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NOISIAIQ

Use and Land Cover (LULC) classification, enabling more accurate, efficient, and

scalable environmental monitoring. This review synthesizes recent advancements in
Al-driven LULC classification, with a focus on deep learning, transfer learning, hybrid
approaches, and explainable AI (XAI). Recent studies demonstrate that Al techniques
significantly enhance classification accuracy and adaptability across diverse geospatial datasets,
supporting applications such as urban expansion monitoring, ecological assessment,
reforestation analysis, and real-time land management. Despite these advancements,
challenges remain regarding spectral resolution, model interpretability, computational
efficiency, and data scarcity. This review highlights these limitations and discusses emerging
solutions, including multimodal data fusion, lightweight AI models, and scalable MLOps
frameworks. The findings provide insights for researchers, practitioners, and policymakers to
guide future work in sustainable land management and environmental monitoring.
Keywords: Land Use and Land Cover (LULC); Remote Sensing; Artificial Intelligence (Al);
Deep Learning; Machine Learning; Satellite Imagery; Image Classification
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Introduction:

Land use and land cover (LULC) classification has long been a focal point in Earth
observation studies [1]. Land cover refers to the observable physical characteristics of the land
at a given time, while land use indicates the extent of human activities related to the utilization
of land and its resources [2]. Land use is closely linked with changes in land cover, both of
which play a significant role in altering the environment [3]. Land cover, in particular, is
continuously modified by urbanization processes [4]. Mapping land use and land cover
consistently draws the attention of researchers, governments, and international organizations
due to its strong association with diverse environmental conditions [5]. The most obvious
manifestation of changes to the surface of the Earth is the change in land use and land cover
(LULC) [6]. Investigation of land use and land cover (exploration of LULC) is required in
order to understand the complicated interconnection between human activity and the
environment. It highlights the diverse ways land is utilized, such as in forestry, modern
agriculture, urban and rural planning, disaster response, environmental protection, and the
promotion of sustainable practices [7]. LULC data is important in many geospatial applications
such as urban and regional planning, monitoring of the environment, and management [§].
The design of infrastructure projects in urban and rural areas needs an understanding of land
use and land cover (LULC) [9]. Effective land management plans can be formulated by
policymakers and academicians by conducting their studies on change analysis of land use and
land cover [7]. Therefore, it is essential to conduct regular observations and assessments of
land use and land cover worldwide to understand both the positive and negative changes
occurring on the land [10].

Satellite-derived information is widely recognized for its significant impact on
scientific investigations [11]. LULC mapping has heavily applied the use of remote sensing
[12]. Satellite imagery and other remote sensing data are applied in r-s (remote sensing) analysis
for land cover (LC) classification in an attempt to group different types of land cover [11].
Advancements in technologies for remote sensing have greatly promoted the availability of
satellite imagery at anyone’s reach, hence triggering innovativeness and entrepreneurship [13].
With its cost-effectiveness, high efficiency, and broad applicability, remote sensing technology
offers robust technical support for the classification of land use and land cover [14].
Traditional LULC classification methods have evolved from manual visual interpretation,
which was often subjective and inefficient, to more automated approaches that utilize remote
sensing and advanced image processing techniques [15].

Currently, the majority of techniques used to classify land cover may generally be
categorized into two classes. Machine learning and deep learning are the two chief sub-
categories of Al [14]. Artificial intelligence (AI) has attracted the attention of academics,
researchers, and professionals across various fields, whose work and innovations continue to
drive the advancement and success of Al techniques [16]. Instead of conventional methods,
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researchers suggest the use of powerful and efficient AI-based machine learning algorithms to
go beyond the intrinsic limitations and attain the necessary degrees of precision [17]. Land use
classification can now be automated using machine learning, which employs both supervised
and unsupervised approaches to deliver significant improvements across various applications
[15]. However, these techniques lack in respect of scalability and precision.

The abstract term "deep learning" (DL) describes a set of various algorithm
architectures based on neural networks [18]. The field of computer vision has been
significantly impacted by deep learning [19]. Deep learning algorithms have also been widely
used in many different use cases related to remote sensing [20]. Unlike traditional methods,
they can automatically extract image features, capture complex non-linear relationships while
offer enhanced generalization capabilities. This advancement enhances the interpretability of
land cover classifications, providing not only higher accuracy but also clearer insights into the
model’s decision-making process [14]. Several key challenges remain, including improving
classification performance in terms of efficiency and accuracy, reducing computational costs,
and enhancing adaptability to diverse geographical contexts.

To address the growing need for accurate, efficient, and scalable LULC classification,
this review explores recent advances in Al-based approaches, particularly those leveraging
deep learning and remote sensing technologies. It highlights the evolution from traditional
classification methods to sophisticated AI models such as convolutional neural networks
(CNNs), vision transformers (ViTs), and hybrid architectures. The study integrates insights
from recent research, evaluates model performance across various datasets and regions, and
examines the impact of explainable Al alongside cloud-based computational approaches. By
doing so, this review aims to provide a comprehensive understanding of current capabilities,
key challenges, and future directions in Al-driven LULC classification to guide researchers,
policymakers, and practitioners in land management and environmental monitoring.

“From Traditional Methods to AI-Driven Approaches”:

While traditional remote sensing and manual classification approaches have laid the
foundation for LULC studies, they are often limited by subjectivity, scalability issues, and
reduced accuracy in complex or heterogeneous landscapes. The emergence of Artificial
Intelligence (AI), particularly machine learning and deep learning methods, represents a
transformative shift in this field. Unlike conventional techniques, Al-based approaches can
automatically learn spatial and spectral patterns, adapt to diverse geographical contexts, and
process large-scale satellite data with greater efficiency and precision. This transition
underscores the significance of reviewing Al-driven methodologies, as they not only overcome
the limitations of earlier techniques but also open new possibilities for real-time monitoring,
explainability, and integration with cloud-based platforms.

A general workflow diagram of how the process of LULC classification takes place is shown
in Figure 1.
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Figure 1. General workflow diagram for Al-based LULC classification
Obijectives:
The primary objectives of this review article are as follows:

To provide a comprehensive overview of recent advancements in Artificial
Intelligence (AI) techniques, particularly machine learning and deep learning models, for Land
Use and Land Cover (LULC) classification using remote sensing data.

To critically analyze and compare the performance of different AI models (e.g., CNNSs,
Vision Transformers, AutoML, and hybrid approaches) across various datasets, spatial
resolutions, and numbers of land cover classes.

To highlight the strengths, limitations, and challenges encountered in Al-based LULC
classification, including issues of scalability, computational cost, spectral variability, and model
interpretability.

To synthesize future research directions by identifying potential solutions, such as the
integration of Explainable AI (XAI), lightweight architectures, multi-spectral and
spatiotemporal data, and MLOps-driven frameworks.

To supportt researchers, policymakers, and practitioners by presenting consolidated
knowledge that can guide sustainable land management, environmental monitoring, and urban
planning through improved LULC classification.

Literature Review:
Transformer-Based Approaches:

The author [7] proposed an efficient framework for Land Use and Land Cover (LULC)
analysis using transfer learning and strategic fine-tuning on transformer-based models. The
study integrates insights from recent research, evaluates model performance across various
datasets and regions, and examines the impact of explainable Al alongside cloud-based
computational approaches. Experiments were conducted on the EuroSAT and PatternNet
datasets using models pre-trained on ImageNet-21k and run on Google Colab Pro GPUs. Ten
models from CNN and transformer families were compared—ResNet50, ResNet101,
Inception V3, DenseNet161, GoogleNet, ViT Base, ViT-Large, DeiT-Base, SwinT-Small, and
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SwinT-Large—with the proposed method showing competitive performance. Preprocessing
steps included image resizing and normalization. Explainable Al (XAI) was implemented using
Captum, whose model-agnostic framework generates detailed attribution maps without
modifying the network, offering greater interpretability compared to Grad-CAM. This
framework demonstrates the potential of combining transformers and XAl for scalable,
transparent LULC classification. Future work includes expanding to more spectral bands and
broader computer vision tasks.

The author in [13] presented a transformer-based framework for remote sensing scene
classification, achieving 99.19% accuracy using transfer learning (TL) and fine-tuning on RGB
bands. Using the EuroSAT dataset, which comprises 27,000 georeferenced Sentinel-2 images
across ten land use classes, Vision Transformer (ViT) models pre-trained on ImageNet-21k
were trained both with and without data augmentation. Augmentation techniques such as
cropping and flipping enhanced generalization, patticulatly for the Forest and Sea/Lake
classes, whereas the Pasture class exhibited the lowest classification accuracy. Training was
limited to 15 epochs using cross-entropy loss, Adam optimizer, early stopping, dropout,
weight decay, and gradient clipping (1.0), all within a PyTorch-GPU environment on Google
Colab. ViT outperformed ResNet50 and VGG16 in accuracy, though VGG16 trained faster.
The model was further evaluated on Sentinel-2A imagery (2018-2020) over Kreis Borken
using Google Earth Engine, where 64 X 64 image tiles were classified and color-mapped.
While effective, the RGB-only input limits the model's full potential; future work will explore
multi-spectral data, other pre-trained models, and applications like change detection and land
cover prediction.

The author in [14] presented a deep learning-based approach to extract large-scale land
cover data from medium-resolution Landsat imagery (2000-2023) for assessing the ecological
health of coastal regions along the China-Pakistan Economic Corridor (CPEC). Land cover
classification was conducted using the MSNet model, trained on 24,000 samples and validated
on 10,300, incorporating NDVI and NDWT indices along with cloud-free imagery processed
through the CFMask algorithm on the Google Earth Engine platform. The model
outperformed U-Net, SegNet, RF, and SVM in accuracy. Land cover data from six time
periods were analyzed using ArcGIS, and ecological health was assessed through the VOR
model, evaluating ecosystem vigour, organisation, and resilience (EV, EO, ER). Results of the
study presented by the authors in [14] showed the CPEC coastal region to be “Unhealthy” but
with signs of moderate improvement. Supporting datasets, including ESA_WorldCover,
GlobeLand30, and GLC_FCS30, were incorporated alongside data augmentation and spatial
processing techniques. Despite limitations such as sample optimization and a lack of
spatiotemporal modeling, the framework demonstrates strong potential. Future work includes
testing DDPM-SegFormer, incorporating higher-resolution and spatiotemporal attention
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modules, and exploring lightweight model enhancements and causal mechanisms driving
landscape changes.
CNN-Based and Joint Deep Learning Frameworks:

The author in [10] investigated LULC changes in Nanjangud taluk, Mysuru district,
India, using LISS-III satellite imagery from 2010 and 2020 with a CNN-based deep learning
model. Traditional manual classification methods lack accuracy, while the proposed CNN
approach achieved 94.08% and 95.30% accuracy for 2010 and 2020, respectively. The LISS-
IIT sensor provides medium resolution (5.8-23.5 m) multispectral data with a 24-day revisit
cycle. Preprocessing included radiometric, atmospheric, and geometric correction, followed
by band composition and feature extraction using spectral indices. The inclusion of auxiliary
data, such as topographic and soil maps, further improved classification accuracy. Using a
60:20:20 data split, the model outperformed traditional machine learning methods and existing
approaches in both accuracy and computational efficiency. Results of the study conducted by
the authors in [10] showed increases in built-up areas, agriculture, and water bodies, while
forest cover declined. Despite computational demands and resolution limitations, the model
proved effective for medium resolution, mixed-region classification. The study employed tools
such as MATLAB, QGIS, and Python. Future work will explore deeper models, utilize higher-
resolution data, and expand the analysis to a district-wide scale to provide enhanced insights
for land management.

The author in [4] developed an Al-based land cover classification model using high-
resolution remote sensing (HRRS) images to enable rapid land cover mapping. The model
consists of three modules: pre-processing, classification, and post-processing. In the pre-
processing stage, a sliding window algorithm partitions HRRS images into overlapping
segments, while the classification stage employs a FusionNet-based convolutional neural
network (CNN) to perform image classification. The post-processing module aggregates the
results to generate final land cover maps. The model was trained using land cover maps from
Jeonnam province, Korea, with validation conducted at two different sites. Results of the study
introduced by the authors in [4] showed overall accuracies of 0.81 and 0.71, with higher
performance in agricultural areas. The model shows strong potential for rapid updates in
agricultural regions but highlights the need for further refinement, including the integration of
tield boundary delineation and training with specialized datasets for wetlands and barren lands.
The CNN-based model classifies land cover on a pixel level, and future improvements could
involve integrating land parcel boundaries for better accuracy.

The researcher in [19] proposed a hybrid HEVGG19 deep learning model for land
cover classification and change detection, combining one-hot encoding with transfer learning
from a pre-trained ResNet50. Drawing on datasets from the National Remote Sensing Centre
and Sentinel-2 (27,000 images across 10 classes), the model applies transfer learning, fine-
tuning, and a modified VGG19 architecture, attaining an accuracy of 98.5%. Historical satellite
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and aerial imagery from Chennai and Coimbatore (spanning 20 years) are preprocessed,
augmented, and segmented using a Feature Pyramid Network with EfficientNet-B3, and
converted into textual data for land cover change tracking. The model outperforms other
CNN-based approaches and aids in predicting urban expansion to support environmental
planning and climate mitigation efforts.

The author in [8] presented the Scale Sequence Joint Deep Learning (SS-JDL) method
for joint Land Use (LU) and Land Cover (L.C) classification, addressing key challenges in
traditional pixel- and object-based approaches, including scale selection and classification
hierarchy. SS-JDL introduces a sequence of image patch sizes (scales) derived using a Forward
Scale Sequence (FSS) sampling scheme, enabling progressive information transfer from small
to large scales. At each scale, LU and LC are jointly classified using a pixel-based MLP and a
patch-based OCNN. When tested on aerial imagery from Bournemouth, Southampton, and
Manchester, SS-JDL outperformed state-of-the-art methods, including JDL, achieving LU and
LC overall accuracies of 88.94% and 91.06%, respectively, for S1. The method is simple,
generalizable, and offers a robust framework for higher-order feature classification in remote
sensing.

AutoML and Hybrid ML Approaches:

The author in another study [15] applied automatic machine learning (AutoML)
techniques to classify land use changes in the Qarhan Salt Lake area from 2000 to 2020 using
Landsat-5 TM and Landsat-8 OLI imagery. Eight land cover classes, exposed lakes, saline
lands, salt flats, salt fields, construction land, water, and agricultural land were identified, with
400 stratified sample points selected annually. Using FLLAML and Scikit-learn, six machine
learning algorithms (LRL2, RF, ET, LGBM, XGBoost, and XGBLD) were compared, with
XGBLD outperforming the others by reaching 77% accuracy. Bayesian optimization is used
for hyperparameter tuning, offering efficiency over traditional methods. AutoML proved
effective in handling spectral variability and limited data in this arid, complex environment.
Image preprocessing includes atmospheric correction, normalization, and resampling to 90m
resolution, while classification results are integrated into GIS for spatial analysis. Land cover
changes are analyzed in relation to human water usage, temperature, precipitation, and
evaporation, revealing strong anthropogenic and climatic influences. Despite challenges like
computational demands, data sensitivity, and model interpretability, the study demonstrates
AutoML's value for dynamic, large-scale environmental monitoring. Future work should focus
on improving model explainability, addressing exposed lakes as key indicators, and advancing
sustainable land and water management strategies.

The author in [16] aimed to enhance the accuracy of land use/land cover (LULC)
classification by combining artificial neural networks (ANN) and random forest (RF)
techniques into a novel approach called ANN_RF, applied to Sentinel-2A and Landsat-8
multispectral satellite data for Sana’a city in 2016. The proposed method outperforms

August 2025 | Vol 07 | Issue 03 Page | 2072



A
OPEN () ACCESS . . . .
International Journal of Innovations in Science & Technology

individual ANN classifiers, offering better performance in both speed and accuracy. The study
utilizes SAGA GIS software for data processing, which includes geometric and radiometric
corrections of the satellite images, and a confusion matrix and kappa coefficient are employed
to evaluate classification accuracy. Results show an accuracy of 82.52% and a kappa of 0.58
for Sentinel-2A, and 80.00% accuracy with a kappa of 0.71 for Landsat-8. The study
demonstrates that merging ANN and RF techniques improves LULC classification compared
to other methods like RE+SVM, MLLC+SVM, and ANN+SVM. Future work is suggested to
further explore the integration of RF and ANN with other satellites and under different
environmental conditions to enhance model performance.

In [2], the researcher models Uttarakhand’s land use and land cover (LULC) patterns
for 2032 and examines changes from 1992 to 2022 using 30 m Landsat imagery, applying a
semi-automated hybrid classification that integrates Maximum Likelihood and Object-Based
Image Analysis (OBIA) for improved accuracy. Future LULC prediction is performed using
the Cellular Automata—Artificial Neural Network (CA-ANN) model within the MOLUSCE
plugin in QGIS, leveraging its spatiotemporal simulation capabilities and transition probability
matrices. The study incorporates population, road network, and satellite data to assess six
LULC classes in this mountainous region. Results of the study presented by the authors in [2]
highlight the effectiveness of CA-ANN in forecasting complex landscape dynamics, though
challenges include model opacity, potential ANN overfitting, resolution discrepancies among
datasets, and sample bias. Future work should explore integrating multi-resolution satellite
data, advanced remote sensing techniques, and ensemble machine learning approaches to
enhance spatial detail, classification accuracy, and robustness of LULC change analysis.
Explainable and Interpretable Al:

The author in [9] presented an interpretable deep learning framework for land use and
land cover (LULC) classification using Shapley additive explanations (SHAPs) to improve
classification results from satellite images. The framework utilizes a compact convolutional
neural network (CNN) trained on the EuroSAT dataset, with three-band combinations (red,
green, near-infrared, and short-wave infrared) instead of the full 13 spectral bands. The
proposed approach achieved an overall accuracy of 94.72%, outperforming standard methods
with larger trainable parameters. By incorporating SHAP, the framework provides both local
and global explanations, offering insights into how different spectral bands influence
classification, particularly in urban and rural areas. The model was compared to several CNN
architectures (e.g., GoogleNet, DenseNet121, ResNet50), and results demonstrated that the
use of three-band combinations significantly improved classification accuracy. Additionally,
SHAP’s explainability enhanced the interpretability of model predictions, revealing
correlations between image features and LULC classes.

In [20], Land Cover/Land Use (LCLU) in Talassemtane National Park (TNP) is
classified using Sentinel-2 imagery and a Deep Neural Network (DNN) model, which employs
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five spectral indices—NDVI, GNDVI, SAVI, MNDWI, and NDWI—to separate six distinct
land use classes. The DNN model is optimized using three hyperparameter optimization
algorithms: Random Search, Hyperband, and Bayesian optimization. The results showed that
spectral indices significantly improved classification, especially for classes with similar
reflectance. The Hyperband optimization method outperformed the others, increasing
classification accuracy by 12.5%, achieving an overall accuracy of 94.5%. Dropout
regularization was applied to prevent overfitting. The study conducted by the authors in [20]
aimed to classify the 2022 LCLU in TNP, evaluate optimization methods for DNN, and
provide an updated LCLU map. The study employs Sentinel-2 MSI Level 2A imagery at 10 m
resolution, supplemented with ground truth data provided by local managers. The study
highlights the challenges of selecting spectral indices, DNN model sensitivity, and data
limitations, and suggests future improvements through advanced deep learning architectures
and multi-source remote sensing data integration to enhance classification accuracy.

The author in [11] outlined the development of an end-to-end MLOps workflow
integrating land cover classification models using Big Data strategies to process large-scale,
high-resolution spatial data. The workflow, implemented in a Kubernetes environment,
ensures on-demand auto-scaling, distributed computing, and load balancing for efficient
satellite imagery processing. By incorporating automated data ingestion, preprocessing, model
training, and evaluation, this MLLOps framework ensures that land cover models remain up-
to-date and reflect current conditions. An Al-as-a-service (AlaaS) solution, using Sentinel-2
and ASTER data with over 40,000 manually validated locations across nine classes, achieves
over 75% pixel-level classification accuracy. The system allows users to obtain terrain
classification through a REST or gRPC API. Future work focuses on integrating drift
detection mechanisms to autonomously identify shifts in data distributions and incorporating
explicability components to improve model transparency and reliability.

Other Machine Learning and Specialized Applications:

In [17], coal mine overburden reclamation through reforestation is assessed using high-
resolution Sentinel-2 imagery, with classification performed through multiple machine
learning (ML) techniques, including SVM, RF, ANN, and MLC. The results show that SVM
outperforms RF and MLC in accurately delineating land use and vegetation classes, particularly
in distinguishing reclamation plantations into age classes (young, middle-aged, and mature).
The study, carried out in the Korba coalfields, applies Sentinel-2 imagery (10 m resolution)
from 2020 to 2022 to map nine land cover categories: forests, plantations at various growth
stages (young, middle-aged, mature), agriculture, fallow land, built-up areas, water bodies,
mining zones, and barren overburdens without vegetation. SVM achieved the highest accuracy
of 96.4%. The study highlights gaps in plantation development and soil reclamation in coal
mine overburdens, with the recommendation to integrate advanced ML and Al techniques to
overcome spectral and spatial limitations and improve classifier performance.
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The author in [3] analyzed land use and land cover change (LULCC) in the River Tea
SCI (Galicia, NW Spain) between 2015 and 2023, utilizing Sentinel-2 and Planet Labs
(RapidEye, PlanetScope) imagery in combination with Object-Based Image Analysis (OBIA)
and Artificial Neural Network (ANN) classification methods. The fragmented and low-
variability landscape posed challenges to achieving high classification accuracy. OBIA with
Planet Labs data achieved the highest accuracy (80%), followed by Sentinel-2 + OBIA (77%)
and Planet Labs + ANN (55%). The methodology incorporated multispectral indices (NDVI,
NDWI), PCA, and post-classification analysis using QGIS’s MOLUSCE tool to simulate land
cover for 2031. The approach integrated both free (QGIS, SNAP, OTB) and proprietary
(Erdas Imagine, MATLAB) tools. Eight land cover classes are identified, and models are
trained using 21 images (10 Sentinel, 11 Planet Labs) across seasons. The study highlights the
potential of combining optical sensors of varying resolutions and object-based techniques for
accurate classification of riparian zones. Limitations of the study introduced by authors in [3]
include randomized parameter selection (e.g., ANN layer size), and future improvements may
involve adopting CNN architectures for better pixel-patch analysis and adapting the
framework for different terrain and land cover types.

In [21], land use/land cover (LULC) changes in the Manipur River basin are assessed
and projected using the Land Change Modeller (LCM) within TerrSet, drawing on Landsat
images from 2007, 2014, and 2017. The study applies Markov Chain and artificial neural
network (ANN) models, incorporating driving variables such as distance from roads,
settlements, elevation, and slope, to predict future LULC for 2030. The findings indicate
substantial shifts in urbanization and herbaceous wetland areas, underscoring the importance
of implementing effective urban planning and environmental conservation policies. The
LULC maps achieved high accuracy rates, with 88%, 92%, and 93% for 2007, 2014, and 2017,
respectively, and an R2 value of 0.86 for the predicted and actual 2017 maps. The study
concludes that LCM can effectively predict future LULC changes, providing valuable insights
for sustainable resource management and policy formulation. Using higher-resolution datasets
in future studies may improve the accuracy of LULC classification and allow for a more
detailed assessment of habitat dynamics in sensitive regions like the Loktak Lake Wetland.

The author in [23] assessed land use and land cover (LULC) changes in Ethiopia’s
Tana Basin using Landsat imagery from 1986, 2002, and 2018, processed with ENVI and
ArcGIS software. Six land cover classes were identified through supervised classification using
the maximum likelihood algorithm, with accuracy evaluated using the Kappa coefficient. The
results revealed a notable 32-year increase in agricultural land (15.61%) and residential areas
(8.05%), largely at the expense of forests, bushland, and grazing lands, whereas water bodies
remained relatively stable due to reservoir development. The findings underscore the value of
remote sensing and GIS in monitoring LULC changes and inform sustainable land
management and planning efforts.
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The author in [18] compared the performance of four machine learning algorithms—
SVM, RF, XGBoost, and DIL—in classifying land cover and land use (LCLU) in a complex
boreal landscape in south-central Sweden using multi-temporal Sentinel-2 data. The dataset
included 11,816 samples, split into 70% training and 30% evaluation, with 10 spectral bands
and vegetation indices (NDVI, MNDWI, NDBI) for enhanced classification. SVM achieved
the highest accuracy (0.758), followed by XGBoost, RF, and DIL. Accuracy comparisons
revealed significant differences among algorithm pairings and class-wise predictions. The study
highlighted the importance of red edge and shortwave infrared bands, particularly from spring
and summer scenes. A major limitation was the poor performance of DL, attributed to the
“vanishing gradient problem” caused by the tanh activation function. Future studies may focus
on improving accuracy through parameter tuning, examining the utility of red edge bands in
forested regions, and contrasting mono-temporal with multi-temporal Sentinel-2 datasets for
LCLU classification.

Dynamic World is a near real-time (NRT) land use and land cover (LULC)
classification product that leverages deep learning on 10 m Sentinel-2 imagery to deliver high-
resolution, continuously updated LULC maps via cloud platforms like Earth Engine [22]. In
contrast to traditional products updated annually, it delivers single-date snapshots
synchronized with satellite acquisitions, allowing for dynamic monitoring and flexible
applications. Using a semi-supervised Fully Convolutional Neural Network trained on dense,
polygon-based annotations from globally distributed regions, the model achieves 73.8%
agreement with expert labels and outperforms existing LULC products. While highly accurate
in temperate, tree-dominated regions, it struggles to distinguish between crops and shrubs in
arid landscapes. Nevertheless, Dynamic World supports scalable, timely, and customizable
LULC analysis across a wide range of applications.

Comparative Insights from Reviewed Studies:

Transformer-based models consistently demonstrate superior performance (>99%
accuracy in some cases) and strong adaptability to diverse datasets. Their integration with
explainability tools enhances interpretability, but reliance on RGB bands or medium-
resolution data can limit potential.

CNN-based models and joint deep learning frameworks remain robust and
computationally efficient, with accuracies ranging from ~90-98%. While CNNs excel in pixel-
level classification, approaches like SS-JDL address the challenge of multi-scale feature
extraction and hierarchical classification, offering a more generalizable framework.

AutoML and hybrid methods reduce manual parameter tuning and provide flexibility
for diverse environments. However, their accuracy lags behind transformer and advanced
CNN models, particularly in complex landscapes.
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Explainable Al and MLOps frameworks emphasize transparency and operational
deployment. While accuracy may be slightly lower than that of transformers, these approaches
are crucial for trust, adoption, and real-world scalability.

Traditional ML, OBIA, and statistical approaches remain valuable for regional studies
and long-term change analysis. However, they often underperform compared to CNNs and
transformers, especially in large-scale, heterogeneous, or real-time applications.

The various methods used by different researchers for Al-based LULC classification,
as mentioned in the literature, along with their results, key limitations, and suggested

improvements to overcome these limitations, are listed in Table 1.
Accuracy Comparison of Models in Literature Review

Mehak et al. {2024)
Suman & Jannatul (2024)
Pushpalatha et al. (2025)

Chen et al. (2024)

Chao et al. (2024)

Mario et al. (2024)

Waiza et al. (2024}
Antonio et al. (2024)
Mayank et al. {2025)

Ali et al. (2023)

Jinseok et al. (2020)
Eman et al. (2023)
Anastasios et al. (2023)
Vicky & Bakimchandra (2020)
Jetal (2021)

Ce et al. (2020)
Christopher et al. (2022)
Dires & Temesgen (2020)
Abdulhakim (2020}

0 20 40 60 80 100
Accuracy (%)

Figure 2. Accuracy Comparison of various AI Models used in the literature by different
researchers for LULC Classification, showing better classification performance with complex
model architectures

Figure 2 compares the reported accuracies of different Al-based models used in the
literature for Land Use and Land Cover (LULC) classification. Transformer-based
architectures (e.g., ViT and SwinT) achieved the highest accuracies (>99%), outperforming
traditional CNNs and machine learning models. Although CNN-based models such as
HEVGG19, DNN, and hybrid approaches achieved high accuracies (94-98%), methods like
AutoML and FCNN performed less effectively, largely due to dataset constraints and
spatiotemporal variability. This underscores the advantage of transformer-based models in
exploiting large-scale datasets to achieve high accuracy, while CNN-based and hybrid
frameworks continue to offer strong performance in certain applications.

This bubble chart 3 illustrates the relationship between Al models, datasets, and the
number of classes considered in LULC classification tasks. The x-axis represents the number
of classes, the y-axis lists the models, and the bubble size indicates the accuracy achieved.
Models like Vision Transformers (ViT, SwinT) and hybrid CNNss were tested on datasets with
larger class diversity (up to 38 classes) and still achieved high accuracies (>99%). In contrast,
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models such as AutoML and OBIA+ANN, when applied to medium-class datasets (6—10
classes), yielded comparatively lower accuracies. The visualization demonstrates that advanced
deep learning models scale more effectively with class complexity and generalize well across

diverse datasets, positioning them as highly suitable for operational LULC monitoring.
Models, Datasets, and Number of Classes in Literature Review (Bubble size = Accuracy %)
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Figure 3. Models, Datasets, and Number of Classes in the Past LULC Studies (Bubble

Chart), presenting the relationship between dataset complexity, no. of target classes, and
models used for classification, along with their impact on the classification performance
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Figure 4. Accuracy of AI Models used in the Previous Studies across Different Datasets for
LULC Classification, demonstrating superior classification performance of complex model
architectures when applied to larger datasets as compared to smaller datasets
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Table 1. Different approaches used in the literature for Al-based LULC classification

SNO Author Year Methods Result Dataset & study area | No. of classes Limitation Future Work
1 Mehak et al.,, | 2024 | Vision > 99% accuracy | EuroSAT dataset, 10 LULC Not Larger datasets, using
Transformer 27,000 images, RGB classes, 38 mentioned. a wider range of
(ViT) and Swin bands, spatial classes spectral bands
Transformer resolution 10m
(SwinT), PatternNet dataset for
Captum for additional
XAI experiments, 800
images per class,
spatial resolution
~0.3m SA: Global
2 Suman & 2024 | ViT 99.19% EuroSAT dataset SA: | 10 LULC Only using Other datasets, other
Jannatul accuracy Global, Kreis Borken | classes RGB bands models, multi-
area for evaluating the temporal data, and
model further more spectral bands
3 Pushpalatha 2025 | CNN accuracy of Linear imaging self- 5 extensive Deeper architectures,
etal, 94.08% for the | scanning sensor- 111 computational | longer training cycles,
2010 data and | (LISS-III) remote resources, and higher-resolution
95.30% for the | sensing images, 4 medium satellite data.
2020 data spectral bands: blue, resolution
green, red, and neat- restricts
infrared, spatial accuracy
resolutions ranging
from 5.8 m to 23.5 m.
SA: Nanjangud taluk,
Mysuru district,
Karnataka, India
4 Chen et al,, 2024 | MSNet model | accuracy >86% | (Landsat 5 TM, 0 Optimization | higher-resolution
Landsat 7 ETM+, Samples, imagery,
and Landsat 8 OLI) Spatiotemporal | spatiotemporal
satellite images, factors attention module,
spatial resolution ignored, using the DDPM-
30m, 8,8,11 bands Modelling SegFormer model
SA: coastal regions adjustment
that extend 50 km
offshore along the
CPEC
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Chao et al,, 2024 | Auto ML XGBLD with | Landsat-5 TM and Reliance on Complementary
algorithms (6 77% accuracy | Landsat-8 OLI data quality, methods for result
ML models) images, spatial computational | validation and
resolution 90mX90m, demands of interpretation
blue (B), G, R, NIR, Auto ML, and
shortwave infrared 1 the "black-
(SWIR1), and box" nature of
shortwave infrared 2 AutoML
(SWIR2) spectral
bands
SA: Qarhan Salt Lake
area
Mario et al., 2024 | object-based Highest Images from the Random ANN can be replaced
image analysis | accuracy Planet | Sentinel-2 (10m) and model by CNN for better
(OBIA) Labs+OBIA Planet Labs (3m) parameters’ performance
Classification 80%, (RapidEye and optimization,
via RF and Sentinel+OBIA | PlanetScope) different
Artificial 77%, Planet multispectral satellite landscapes'
Neural Labs+ANN platforms. data need to
Network 55% SA: River Tea SCI be adjusted for
(ANN) (pixel- (Site of Community classification.
based Importance) (Galicia,
approach) NW Spain)
Waiza et al., 2024 | Cellular The accuracy of | Population, road CA-ANN Integrating multi-
automata and LULC for the network, and satellite algorithm resolution satellite
Artificial neural | years 1992, data (Landsat), with a being opaque, | data, Alternative ML
networks (CA- | 2002, 2012, and | spatial resolution of ANN prone to | and ensemble
ANN) 2022 was 96.94 | 30 m. overfitting, techniques
%, 97.77 %, SA: Uttarakhand, a Biases in incorporated with CA
98.61 % and mountainous and hilly sample and using additional
98.87 % state. selection, parameters.
respectively Differences in
resolution in
satellite
images, and
data from
other sources.
Antonio et al., | 2024 | ML models a pixel-level Sentinel-2 and Not incorporating a robust
classification ASTER data mentioned. drift detection

incorporating over

mechanism and
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accuracy of

SA: 40,000 manually

integrating an

train the model,
Subuk-myeon of

Jeonnam province,

over 75% validated locations explicability
component
9 | Mayank et al., | 2025 | ML models SVM with an Sentinel-2 satellite 9 Spectral and Integrate advanced

(SVM, RF, accuracy rate of | data, with a 10-m Spatial machine learning and

Maximum 96.4% spatial resolution free Limitations, artificial intelligence

Likelihood of clouds, Visible Classifier techniques to

Classifier) (Red, Green) and Performance overcome spectral and
Infrared (NIR) bands Variability spatial limitations
SA: Korba coalfields

10 | Alietal,, 2023 | Deep Neural accuracy of Sentinel-2 satellite 6 The selection | Advanced DL

Network 94.5% imagery, 10m spatial and number of | architectures,

(DNN) resolution, the vector spectral indices | incorporating ancillary
dataset used, used to classify | data to enhance
including ground land cover, classification accuracy,
truth data, was DNN’s combining multi-
provided by local sensitivity to source RS data to
managers and model layers, augment spectral
validated by visits to overfitting, information
the NPT territory. and Challenges
SA: Talassemtane gathering
National Park (TNP) ground

truthing data
11 | Jinseok etal., | 2020 | CNN model accuracy of The orthographic three Some land Using more than four
based on the 0.83% images obtained from | different cover classes such classes and using

FusionNet the National categories had small data, | NDVI and NDWI,

network Geographic based on the | and a CNN- considering land

architecture Information Institute | level of detail; | based model parcel boundaries into
(NGII), red, green, seven items classifies land | pixel-based land cover
and blue spectral in the main cover on a can improve the
bands, spatial category, 22 pixel unit, classification accuracy
resolution 51 items in the | which can be substantially
cm/pixel, image size | parent different from
256 x 2506. subcategory, | the actual land
SA: The area from the | and 41 items | use of the
Jeonnam province in | in the child parcel unit
Korea was used to subcategory
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and Daseo-myeon of
Chungbuk province,
used for model
validation
12 | Eman etal,, 2023 | merging of the | 82.52% Sentinel-2A and 6 Deep learning | merging these RF and
two neural- Accuracy for Landsat-8 satellite has various ANN algorithms with
based and sentinel-2A, images, Medium downsides, other satellites and
object-based 80.00% resolution, RGB 432 such as other times and
approaches, Accuracy for spectral bands complexity, environmental
the ANN_RF | landsat-8. SA: Sana’a is Yemen’s expense, and conditions
model capital the need to
wait longer for
results.
13 | Anastasios et | 2023 | CNN model, accuracy EuroSAT dataset, red, | 10 Not Not mentioned
al., SHAP for XAI | 94.72% green, near infrared mentioned
(NIR-Band 8), short-
wave infrared (SWIR-
Band 11) spectral
bands using a
combination of 3
bands via these bands
SA: Global
14 | Vicky & 2020 | Markov Chain | accuracy 93% | Landsat satellite 6 Not Use of high-resolution
Bakimchandra and artificial images mentioned data for the second
neural network SA: Manipur River level of land use
(ANN) for basin, classification
developing a
future LULC
map of the
study area
15 | Jetal, 2021 | hybrid 98.5% accuracy | Sentinel-2 satellite 8 Not Not mentioned
HEVGG19 images and aerial mentioned
deep learning images
model SA: regions of
Chennai and
Coimbatore
16 | Ceetal, 2020 | Scale Sequence | Accuracy: (LC: | Aerial photos with Classes S1 Not Not mentioned
Joint Deep 91.06%, LU: four spectral bands (LC 10: LU: | mentioned
Learning (SS- 88.94%) for S1 | (RGB and NIR) with | 11), Classes
JDL) method 50-cm spatial S2 (LC 9: LU:
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for joint Land
Use (LU) and
Land Cover
(LO)
classification
iteratively using
a pixel-based

resolution were
selected.

SA: Bournemouth
(81), Southampton
(§2), and Manchester
(S3), and their
surrounding terrestrial

10), and
Classes S3
(LC9: LU: 9)

were included

MLP and a regions
patch-based
OCNN
17 | Christopher 2022 | Fully 73.8% 10 m Sentinel-2 8 Performed Not mentioned
etal, Convolutional | agreement with | imagery with all bands better for
Neural expert labels retained except B1, some regions
Network (agreement B8A, B9, and B10 and performed
(FCNN) between SA: (Western less accurately
reference Hemisphere, Eastern for some other
annotations Hemisphere-1, and regions
and our Top-1 | Eastern Hemisphere-
NRT labels is 2
the primary
validation
metric)
18 | Dires & 2020 | supervised accuracy Landsat TM satellite | 6 Not Not mentioned
Temesgen classification 91.40% imagery, 30m spatial mentioned
using the resolution, RGB
maximum spectral bands
likelihood SA: Lake Tana Basin,
algorithm Northwest Ethiopia
19 | Abdulhakim | 2020 | Support Vector | SVM achieved | Multi-temporal 8 In DL use of | ReLLU activation
Machines the highest Sentinel-2 imagery the tanh function for better
(SVM), accuracy (0.758 | from all four seasons activation results due to its non-
Random T 0.017) was used with 10 m function, saturating nature, the
Forests (RF), spatial resolution, ten which can use of user-defined
Extreme spectral bands saturate and parameters for each
Gradient covering the red, blue, cause the algorithm for better
Boosting green, red edge, neat- "vanishing performance, to
(XGBoost), and short-wave gradient evaluate the role of
and Deep infrared. problem," Sentinel-2's red edge
Learning (DL) slowing bands compared to

training with

vegetation indices, and
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SA: Boreal landscape
in south central
Sweden.

high-
dimensional
data, there is
no use of user-
defined
parameters for
each
algorithm,
meaning the
reported
accuracies may
not represent
the maximum
achievable
performance.

to assess whether
optimally-timed
mono-temporal
Sentinel-2 scenes can
match or outperform
multi-temporal stacks
in classifying LULC
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Figure 4 illustrates the reported classification accuracies of Al models applied to
various remote sensing datasets in the reviewed studies. Datasets such as EuroSAT,
PatternNet, and Sentinel-2 consistently enabled high accuracies (>95%) when combined with
advanced deep learning models like Vision Transformers and hybrid CNNs. Medium-
resolution datasets such as LISS-III, Landsat (CPEC, Salt Lake, Tana Basin), and HRRS
resulted in lower accuracies (75-86%) due to spatial resolution limitations, mixed land cover
features, and spectral variability. Interestingly, studies integrating multi-source datasets (e.g.,
Sentinel-2 with ASTER or PlanetScope) improved classification diversity but faced challenges
in model generalization. These findings emphasize that dataset resolution, spectral richness,
and pre-processing quality strongly influence model performance, highlighting the importance
of dataset selection for future LULC research.
Methodology Used for Conducting the Review:

A methodology flow diagram showing the flow of steps through which the LULC
classification review has been conducted is shown in Figure 5 below.

Literature Collection
Database Search: IEEE, Elsevvier,
Springer, MDPI

Inclusion/Exclusion Criteria,
Years 2020-2025

I

Data Extraction
Models, Datasets, Classes, Accuracy

I

[ Comparative Analysis

‘ Screening & Selection

Accuracy, Models, Study Areas

I

Synthesis of Key Challenges
& Future Directions

|

Results Visualization
Graphs & Tables

!

[ Conclusion & Recommendations]
Figure 5. Methodology Flow Diagram of the Review conducted for the LULC
classification.

Diagram 5 illustrates the structured methodology followed in this review article.
Literature is collected from leading scientific databases, including Scopus, Web of Science,
IEEE Xplore, ScienceDirect, and Google Scholar. The search timeframe is limited to studies
published between 2020 and 2025, ensuring coverage of the most recent advancements in Al-
based LULC classification. Predefined inclusion criteria required studies to (i) apply Al
machine learning, or deep learning techniques to LULC classification, (ii) utilize satellite or
aerial imagery, and (iif) report performance metrics such as accuracy, Fl-score, or kappa
coefficient. Studies are excluded if they (i) focus solely on traditional/manual classification
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methods without Al integration, (ii) lack sufficient methodological details, or (iii) are not peer-
reviewed.

Following the screening process, data extraction focuses on capturing details of the Al
models used, datasets, study areas, number of classes, and reported accuracies. A comparative
analysis is then conducted across studies, highlighting performance trends, limitations, and
methodological differences. Insights are synthesized into a summary of key challenges and the
future research directions proposed in the literature. To enhance clarity and interpretability,
the findings are further visualized using comparative graphs and tables. The process
culminates in the formulation of conclusions and recommendations, aligning recent advances
with future opportunities for scalable, explainable, and operational Al-based LULC
classification.

Challenges in Al-based LULC Classification Along with their Feasible Solutions:

To consolidate insights from the literature and highlight broader research trends, Table
2 presents a comparative analysis of key challenges and future directions in Al-based LULC
classification. The table summarizes recurring limitations across different methods, datasets,
and regions, including dependence on limited spectral bands, risks of model overfitting,
challenges in interpretability, and spatiotemporal inconsistencies. It also highlights promising
solutions proposed by recent studies, including the adoption of multi-spectral and high-
resolution data, the use of explainable Al tools, hybrid model architectures, and integration of
temporal and ancillary data. The goal of this synthesis is to provide a clear roadmap for future
research that addresses current technical constraints and enhances the operational scalability
and reliability of Al-powered LULC systems.

Table 2: Key Challenges encountered in Al-Based LULC Classification and Future
Directions to resolve these challenges

Key Challenges

Future Directions to Overcome Challenges

Reliance on limited spectral
bands (e.g., only RGB)

Use of multi-spectral and hyperspectral data;
integration of red edge, SWIR, and thermal bands

Low-resolution or medium-
resolution satellite imagery

Adoption of high-resolution imagery (e.g.,
PlanetScope, Sentinel-2, commercial satellites)

Computational cost and
resource constraints

Implementation of lightweight models, optimization
algorithms, and cloud-based solutions like Google
Earth Engine or Al-as-a-Service (AlaaS)

Lack of generalization
across different geographies

Use of data augmentation, transfer learning, and
training on global multi-source datasets

and land types
Model interpretability and Integration of Explainable Al tools (e.g., SHAP,
explainability Captum) to visualize decision processes and build

trust
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Opverfitting and sensitivity
to hyperparameters in deep
models

Use of regularization, dropout, eatly stopping, and
automated hyperparameter tuning (e.g., Bayesian
optimization, AutoML)

Black-box nature of
ML/ AutoML approaches

Combine model performance with interpretability
layers and validation using expert annotations.

Spatiotemporal
inconsistency and lack of
temporal modeling

Integrate temporal modeling techniques (e.g.,
RNNSs, transformers with temporal embeddings);
explore change detection using multi-date imagery

Manual feature engineering
or parameter selection

Adoption of end-to-end deep learning pipelines and
hybrid models with self-learned features

Difficulty in classifying
complex or fragmented
landscapes

Employ object-based image analysis (OBIA), CNNs
with patch-level context, and spatial attention
mechanisms

Inadequate ground truth or
labeled data

Leverage semi-supervised learning, crowd-sourced
annotations, and synthetic data generation.

Landscape-specific
limitations (e.g., coalfields,
urban-rural boundaries)

Tailor classification frameworks by region, integrate
ancillary data (e.g., elevation, land parcel maps), and
adopt hierarchical classification strategies

In addition to accuracy comparisons, it is important to recognize that variations in
reported results are often influenced by factors beyond the model architecture itself. Dataset
diversity plays a critical role, as models trained on high-resolution or multispectral imagery
typically outperform those using medium-resolution or RGB-only data. Similarly,
preprocessing quality, including atmospheric correction, normalization, data augmentation,
and handling of noise, directly impacts model generalization. Furthermore, geographic
variability introduces additional complexity, since heterogeneous landscapes, seasonal
changes, and region-specific land cover patterns can make classification more challenging.
These underlying factors must therefore be carefully considered when interpreting
performance differences, as they shape not only accuracy outcomes but also the scalability and
robustness of Al-based LULC systems across diverse contexts.

Conclusion:

The evolution of Land Use and Land Cover (LULC) classification has been profoundly
shaped by the integration of artificial intelligence (AI) with remote sensing, marking a decisive
shift from traditional approaches to data-driven, automated methods. This review has gone
beyond summarizing individual studies by thematically clustering and critically comparing Al
techniques, including transformer-based models, CNNs, hybrid deep learning frameworks,
AutoML pipelines, and explainable Al approaches. Through this comparative analysis, the
review highlights not only the performance levels achieved but also the underlying causes of
variability across studies, such as dataset diversity, preprocessing strategies, and geographic
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complexity. A key novelty of this review lies in the synthesis of recurring challenges with their
feasible solutions, as consolidated in Table 2, which provides a roadmap for advancing Al-
based LULC research. Unlike prior reviews that focus predominantly on accuracy, this work
emphasizes scalability, interpretability, and operationalization—factors that will determine the
real-world impact of these models. Looking forward, future research should prioritize multi-
spectral and multi-temporal integration, lightweight and interpretable architectures, scalable

MILOps frameworks, and the incorporation of ancillary data sources. By framing these

directions, this review not only identifies current limitations but also sets the stage for the

development of next-generation Al-powered LULC systems capable of supporting sustainable
land management, ecological monitoring, and urban planning at scale.
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