], land use/land cover (LULC) changes in the Manipur River basin are assessed 
and projected using the Land Change Modeller (LCM) within TerrSet, drawing on Landsat 
images from 2007, 2014, and 2017. The study applies Markov Chain and artificial neural 
network (ANN) models, incorporating driving variables such as distance from roads, 
settlements, elevation, and slope, to predict future LULC for 2030. The findings indicate 
substantial shifts in urbanization and herbaceous wetland areas, underscoring the importance 
of implementing effective urban planning and environmental conservation policies. The 
LULC maps achieved high accuracy rates, with 88%, 92%, and 93% for 2007, 2014, and 2017, 
respectively, and an R2 value of 0.86 for the predicted and actual 2017 maps. The study 
concludes that LCM can effectively predict future LULC changes, providing valuable insights 
for sustainable resource management and policy formulation. Using higher-resolution datasets 
in future studies may improve the accuracy of LULC classification and allow for a more 
detailed assessment of habitat dynamics in sensitive regions like the Loktak Lake Wetland. 

The author in [23] assessed land use and land cover (LULC) changes in Ethiopia’s 
Tana Basin using Landsat imagery from 1986, 2002, and 2018, processed with ENVI and 
ArcGIS software. Six land cover classes were identified through supervised classification using 
the maximum likelihood algorithm, with accuracy evaluated using the Kappa coefficient. The 
results revealed a notable 32-year increase in agricultural land (15.61%) and residential areas 
(8.05%), largely at the expense of forests, bushland, and grazing lands, whereas water bodies 
remained relatively stable due to reservoir development.  The findings underscore the value of 
remote sensing and GIS in monitoring LULC changes and inform sustainable land 
management and planning efforts. 
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The author in [18] compared the performance of four machine learning algorithms—
SVM, RF, XGBoost, and DL—in classifying land cover and land use (LCLU) in a complex 
boreal landscape in south-central Sweden using multi-temporal Sentinel-2 data. The dataset 
included 11,816 samples, split into 70% training and 30% evaluation, with 10 spectral bands 
and vegetation indices (NDVI, MNDWI, NDBI) for enhanced classification. SVM achieved 
the highest accuracy (0.758), followed by XGBoost, RF, and DL. Accuracy comparisons 
revealed significant differences among algorithm pairings and class-wise predictions. The study 
highlighted the importance of red edge and shortwave infrared bands, particularly from spring 
and summer scenes. A major limitation was the poor performance of DL, attributed to the 
“vanishing gradient problem” caused by the tanh activation function. Future studies may focus 
on improving accuracy through parameter tuning, examining the utility of red edge bands in 
forested regions, and contrasting mono-temporal with multi-temporal Sentinel-2 datasets for 
LCLU classification. 

Dynamic World is a near real-time (NRT) land use and land cover (LULC) 

classification product that leverages deep learning on 10 m Sentinel-2 imagery to deliver high-
resolution, continuously updated LULC maps via cloud platforms like Earth Engine [22]. In 
contrast to traditional products updated annually, it delivers single-date snapshots 
synchronized with satellite acquisitions, allowing for dynamic monitoring and flexible 
applications. Using a semi-supervised Fully Convolutional Neural Network trained on dense, 
polygon-based annotations from globally distributed regions, the model achieves 73.8% 
agreement with expert labels and outperforms existing LULC products. While highly accurate 
in temperate, tree-dominated regions, it struggles to distinguish between crops and shrubs in 
arid landscapes. Nevertheless, Dynamic World supports scalable, timely, and customizable 
LULC analysis across a wide range of applications. 
Comparative Insights from Reviewed Studies: 

Transformer-based models consistently demonstrate superior performance (>99% 
accuracy in some cases) and strong adaptability to diverse datasets. Their integration with 
explainability tools enhances interpretability, but reliance on RGB bands or medium-
resolution data can limit potential. 

CNN-based models and joint deep learning frameworks remain robust and 
computationally efficient, with accuracies ranging from ~90–98%. While CNNs excel in pixel-
level classification, approaches like SS-JDL address the challenge of multi-scale feature 
extraction and hierarchical classification, offering a more generalizable framework. 

AutoML and hybrid methods reduce manual parameter tuning and provide flexibility 
for diverse environments. However, their accuracy lags behind transformer and advanced 
CNN models, particularly in complex landscapes. 
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Explainable AI and MLOps frameworks emphasize transparency and operational 
deployment. While accuracy may be slightly lower than that of transformers, these approaches 
are crucial for trust, adoption, and real-world scalability. 

Traditional ML, OBIA, and statistical approaches remain valuable for regional studies 
and long-term change analysis. However, they often underperform compared to CNNs and 
transformers, especially in large-scale, heterogeneous, or real-time applications. 

The various methods used by different researchers for AI-based LULC classification, 
as mentioned in the literature, along with their results, key limitations, and suggested 
improvements to overcome these limitations, are listed in Table 1. 

 
Figure 2. Accuracy Comparison of various AI Models used in the literature by different 

researchers for LULC Classification, showing better classification performance with complex 
model architectures 

Figure 2 compares the reported accuracies of different AI-based models used in the 
literature for Land Use and Land Cover (LULC) classification. Transformer-based 
architectures (e.g., ViT and SwinT) achieved the highest accuracies (>99%), outperforming 
traditional CNNs and machine learning models. Although CNN-based models such as 
HEVGG19, DNN, and hybrid approaches achieved high accuracies (94–98%), methods like 
AutoML and FCNN performed less effectively, largely due to dataset constraints and 
spatiotemporal variability. This underscores the advantage of transformer-based models in 
exploiting large-scale datasets to achieve high accuracy, while CNN-based and hybrid 
frameworks continue to offer strong performance in certain applications. 

This bubble chart 3 illustrates the relationship between AI models, datasets, and the 
number of classes considered in LULC classification tasks. The x-axis represents the number 
of classes, the y-axis lists the models, and the bubble size indicates the accuracy achieved. 
Models like Vision Transformers (ViT, SwinT) and hybrid CNNs were tested on datasets with 
larger class diversity (up to 38 classes) and still achieved high accuracies (>99%). In contrast, 
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models such as AutoML and OBIA+ANN, when applied to medium-class datasets (6–10 
classes), yielded comparatively lower accuracies. The visualization demonstrates that advanced 
deep learning models scale more effectively with class complexity and generalize well across 
diverse datasets, positioning them as highly suitable for operational LULC monitoring. 

 
Figure 3. Models, Datasets, and Number of Classes in the Past LULC Studies (Bubble 
Chart), presenting the relationship between dataset complexity, no. of target classes, and 
models used for classification, along with their impact on the classification performance 

 
Figure 4. Accuracy of AI Models used in the Previous Studies across Different Datasets for 
LULC Classification, demonstrating superior classification performance of complex model 

architectures when applied to larger datasets as compared to smaller datasets 
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Table 1. Different approaches used in the literature for AI-based LULC classification 

S.NO Author Year Methods Result Dataset & study area No. of classes Limitation Future Work 

1 Mehak et al., 2024 Vision 
Transformer 
(ViT) and Swin 
Transformer 
(SwinT), 
Captum for 
XAI 

> 99% accuracy EuroSAT dataset, 
27,000 images, RGB 
bands, spatial 
resolution 10m 

PatternNet dataset for 
additional 
experiments, 800 
images per class, 
spatial resolution 
~0.3m SA: Global 

10 LULC 
classes, 38 
classes 

Not 
mentioned. 

Larger datasets, using 
a wider range of 
spectral bands 

2 Suman & 
Jannatul  

2024 ViT 99.19% 
accuracy 

EuroSAT dataset SA: 
Global, Kreis Borken 
area for evaluating the 
model further 

10 LULC 
classes 

Only using 
RGB bands 

Other datasets, other 
models, multi-
temporal data, and 
more spectral bands 

3 Pushpalatha 
et al., 

2025 CNN accuracy of 
94.08% for the 
2010 data and 
95.30% for the 
2020 data 

Linear imaging self-
scanning sensor- III 
(LISS-III) remote 
sensing images, 4 
spectral bands: blue, 
green, red, and near-
infrared, spatial 
resolutions ranging 
from 5.8 m to 23.5 m. 
SA: Nanjangud taluk, 
Mysuru district, 
Karnataka, India 

5 extensive 
computational 
resources, 
medium 
resolution 
restricts 
accuracy 

Deeper architectures, 
longer training cycles, 
and higher-resolution 
satellite data. 

4 Chen et al., 2024 MSNet model accuracy >86% (Landsat 5 TM, 
Landsat 7 ETM+, 
and Landsat 8 OLI) 
satellite images, 
spatial resolution 
30m, 8,8,11 bands 
SA: coastal regions 
that extend 50 km 
offshore along the 
CPEC 

6 Optimization 
Samples, 
Spatiotemporal 
factors 
ignored, 
Modelling 
adjustment 

higher-resolution 
imagery, 
spatiotemporal 
attention module, 
using the DDPM-
SegFormer model 
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5 Chao et al., 2024 Auto ML 
algorithms (6 
ML models) 

XGBLD with 
77% accuracy 

Landsat-5 TM and 
Landsat-8 OLI 
images, spatial 
resolution 90mX90m, 
blue (B), G, R, NIR, 
shortwave infrared 1 
(SWIR1), and 
shortwave infrared 2 
(SWIR2) spectral 
bands 
SA: Qarhan Salt Lake 
area 

8 Reliance on 
data quality, 
computational 
demands of 
Auto ML, and 
the "black-
box" nature of 
AutoML 

Complementary 
methods for result 
validation and 
interpretation 

6 Mario et al., 2024 object-based 
image analysis 
(OBIA) 
Classification 
via RF and 
Artificial 
Neural 
Network 
(ANN) (pixel-
based 
approach)  

Highest 
accuracy Planet 
Labs+OBIA 
80%, 
Sentinel+OBIA 
77%, Planet 
Labs+ANN 
55% 

Images from the 
Sentinel-2 (10m) and 
Planet Labs (3m) 
(RapidEye and 
PlanetScope) 
multispectral satellite 
platforms. 
SA: River Tea SCI 
(Site of Community 
Importance) (Galicia, 
NW Spain) 

8 Random 
model 
parameters’ 
optimization, 
different 
landscapes' 
data need to 
be adjusted for 
classification. 

ANN can be replaced 
by CNN for better 
performance 

7 Waiza et al., 2024 Cellular 
automata and 
Artificial neural 
networks (CA-
ANN) 

The accuracy of 
LULC for the 
years 1992, 
2002, 2012, and 
2022 was 96.94 
%, 97.77 %, 
98.61 % and 
98.87 % 
respectively 

Population, road 
network, and satellite 
data (Landsat), with a 
spatial resolution of 
30 m. 
SA: Uttarakhand, a 
mountainous and hilly 
state. 

6 CA-ANN 
algorithm 
being opaque, 
ANN prone to 
overfitting, 
Biases in 
sample 
selection, 
Differences in 
resolution in 
satellite 
images, and 
data from 
other sources. 

Integrating multi-
resolution satellite 
data, Alternative ML 
and ensemble 
techniques 
incorporated with CA 
and using additional 
parameters. 

8 Antonio et al., 2024 ML models a pixel-level 
classification 

Sentinel-2 and 
ASTER data 
incorporating over 

9 Not 
mentioned. 

incorporating a robust 
drift detection 
mechanism and 
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accuracy of 
over 75% 

SA: 40,000 manually 
validated locations 

integrating an 
explicability 
component 

9 Mayank et al., 2025 ML models 
(SVM, RF, 
Maximum 
Likelihood 
Classifier)  

SVM with an 
accuracy rate of 
96.4% 

Sentinel-2 satellite 
data, with a 10-m 
spatial resolution free 
of clouds, Visible 
(Red, Green) and 
Infrared (NIR) bands 
SA: Korba coalfields 

9 Spectral and 
Spatial 
Limitations, 
Classifier 
Performance 
Variability 

Integrate advanced 
machine learning and 
artificial intelligence 
techniques to 
overcome spectral and 
spatial limitations 

10 Ali et al., 2023 Deep Neural 
Network 
(DNN) 

accuracy of 
94.5% 

Sentinel-2 satellite 
imagery, 10m spatial 
resolution, the vector 
dataset used, 
including ground 
truth data, was 
provided by local 
managers and 
validated by visits to 
the NPT territory. 
SA: Talassemtane 
National Park (TNP) 

6 The selection 
and number of 
spectral indices 
used to classify 
land cover, 
DNN’s 
sensitivity to 
model layers, 
overfitting, 
and Challenges 
gathering 
ground 
truthing data 

Advanced DL 
architectures, 
incorporating ancillary 
data to enhance 
classification accuracy, 
combining multi-
source RS data to 
augment spectral 
information 

11 Jinseok et al., 2020 CNN model 
based on the 
FusionNet 
network 
architecture 

accuracy of 
0.83% 

The orthographic 
images obtained from 
the National 
Geographic 
Information Institute 
(NGII), red, green, 
and blue spectral 
bands, spatial 
resolution 51 
cm/pixel, image size 
256 x 256. 
SA: The area from the 
Jeonnam province in 
Korea was used to 
train the model, 
Subuk-myeon of 
Jeonnam province, 

three 
different 
categories 
based on the 
level of detail; 
seven items 
in the main 
category, 22 
items in the 
parent 
subcategory, 
and 41 items 
in the child 
subcategory 

Some land 
cover classes 
had small data, 
and a CNN-
based model 
classifies land 
cover on a 
pixel unit, 
which can be 
different from 
the actual land 
use of the 
parcel unit 

Using more than four 
such classes and using 
NDVI and NDWI, 
considering land 
parcel boundaries into 
pixel-based land cover 
can improve the 
classification accuracy 
substantially 
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and Daseo-myeon of 
Chungbuk province, 
used for model 
validation 

12 Eman et al., 2023 merging of the 
two neural-
based and 
object-based 
approaches, 
the ANN_RF 
model 

82.52% 
Accuracy for 
sentinel-2A, 
80.00% 
Accuracy for 
landsat-8. 

Sentinel-2A and 
Landsat-8 satellite 
images, Medium 
resolution, RGB 432 
spectral bands 
SA: Sana’a is Yemen’s 
capital 

6 Deep learning 
has various 
downsides, 
such as 
complexity, 
expense, and 
the need to 
wait longer for 
results. 

merging these RF and 
ANN algorithms with 
other satellites and 
other times and 
environmental 
conditions 

13 Anastasios et 
al., 

2023 CNN model, 
SHAP for XAI 

accuracy 
94.72% 

EuroSAT dataset, red, 
green, near infrared 
(NIR-Band 8), short-
wave infrared (SWIR-
Band 11) spectral 
bands using a 
combination of 3 
bands via these bands 
SA: Global 

10 Not 
mentioned 

Not mentioned 

14 Vicky & 
Bakimchandra 

2020 Markov Chain 
and artificial 
neural network 
(ANN) for  
developing a 
future LULC 
map of the 
study area 

accuracy 93% Landsat satellite 
images 
SA: Manipur River 
basin, 

6 Not 
mentioned 

Use of high-resolution 
data for the second 
level of land use 
classification 

15 J et al., 2021 hybrid 
HEVGG19 
deep learning 
model 

98.5% accuracy Sentinel-2 satellite 
images and aerial 
images 
SA: regions of 
Chennai and 
Coimbatore 

8 Not 
mentioned 

Not mentioned 

16 Ce et al., 2020 Scale Sequence 
Joint Deep 
Learning (SS-
JDL) method 

Accuracy: (LC: 
91.06%, LU: 
88.94%) for S1 

Aerial photos with 
four spectral bands 
(RGB and NIR) with 
50-cm spatial 

Classes S1 
(LC 10: LU: 
11), Classes 
S2 (LC 9: LU: 

Not 
mentioned 

Not mentioned 
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for joint Land 
Use (LU) and 
Land Cover 
(LC) 
classification 
iteratively using 
a pixel-based 
MLP and a 
patch-based 
OCNN 

resolution were 
selected. 
SA: Bournemouth 
(S1), Southampton 
(S2), and Manchester 
(S3), and their 
surrounding terrestrial 
regions 

10), and 
Classes S3 
(LC 9: LU: 9) 
were included 

17 Christopher 
et al., 

2022 Fully 
Convolutional 
Neural 
Network 
(FCNN) 

73.8% 
agreement with 
expert labels 
(agreement 
between 
reference 
annotations 
and our Top-1 
NRT labels is 
the primary 
validation 
metric) 

10 m Sentinel-2 
imagery with all bands 
retained except B1, 
B8A, B9, and B10 
SA: (Western 
Hemisphere, Eastern 
Hemisphere-1, and 
Eastern Hemisphere-
2 

8 Performed 
better for 
some regions 
and performed 
less accurately 
for some other 
regions 

Not mentioned 

18 Dires & 
Temesgen 

2020 supervised 
classification 
using the 
maximum 
likelihood 
algorithm 

accuracy 
91.40% 

Landsat TM satellite 
imagery, 30m spatial 
resolution, RGB 
spectral bands  
SA: Lake Tana Basin, 
Northwest Ethiopia 

6 Not 
mentioned 

Not mentioned 

19 Abdulhakim 2020 Support Vector 
Machines 
(SVM), 
Random 
Forests (RF), 
Extreme 
Gradient 
Boosting 
(XGBoost), 
and Deep 
Learning (DL) 

SVM achieved 
the highest 
accuracy (0.758 
± 0.017) 

Multi-temporal 
Sentinel-2 imagery 
from all four seasons 

was used with 10 m 
spatial resolution, ten 
spectral bands 
covering the red, blue, 
green, red edge, near- 
and short-wave 
infrared. 

8 In DL use of 
the tanh 
activation 
function, 
which can 
saturate and 
cause the 
"vanishing 
gradient 
problem," 
slowing 
training with 

ReLU activation 
function for better 
results due to its non-
saturating nature, the 
use of user-defined 
parameters for each 
algorithm for better 
performance, to 
evaluate the role of 
Sentinel-2's red edge 
bands compared to 
vegetation indices, and 



                              International Journal of Innovations in Science & Technology 

August 2025|Vol 07 | Issue 03                                                                   Page |2084 

SA: Boreal landscape 
in south central 
Sweden. 

high-
dimensional 
data, there is 
no use of user-
defined 
parameters for 
each 
algorithm, 
meaning the 
reported 
accuracies may 
not represent 
the maximum 
achievable 
performance. 

to assess whether 
optimally-timed 
mono-temporal 
Sentinel-2 scenes can 
match or outperform 
multi-temporal stacks 
in classifying LULC 
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Figure 4 illustrates the reported classification accuracies of AI models applied to 
various remote sensing datasets in the reviewed studies. Datasets such as EuroSAT, 
PatternNet, and Sentinel-2 consistently enabled high accuracies (>95%) when combined with 
advanced deep learning models like Vision Transformers and hybrid CNNs. Medium-
resolution datasets such as LISS-III, Landsat (CPEC, Salt Lake, Tana Basin), and HRRS 
resulted in lower accuracies (75–86%) due to spatial resolution limitations, mixed land cover 
features, and spectral variability. Interestingly, studies integrating multi-source datasets (e.g., 
Sentinel-2 with ASTER or PlanetScope) improved classification diversity but faced challenges 
in model generalization. These findings emphasize that dataset resolution, spectral richness, 
and pre-processing quality strongly influence model performance, highlighting the importance 
of dataset selection for future LULC research. 
Methodology Used for Conducting the Review: 

A methodology flow diagram showing the flow of steps through which the LULC 
classification review has been conducted is shown in Figure 5 below. 

 
Figure 5. Methodology Flow Diagram of the Review conducted for the LULC 

classification. 
Diagram 5 illustrates the structured methodology followed in this review article. 

Literature is collected from leading scientific databases, including Scopus, Web of Science, 
IEEE Xplore, ScienceDirect, and Google Scholar. The search timeframe is limited to studies 
published between 2020 and 2025, ensuring coverage of the most recent advancements in AI-
based LULC classification. Predefined inclusion criteria required studies to (i) apply AI, 
machine learning, or deep learning techniques to LULC classification, (ii) utilize satellite or 
aerial imagery, and (iii) report performance metrics such as accuracy, F1-score, or kappa 
coefficient. Studies are excluded if they (i) focus solely on traditional/manual classification 
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methods without AI integration, (ii) lack sufficient methodological details, or (iii) are not peer-
reviewed. 

Following the screening process, data extraction focuses on capturing details of the AI 
models used, datasets, study areas, number of classes, and reported accuracies. A comparative 
analysis is then conducted across studies, highlighting performance trends, limitations, and 
methodological differences. Insights are synthesized into a summary of key challenges and the 
future research directions proposed in the literature. To enhance clarity and interpretability, 
the findings are further visualized using comparative graphs and tables. The process 
culminates in the formulation of conclusions and recommendations, aligning recent advances 
with future opportunities for scalable, explainable, and operational AI-based LULC 
classification. 
Challenges in AI-based LULC Classification Along with their Feasible Solutions: 

To consolidate insights from the literature and highlight broader research trends, Table 
2 presents a comparative analysis of key challenges and future directions in AI-based LULC 
classification. The table summarizes recurring limitations across different methods, datasets, 
and regions, including dependence on limited spectral bands, risks of model overfitting, 
challenges in interpretability, and spatiotemporal inconsistencies. It also highlights promising 
solutions proposed by recent studies, including the adoption of multi-spectral and high-
resolution data, the use of explainable AI tools, hybrid model architectures, and integration of 
temporal and ancillary data. The goal of this synthesis is to provide a clear roadmap for future 
research that addresses current technical constraints and enhances the operational scalability 
and reliability of AI-powered LULC systems. 

Table 2: Key Challenges encountered in AI-Based LULC Classification and Future 
Directions to resolve these challenges 

Key Challenges Future Directions to Overcome Challenges 

Reliance on limited spectral 
bands (e.g., only RGB) 

Use of multi-spectral and hyperspectral data; 
integration of red edge, SWIR, and thermal bands 

Low-resolution or medium-
resolution satellite imagery 

Adoption of high-resolution imagery (e.g., 
PlanetScope, Sentinel-2, commercial satellites) 

Computational cost and 
resource constraints 

Implementation of lightweight models, optimization 
algorithms, and cloud-based solutions like Google 
Earth Engine or AI-as-a-Service (AIaaS) 

Lack of generalization 
across different geographies 
and land types 

Use of data augmentation, transfer learning, and 
training on global multi-source datasets 

Model interpretability and 
explainability 

Integration of Explainable AI tools (e.g., SHAP, 
Captum) to visualize decision processes and build 
trust 
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Overfitting and sensitivity 
to hyperparameters in deep 
models 

Use of regularization, dropout, early stopping, and 
automated hyperparameter tuning (e.g., Bayesian 
optimization, AutoML) 

Black-box nature of 
ML/AutoML approaches 

Combine model performance with interpretability 
layers and validation using expert annotations. 

Spatiotemporal 
inconsistency and lack of 
temporal modeling 

Integrate temporal modeling techniques (e.g., 
RNNs, transformers with temporal embeddings); 
explore change detection using multi-date imagery 

Manual feature engineering 
or parameter selection 

Adoption of end-to-end deep learning pipelines and 
hybrid models with self-learned features 

Difficulty in classifying 
complex or fragmented 
landscapes 

Employ object-based image analysis (OBIA), CNNs 
with patch-level context, and spatial attention 
mechanisms 

Inadequate ground truth or 
labeled data 

Leverage semi-supervised learning, crowd-sourced 
annotations, and synthetic data generation. 

Landscape-specific 
limitations (e.g., coalfields, 
urban-rural boundaries) 

Tailor classification frameworks by region, integrate 
ancillary data (e.g., elevation, land parcel maps), and 
adopt hierarchical classification strategies 

In addition to accuracy comparisons, it is important to recognize that variations in 
reported results are often influenced by factors beyond the model architecture itself. Dataset 
diversity plays a critical role, as models trained on high-resolution or multispectral imagery 
typically outperform those using medium-resolution or RGB-only data. Similarly, 
preprocessing quality, including atmospheric correction, normalization, data augmentation, 
and handling of noise, directly impacts model generalization. Furthermore, geographic 
variability introduces additional complexity, since heterogeneous landscapes, seasonal 
changes, and region-specific land cover patterns can make classification more challenging. 
These underlying factors must therefore be carefully considered when interpreting 
performance differences, as they shape not only accuracy outcomes but also the scalability and 
robustness of AI-based LULC systems across diverse contexts. 
Conclusion: 

The evolution of Land Use and Land Cover (LULC) classification has been profoundly 
shaped by the integration of artificial intelligence (AI) with remote sensing, marking a decisive 
shift from traditional approaches to data-driven, automated methods. This review has gone 
beyond summarizing individual studies by thematically clustering and critically comparing AI 
techniques, including transformer-based models, CNNs, hybrid deep learning frameworks, 
AutoML pipelines, and explainable AI approaches. Through this comparative analysis, the 
review highlights not only the performance levels achieved but also the underlying causes of 
variability across studies, such as dataset diversity, preprocessing strategies, and geographic 
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complexity. A key novelty of this review lies in the synthesis of recurring challenges with their 
feasible solutions, as consolidated in Table 2, which provides a roadmap for advancing AI-
based LULC research. Unlike prior reviews that focus predominantly on accuracy, this work 
emphasizes scalability, interpretability, and operationalization—factors that will determine the 
real-world impact of these models. Looking forward, future research should prioritize multi-
spectral and multi-temporal integration, lightweight and interpretable architectures, scalable 
MLOps frameworks, and the incorporation of ancillary data sources. By framing these 
directions, this review not only identifies current limitations but also sets the stage for the 
development of next-generation AI-powered LULC systems capable of supporting sustainable 
land management, ecological monitoring, and urban planning at scale.  
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