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eed infestation is a major constraint in wheat production, causing yield losses and 
higher herbicide dependence. Traditional control methods often lack precision, 
highlighting the need for intelligent, sustainable solutions. Deep learning has 

recently emerged as a powerful tool for automated and accurate weed detection in precision 
agriculture. This review summarizes the latest advances in deep learning applied to wheat weed 
identification, emphasizing model architectures, datasets, and imaging techniques. Approaches 
such as YOLO variants, Faster R-CNN, U-Net, and transformer-based models have achieved 
high accuracy in distinguishing wheat from diverse weed species, even under complex field 
conditions. Integration of UAV imagery, multispectral sensors, and spectral indices further 
enhances detection at early growth stages. Recent innovations, including attention 
mechanisms, feature fusion, optimized loss functions, and lightweight designs, have improved 
precision, speed, and generalization. Key challenges remain in dataset quality, class imbalance, 
and cross-field applicability. This work outlines current trends, identifies gaps, and highlights 
future directions for scalable and sustainable deep learning-based weed detection in wheat 
agriculture. 
Keywords: Weed detection, Wheat Crops, Smart farming, Artificial intelligence (AI) in 
Agriculture, Convolutional Neural Networks (CNN), YOLO Architecture, UAV-Based Weed 
Mapping 
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Introduction: 
Wheat (Triticum aestivum L.) is one of the most widely cultivated crops worldwide, 

covering more than 237 million hectares annually and producing approximately 765 million 
tons [1]. In Pakistan, Punjab and Sindh are the major wheat-producing regions, with Sindh 
achieving slightly higher yields per hectare [2]. Wheat adapts to diverse climates, tolerating 
temperatures from 3–32 °C and rainfall from 250–1700 mm. It is a staple food, consumed 
globally more than rice, maize, and potatoes [3], and contributes 8.9% to agricultural value 
addition and 1.6% to Pakistan’s GDP [4]. Meeting the growing food demand, especially with 
Pakistan’s population projected to surpass 225 million by 2025, requires boosting wheat 
production. However, weeds pose a serious threat to wheat production because they compete 
with crops for vital resources like nutrients, light, and water. Moreover, weeds serve as hosts 
for pests and diseases, thereby further diminishing crop productivity [5]. Studies show that 
weeds, pests, and diseases together cause nearly 40% of annual global crop losses [6]. In wheat 
fields specifically, uncontrolled weed infestations can result in yield losses ranging from 40% 
to 50% [3]. Flowering plants (angiosperms) were traditionally classified into two groups: 
monocotyledons and dicotyledons, before being combined into a unified system [7]. As wheat 
belongs to the monocotyledons, broadleaf (dicotyledonous) weeds are more easily managed 
with selective herbicides, whereas grassy (monocotyledonous) weeds demand the use of 
specialized grass-targeting herbicides [8]. These grass weeds not only reduce yield and harvest 
efficiency but also cause annual economic losses amounting to millions of dollars [9]. Without 
appropriate control methods, weed damage can occasionally reach 100%, and technical failures 
have been known to result in yield losses of up to 20% in wheat production even when control 
measures are in place. Maintaining crop yield and minimizing financial losses requires the 
implementation of efficient weed management strategies. [10]. [11] reported that inadequate 
weed management in Northwestern Pakistan led to significant reductions in wheat yield. Their 
findings showed that adopting reduced or zero tillage practices along with suitable herbicides 
like Affinity enhanced weed control efficiency (up to 94.1%) and improved wheat productivity 
compared to conventional tillage. This highlights the importance of effective weed 
management strategies for sustaining wheat growth and yield. 

In wheat fields, weeds are especially troublesome because, in their early stages of 
growth, they closely resemble wheat, making hand identification difficult. [12]. Recent 
advances in computer vision and machine learning have created new opportunities, with 
researchers making notable progress in developing and optimizing models for weed detection 
[13][14][15]. Furthermore, conventional weeding practices—mechanical, chemical, and 
manual—also carry inherent drawbacks. An example is chemical weeding, where herbicides 
are frequently applied uniformly across whole fields, leading to higher operational expenses 
and greater environmental hazards. Although it complies with sustainable farming techniques, 
mechanical weeding is not effective, time-consuming, and risky of causing damage to crops. 
[16]. Scholars have considered sophisticated methods such as deep learning and machine 
vision for automated weed detection to address such limitations. Deep learning (DL) is an 
aspect of machine learning and, in turn, artificial intelligence. Neural networks (NN) would be 
applied in deep learning applications to detect objects in images or classify images. [17]. Deep 
learning classification methods have been widely applied in fields like pattern recognition and 
computer vision. [18]. 

Nowadays, various farming practices enhance the precision of weed detection through 
cameras, drones, and deep learning techniques. High-end machine learning models, 
particularly Convolutional Neural Networks (CNNs) and object detection systems such as 
YOLO, have demonstrated promise in effectively determining the distinction between wheat 
and other weeds. Those advanced imaging technologies, such as 3D, spectral, and thermal 
sensors, contribute to higher accuracies of detection, though their potential in large-scale 
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applications related to agriculture is limited due to their high costs and requirements for 
controlled environments. [19]. This highlights the need for affordable, adaptable solutions that 
can perform effectively across diverse outdoor environments. A deep learning-based approach 
to tackle issues of weed detection has been proposed in this study.  

The research is concerned with the creation of an effective and dependable solution 
based on the use of image data and robust machine learning practices to increase the 
effectiveness of the weed identification and eradication processes. Recent advances in 
computer vision and deep learning (DL) offer potential solutions. Deep learning, a subset of 
machine learning, uses neural networks to classify and detect objects in images [17]. DL 
methods, especially Convolutional Neural Networks (CNNs) and object detection systems like 
YOLO, have shown high accuracy in distinguishing wheat from weeds [13][14]. Advanced 
imaging technologies such as spectral, 3D, and thermal sensors further improve detection 
accuracy but remain costly and impractical for large-scale field use [19]. Thus, there is a clear 
technology gap: while precision tools exist, they are either too expensive or impractical for 
widespread adoption. This study addresses that gap by proposing a deep learning-based, 
image-driven approach for effective and reliable weed detection, aimed at improving both 
efficiency and sustainability in wheat production. 

 
Figure 1. Visual representation of weed distribution within a wheat field during field 

monitoring. (author’s own illustration) 
Objectives: 
The main objectives of this study are: 
To review and synthesize recent deep learning approaches applied to weed detection in wheat 
fields. 
To categorize and compare commonly used models, including YOLO variants, CNN-based 
classifiers, segmentation networks, transformer-based hybrids, and multimodal techniques. 
To examine the role of imaging methods such as UAV-based sensing, 
multispectral/hyperspectral imaging, and mobile-based systems in enhancing weed detection. 
To identify research gaps and limitations, particularly related to dataset diversity, weed–wheat 
similarity, occlusion challenges, and computational constraints. 
To highlight future directions for developing lightweight, robust, and scalable AI-powered 
weed detection systems for precision agriculture. 
Novelty Statement: 

This study provides a focused and up-to-date review of deep learning-based methods 
for weed detection in wheat fields. Unlike earlier surveys that broadly address precision 
agriculture or general crop–weed detection, this work specifically examines the performance 
of recent deep learning architectures, including CNNs, YOLO variants, segmentation 
networks, and transformer-enhanced hybrids, alongside their integration with UAV and 
spectral imaging systems. By combining performance comparisons with an analysis of dataset 
challenges, model limitations, and deployment issues, this review uniquely bridges the gap 
between academic research and practical field applications, offering a roadmap for more 
intelligent and sustainable weed management in wheat agriculture. 
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Literature Review: 
Introduction to Weed Detection Challenges: 

Weed infestation poses a major challenge to wheat production, causing yield losses, 
increasing competition for resources, and raising dependence on herbicides. Traditional 
control methods, such as blanket herbicide application, are both expensive and associated with 
environmental contamination and the development of herbicide resistance. These challenges 
underscore the urgent need for sustainable, precise, and automated approaches to weed 
management. Recent advances in artificial intelligence (AI) and deep learning (DL) have 
opened new opportunities for site-specific, real-time weed detection. By enabling accurate 
crop–weed differentiation, these technologies support precision agriculture practices such as 
monitoring, mapping, and automated spraying. Current research emphasizes object detection 
frameworks like YOLO, pixel-level segmentation, multi-modal fusion, UAV-based imaging, 
and hyperspectral sensing, alongside efforts in dataset development and integrated spraying 
systems. Together, these innovations aim to make weed management more efficient, scalable, 
and environmentally friendly.  
YOLO-Based Detection Models: 

YOLO architectures have dominated wheat weed detection because of their balance 
of speed and accuracy. [20] tested YOLOv3 to YOLOv5 variants for early detection of 
Papaver rhoeas in wheat fields, finding YOLOv5 the most effective (mAP 76.2%, F1-score 
75.3%). Similarly, [21] applied YOLOv5 to UAV images across 185 wheat fields in Turkey, 
covering five phenological stages of charlock mustard, creeping thistle, and forking larkspur. 
YOLOv5s achieved a peak precision of 0.96 for thistle during vegetative stages, but its 
performance declined at fruiting stages, highlighting the challenges of late-stage detection. To 
overcome issues such as occlusion and small-weed recognition, researchers have developed 
enhanced YOLO variants. [22] proposed CSCW-YOLOv7 with CARAFE upsampling, SE 
attention, a Contextual Transformer, and Wise IoU loss, achieving 97.7% accuracy and 94.4% 
mAP on a five-weed dataset. [23] By integrating MobileViTv3 for global–local feature 
extraction, BiFPN for multi-scale fusion, and a new MPDIOU loss function, the model 
achieved 92.7% accuracy, with precision, recall, and mAP values improving by nearly 10% 
over baseline YOLOv8s. These enhancements are architecture-dependent, as they result from 
changes in feature extraction, feature fusion, and loss optimization rather than dataset-specific 
factors. Compared with YOLOv5-based approaches, YOLOv8-MBM showed superior 
accuracy on single-weed detection, but its limited evaluation on only Artemisia reduced its 
generalizability. In contrast, other models, such as YOLOv5s (used by [21]), remained more 
versatile across multiple weed species and growth stages. Thus, while YOLOv8-MBM 
advanced performance, it traded generality for precision in a narrower setting. [24] introduced 
PMDNet, an improved YOLOv8-based model for weed detection in wheat fields. By 
integrating PKINet for multi-scale feature extraction, MSFPN for enhanced feature fusion, 
and DyHead for adaptive detection, PMDNet achieved notable improvements, raising 
mAP@0.5 to 85.8% and mAP@0.50:0.95 to 69.6%, with a precision of 94.5%. It 
outperformed Faster R-CNN, RetinaNet, and RT-DETR-L, while maintaining 87.7 FPS in 
real-time tests. However, compared to lighter models such as the YOLOv5s spraying system 
[25], PMDNet demanded higher computational power, limiting its suitability for embedded or 
mobile deployment. While its accuracy and speed were strong, its regional dataset and difficulty 
with very small weeds restricted scalability across diverse field conditions. This highlights a 
trade-off between PMDNet’s high precision and the lightweight efficiency needed for farmer-
ready solutions. [25] integrated a lightweight YOLOv5s model with a hysteresis control 
algorithm for precision spraying, reducing GFLOPs by 52.2% and achieving spraying 
accuracies of 99.8%–95.7% across field speeds. These efforts highlight the continued 
evolution of YOLO models toward real-time, scalable, and field-ready detection and control. 
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Collectively, these studies demonstrate YOLO’s dominance while highlighting ongoing 
refinements for robustness in complex field conditions. 

Table 1 presents YOLO-based weed detection methods in wheat fields. [26] enhanced 
YOLOv8 using MobileViTv3 and BiFPN to achieve higher accuracy; however, their 
evaluation was limited to Artemisia. The performance gains were architecture-dependent, as 
they came from changes in feature extraction (MobileViTv3), feature fusion (BiFPN), and loss 
optimization (MPDIOU), not from dataset-related factors. [24] introduced PMDNet, 
achieving top precision and speed, but limited by heavy computation and regional data. [25] 
integrated a lightweight YOLOv5s into a spraying system, ensuring high accuracy, though 
performance dropped at higher speeds. [21] applied YOLOv5s on UAV imagery, effective in 
early stages but less accurate at fruiting. Overall, the table shows a clear shift from YOLOv5 
to YOLOv8-based models, improving accuracy and real-time applicability but still facing limits 
in weed diversity and scalability. In comparative terms, YOLOv8-based variants such as MBM 
and PMDNet demonstrate higher detection accuracy, particularly for small or occluded weeds, 
while YOLOv5 remains more lightweight and better suited for real-time field spraying. This 
contrast highlights the trade-off between accuracy and deployability, an issue that future 
research must address. 
CNN and Two-Stage Models: 

While YOLO dominates, CNNs and two-stage detectors remain valuable. [27] Applied 
ResNet50 on mobile devices in Indian wheat fields, achieving a validation accuracy of 93.25% 
across five weed types, showing the feasibility of farmer-accessible tools. [28] compared 
PyTorch and TensorFlow on 6,000 wheat field images, reporting that PyTorch was faster (9.43 
ms per image) and more accurate, with weed removal accuracy ranging from 0.89 to 0.91, 
though performance was constrained by limited weed diversity. Additionally, two-stage 
models such as Faster R-CNN have demonstrated strong effectiveness. [29] Applied an 
enhanced Faster R-CNN with transfer learning and preprocessing, which outperformed 
baseline models under MS COCO evaluation metrics. Although the exact accuracy value was 
not reported in the summary, the study demonstrated improved detection rates in complex 
wheat field conditions. However, computational cost and lack of hardware integration 
restricted real-world deployment. While CNNs and two-stage models offer strong 
classification performance, their slower inference speed makes them more suitable for offline 
analysis or mobile-specific applications. 
Segmentation and Pixel-Level Approaches: 

Segmentation-based models provide pixel-level precision for canopy mapping. [30] 
evaluated U-Net, DeepLabV3, and PSPNet on UAV images at wheat jointing and booting 
stages. PSPNet achieved the best accuracy (80%), outperforming U-Net (75%) and DLV3 
(56.5%). While effective for canopy distribution and quantifying weed pressure, these models 
struggled with fine species differentiation—U-Net underclassified minor weeds, while PSPNet 
blended overlapping classes. Segmentation thus excels at canopy-scale analysis but is less 
suited for species-specific detection. 
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Table 1. YOLO-Based Wheat Weed Detection Studies 

Study Model/Variant Dataset (images/species) Key Features Performance 

[20] YOLOv3–
YOLOv5 
YOLOv5s best 

Field images of Papaver rhoeas Early-stage, high-
precision, UAV + 
ground images  

mAP 76.2%, F1 75.3% 

[21] YOLOv5s Charlock mustard, creeping 
thistle, forking larkspur 

UAV dataset: 185 
fields, 145,792 objects, 
15 growth-stage 
scenarios 

Mean precision 0.86; best precision 
0.96 (seedling–vegetative stages); 
lower at the fruiting stage 

[22] CSCW-YOLOv7 5 weed species  CARAFE upsampling, 
SE attention, CoT, 
WIoU loss 

Accuracy 97.7%, mAP 94.4% 

[23] YOLOv8-MBM Artemisia (single weed) MobileViTv3, BiFPN, 
MPDIOU 

Precision 93.2% 

[24] PMDNet 
(YOLOv8-based) 

5,967 images / 8 weeds PKINet, MSFPN, 
DyHead 

Precision 94.5%, 87 FPS 

[25] YOLOv5s 
(lightweight) + 
hysteresis control 
algorithm 

Tillering-stage wheat  Hysteresis algorithm, 
solenoid valve control 

GFLOPs ↓52.2%, mAP 91.4%, 
spraying 99.8–95.7% 
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UAV-Based Imaging and Field Monitoring: 
UAVs provide a scalable solution for weed monitoring across large fields. [26] 

integrated UAV imagery with DeepLabV3+, achieving detection precision of 91.27% in 
scattered fields and 87.51% in drilled fields. Beyond weed detection, [26] also quantified weed-
induced yield losses of up to 60% under heavy infestations. However, weeds at the regrowth 
stage were challenging to distinguish due to occlusion, while the use of high-resolution 
hyperspectral sensors substantially increased costs. Similarly, [21] used UAV imagery across 
multiple growth stages, though reliance on 2D RGB limited late-stage accuracy. UAV-based 
systems thus provide valuable spatial variability insights but face trade-offs in cost, resolution, 
and annotation effort.  
Hyperspectral and Multispectral Imaging: 

Spectral imaging expands detection by capturing reflectance differences. [31] applied 
hyperspectral data and ML classifiers (PLS-DA, SVM, MLP) to ryegrass and clover pastures, 
with MLP achieving 89.1% accuracy after SNV preprocessing. [32] used UAV multispectral 
imagery to identify Italian ryegrass in wheat, achieving >70% accuracy, with NIR bands most 
effective. [33] combined multispectral sensing with CNN and transformer models for 
blackgrass detection in Europe, approaching 90% accuracy on previously unseen field images. 
Despite the promise, these methods remain limited by sensor cost, dataset transferability, and 
scalability under field variability. 
Transformer and Attention-Based Enhancements: 

Attention mechanisms and transformers are increasingly integrated into detection 
pipelines. [22]’s CSCW-YOLOv7 included SE and CoT modules, while [23]’s YOLOv8-MBM 
embedded MobileViTv3 for global attention. These hybrid CNN-transformer designs 
improved recognition of small, overlapping, and morphologically similar weeds, reflecting a 
shift toward architectures that balance local detail with contextual awareness. 
Dataset Contributions: 

High-quality datasets are essential for training robust models. [34] released Weed25, a 
dataset of 14,035 images across 25 species, achieving over 92% accuracy with YOLOv5. [24] 
curated 5,967 images of eight weed species for PMDNet. Despite these efforts, many datasets 
remain limited in species diversity, geographic coverage, and phenological stages, restricting 
model generalization. 
Multi-Modal Fusion Techniques: 

Integrating multiple data modalities improves discrimination between visually similar 
weeds. [35] combined RGB and depth image features with AdaBoost, achieving 88% accuracy 
at the tillering stage (0.2 s processing) and 81.1% at the jointing stage (0.69 s). This approach 
surpassed RGB-only detection but remained limited by segmentation errors, occlusion, and 
noisy depth data in low-light settings. To address these issues, [35] introduced a three-branch 
CNN framework that independently processes RGB and depth inputs before fusing them at 
the decision stage. Depth images are converted into an RGB-like three-channel format for 
CNN feature extraction, and multi-scale feature fusion enhances model robustness. 

The model reached a mean average precision of 36.1% for grass weeds, 42.9% for 
broadleaf weeds, and an IoG accuracy of 89.3%, with fusion weights of 0.4 (RGB) and 0.3 
(depth). Despite surpassing RGB-only methods, challenges remained, including manual weight 
tuning, high computational load, and occlusion from overlapping leaves. Future work 
emphasized automated weight optimization, model compression, and multi-perspective 
imaging to improve precision and efficiency.  
Hybrid ML–DL Frameworks: 

Combining ML and DL enhances classification accuracy. [36] Extract statistical 
features (Hu moments, entropy, GLCM) for ML classifiers such as SVM and ANN, while DL 
models (VGG16, DenseNet, ConvNeXtBase) provide feature learning. YOLOv8m is applied 
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for detection before classification. SVM achieves 99.5% accuracy on the Early Crop–Weed 
dataset, while ConvNeXtBase combined with Random Forest achieves 98% on other datasets. 
Despite high accuracy, reliance on SMOTE balancing and sensitivity to lighting limits field 
readiness. This hybrid design illustrates the complementary strengths of ML and DL in 
addressing complex crop–weed detection scenarios. 
Low-Cost and Embedded Systems: 

To enhance accessibility, researchers have investigated the use of low-cost hardware 
for weed detection. [37] implemented CNN-based detection and spraying on Raspberry Pi, 
enabling real-time control but restricted to only two weed species. While embedded solutions 
help reduce costs, they face challenges of scalability and limited computational capacity, 
underscoring the need for lightweight yet versatile models. 
Spraying and Actuation Systems: 

The integration of detection and spraying is essential for effective site-specific 
management. [25] integrated a lightweight YOLOv5s with a hysteresis control algorithm, 
achieving a 52% reduction in GFLOPs and a 42% decrease in model size. The system achieved 
a mAP of 91.4% and an F1-score of 85.3%, with spraying rates of 99.8%, 98.2%, and 95.7% 
at speeds of 0.3, 0.5, and 0.6 m/s, respectively. However, performance declined at higher 
speeds due to velocity feedback limitations. These results demonstrate the feasibility of 
coupling lightweight DL models with actuation systems for precise and efficient herbicide 
application. 
Region-Specific Weed Detection: 

Several studies highlight region-specific challenges. [33] focused on blackgrass in 
Europe, integrating spectral and transformer models to achieve ~90% accuracy, while [27] 
built a mobile system for Indian wheat fields. These examples highlight both adaptability and 
the importance of broader validation across geographies and environments. 
Mobile and Farmer-Friendly Solutions: 

Mobile-based platforms improve accessibility. [27]’The ResNet50 mobile app achieved 
93.25% accuracy, showing potential for smallholder farmers despite limited weed coverage 
and grayscale imagery constraints. Such tools represent early steps toward democratizing AI 
in agriculture, bridging gaps between research and practice. 
Synthesis and Research Gaps: 

Across studies, YOLO-based models dominate due to their efficiency, with extensions 
such as CSCW-YOLOv7, YOLOv8-MBM, and PMDNet offering improvements in accuracy 
and robustness. Segmentation models are valuable for canopy mapping but face limitations in 
fine species-level classification, whereas CNNs and hybrid ML–DL frameworks offer 
complementary strengths. UAV-based imaging expands monitoring capabilities but remains 
constrained by cost and scalability challenges. Several gaps remain unaddressed. Dataset 
limitations, especially the scarcity of diverse weed species and balanced samples, restrict the 
generalizability of models across regions. Detecting small, overlapping, or partially occluded 
weeds continues to be problematic, especially in early growth stages. Current models often 
demand high computational resources, which restricts their use in real-time, field-ready 
applications. While multimodal sensing (hyperspectral, LiDAR, depth fusion) shows promise, 
practical approaches increasingly emphasize RGB imagery due to its accessibility, cost-
effectiveness, and scalability in real farming environments. Current research focuses on 
developing high-resolution, diverse RGB datasets, designing lightweight yet robust 
architectures, and advancing early-stage multi-species detection under real-world field 
conditions. Addressing these gaps forms the foundation for intelligent, real-time, and scalable 
weed detection systems in wheat fields. 
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Figure 2. Reported Accuracy of Deep Learning Models for Weed Detection in Wheat Fields 

(2021–2025). 
As shown in Figure 2, the reported accuracy of deep learning models for wheat weed 

detection between 2021 and 2025. The Figure compares results from a wide range of 
architectures, including YOLO variants (v3–v9, MBM, PMDNet), CNN-based classifiers 
(ResNet, VGG, DenseNet), segmentation networks (U-Net, DeepLabV3, PSPNet), and 
transformer-integrated hybrids. Most studies consistently achieved accuracy levels above 85%, 
with YOLOv7/YOLOv8 and transformer-enhanced models pushing performance closer to 
95% under complex field conditions. Earlier CNN approaches performed reliably but were 
slower, while segmentation models excelled in canopy mapping rather than species-specific 
classification. The trend shown in Figure 2 reflects the steady improvement of deep learning 
techniques in balancing accuracy, real-time speed, and adaptability to field variability. 

 
Figure 3. Flowchart of Wheat Weed Detection Methods 

Figure 3: Flowchart of Wheat Weed Detection Methods. The diagram provides an 
overview of the principal strategies used in recent studies. YOLO-based detectors dominate 
due to their speed and strong object-level recognition capabilities, making them suitable for 
UAV imagery and real-time spraying. CNN classifiers are widely used in mobile and low-cost 
systems for species recognition, but are less efficient in real-time detection. Segmentation 
methods such as U-Net, DeepLabV3, and PSPNet are effective for canopy-scale mapping and 
quantifying weed pressure but struggle with fine-grained species identification. Hybrid and 
multimodal techniques combine RGB imagery with depth, hyperspectral, or transformer-
based features, improving robustness under occlusion and visual similarity. As shown in Figure 
3, the flowchart highlights the evolution of these methods and how each contributes 
differently to precision agriculture by balancing trade-offs between accuracy, computation, and 
practical deployment in real field conditions. 
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Table 2. Overview of deep learning-based methods for weed detection in wheat crops. 
Dataset Method Performance Limitation 

Weed Detection in Wheat Crops 
Using Image Analysis and AI (2023) 
6000 RGB images of Cirsium 
arvense collected via mobile and 
HD webcam, labeled, and 
preprocessed 

DL: YOLOv3-Tiny, YOLOv4-Tiny, 
YOLOv5s/m/l (TensorFlow & 
PyTorch); Transfer Learning; 
Preprocessing: resizing, cropping, 
augmentation 

YOLOv5l: Highest precision in 
PyTorch (0.84). YOLOv4-Tiny: 
Highest accuracy overall (0.97). 
Inference time: 9.43 ms (YOLOv4-
Tiny), 12.38 ms  

Only one weed type was used. 
Images from one location only. 
Might not generalize to other weeds, 
crops, or weather conditions 

Harnessing UAVs and DL for 
Grass Weed Detection (2024) 
8wheat plots:  6 infested, 2 weed-
free, UAV imaging of Grass weeds: 
Alopecurus aequalis (Meadow 
foxtail), Poa annua (Annual 
bluegrass), Biomass & yield 
measured 

DeepLabV3+ (best segmentation); 
NDVI, SAVI, RVI; SVR for 
biomass; ResNet-50 backbone, 
Python + LabelMe for training 

Weed detection accuracy:91.27% 
(broadcast fields), 87.51% (drilled 
fields). Yield loss due to weeds: up to 
60%. Biomass estimation R² > 0.85.  
NDVI bands showed a high 
correlation with weed biomass 

Hard to distinguish weeds during the 
regrowth stage due to occlusion. 
DeepLabV3+ can’t estimate the 
amount of weeds, only 
presence/absence. High-resolution 
hyperspectral cameras are still 
limited. Mislabeling edges of 
wheat/weed in the dataset 

Deep Learning-Based Target 
Spraying Control of weeds on wheat 
field at tillering stage 2025). Wheat 
fields, four weeds: Silene conoidea, 
Malcolmia africana, Descurainia 
sophia, Capsella bursa-pastoris; 
real-time sprayer system 

YOLOv5-SGS (improved 
YOLOv5s) - Ghost Module  - 
GSConv  - SimAM attention  - 
Target spraying decision algorithm  - 
Hysteresis delay compensation 
algorithm.. 
 

GFLOPs reduced by 52.2%, model 
size reduced by 42.4%. Accuracy: mAP 
91.4%, F1 score 85.3% Spraying 
accuracy: 99.8% at 0.3–0.4 m/s, 98.2% 
at 0.4–0.5 m/s, 95.7% at 0.5–0.6 m/s. 
Coverage rate: over 93% at slower 
speeds; slightly drops at higher speeds 

Slight drop in performance at higher 
sprayer speeds (e.g., above 0.5 m/s). 
Needs higher-frequency speed 
feedback hardware for improved 
accuracy at fast operation speeds 

Weed25: A Deep Learning Dataset 
for Weed Identification (2022) – 
14,035 images of 25 weed species 
from 14 families, annotated and 
split into train/val/test sets 

Object detection models: YOLOv3, 
YOLOv5, Faster R-CNN; Training 
with 100 epochs, batch size 4, IoU 
0.5 

YOLOv5 achieved the best 
performance with a 92.4% mAP and 
strong precision–recall tradeoff, while 
YOLOv3 and Faster R-CNN were 
slightly lower. Still, overlapping leaves 
and background interference caused 
reduced accuracy for species like 
crabgrass and green foxtail. 
 

The study was limited to 25 species, 
with misclassification issues arising 
from background noise, 
morphological similarity among 
grass weeds, and environmental 
factors like lighting and leaf overlap. 
Such challenges reduced accuracy 
and occasionally caused false 
predictions. 

YOLOv8 Model for Weed 
Detection in Wheat Fields Based on 
a Visual Converter and Multi-Scale 
Feature Fusion (2024). Custom 
dataset with wheat and Artemisia 
weed images. 

Improved YOLOv8s-MBM: 
MobileViTv3 (backbone), BiFPN 
(feature fusion), MPDIoU (loss 
function); Grad-CAM for visual 
interpretation 

Precision: 92.7%- Recall: 87.6%- 
mAP@0.5 (mAP1): 89.7%- 
mAP@0.5–0.95 (mAP2): 85.2%- FPS 
(speed): 35.5- Outperforms YOLOv3–
YOLOv9 and Fast    R-CNN models. 

Only one weed species was used 
(Artemisia)- Limited weed diversity 
and growth stages- Detection 
performance drops slightly for 
occluded or very small weeds. 
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Examining Deep Learning Pixel-
Based Classification Algorithms for 
Mapping Weed Canopy Cover in 
Wheat Production Using Drone 
Data (2025). Drone-based 
multispectral images at 4 wheat 
growth stages (Mayweed, 
Speedwell, Hairy Buttercup, 
Common Vetch, others); 2012 & 
2205 training polygons 

Deep Learning: U-Net, DeepLabV3 
(DLV3), PSPNet (all using ResNet34 
backbone) 

PSPNet: 80% accuracy (best overall)  - 
U-Net: 75% accuracy (best 
generalization) - DLV3: 56.5% 
accuracy (best precision for species-
specific weeds) 

DLV3 struggled with 
underclassification and fine detail 
detection  - PSPNet tended to blend 
weed classes  - U-Net underclassified 
some less dominant weeds 

Weed Detection and Recognition in 
Complex Wheat Fields Based on an 
Improved YOLOv7 (2024) 2,614 
field images from Henan, China; 5 
weed species (Descurainia sophia, 
Thistle, Golden saxifrage, 
Shepherd’s purse, Artemisia argyi*) 

YOLOv7 enhanced using CARAFE, 
SE, CoT, and WIoUv3, then trained 
on an 80/20 split with validation 
from the training set. 

Precision: 97.7%- Recall: 98%- mAP: 
94.4%- Reduced parameters by 10.7%- 
Lower FLOPs by 10%- Outperformed 
YOLOv5m, YOLOv7, Faster RCNN 

Model limited to 5 weed species- A. 
argyi detection less accurate due to 
fewer samples- Background 
occlusion caused some false 
positives (e.g., wheat leaves 
misidentified as thistle)- High 
similarity between wheat and some 
weeds caused detection errors. 

PMDNet: An Improved Object 
Detection Model for Wheat Field 
Weed (2025) 5,967 wheat field 
images; 8 weed species (Artemisia 
capillaris, Agropyron cristatum, 
Chenopodium album, Bassia 
scoparia, Cirsium arvense, Kali 
collinum, Raphanus raphanistrum, 
Thermopsis lanceolata) 

YOLOv8-based PMDNet: PKINet 
(multi-scale backbone), MSFPN 
(feature fusion), DyHead (attention 
head); data augmentation; ablation 
studies 

mAP@0.5 ↑ from 83.6% to 85.8%. 
mAP@0.5:0.95 ↑ from 65.7% to 
69.6%. Precision: 94.5%. Speed: 87.7 
FPS.  Outperformed YOLOv5n, 
YOLOv10n, Faster-RCNN, RetinaNet 

Heavy model—not suitable for low-
power devices. The dataset is from a 
single region. It struggles with 
thin/small weeds. Limited weed 
species coverage 

Identification of Weeds in Wheat 
Crop Using Artificial Intelligence 
Techniques (2023) Collected 1,869 
weed images from ICAR-IARI 
wheat fields of 5 weeds 
(Chenopodium album, Coronopus 
didymus, Convolvulus arvensis, 
Malva neglecta, Medicago 
polymorpha) 

ResNet-50 CNN with transfer 
learning; Fine-tuning on image 
preprocessing; deployed on an 
Android mobile app. 

Accuracy: 93.25%- Precision: 92.79%- 
Recall: 93.10%- F1-score: 92.90% 

Only five weed species were used.  
 Not generalized to other crops. 
 No testing under complex field 
conditions or multiple locations.  
Grayscale input may limit color-
based detection precision. 

Identification and Classification 
Model of Wheat and Weed Based 
on Improved Faster R-CNN (2024)  

Image dataset creation (web 
scraping), augmentation (RGB 
patching, flipping, blurring), model 

AP: 91.64%, AR: 75.87%, real-time: 
0.44s/image, better than VGG16 & 
MobileNetV2 

Only software-level; no hardware 
(IoT) deployment yet due to time 
and budget constraints 
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Dataset of wheat + 5 weed types 
(e.g., Setaria viridis, Echinochloa 
crus-galli); images collected via web 
scraping and augmented (RGB 
patching, flipping, blurring) 

training using ResNet-50+FPN as 
backbone in Faster R-CNN, transfer 
learning 

Revolutionizing Agriculture: 
Machine and Deep Learning 
Solutions for Enhanced Crop 
Quality and Weed Control (2024) – 
Two datasets: Early-Crop-Weed 
(Black Nightshade, Velvetleaf) and 
CottonWeedID15 (15 species, 
including Carpetweed, Crabgrass, 
Goosegrass, Morning Glory, 
others); images annotated and class-
balanced via SMOTE  

Manual & deep feature extraction: 
GLCM, LBP, Hu moments, 
statistical features; Deep: VGG16, 
VGG19, Xception, DenseNet, 
ConvNeXt (transfer learning); 
Object detection: YOLOv8-M; 
Classification via ANN, SVM, 
Random Forest   

ANN: 89.26% (CottonWeedID15).  
SVM (poly kernel): 99% (Early-Crop-
Weed). ConvNeXt + RF: 98% (Early-
Crop-Weed), 89% 
(CottonWeedID15). YOLOv8-M: 
mAP 89% 

Datasets are unbalanced. Detection 
is difficult due to similar weed-crop 
texture and lighting conditions. Need 
for more real-time capable models 
and larger datasets. 

Multi-Modal Deep Learning for 
Weeds Detection in Wheat Field 
Based on RGB-D Images (2021) – 
1,228 field images captured with an 
RGB-D camera; Broad-leaf weeds: 
Amaranthus retroflexus, Capsella 
bursa-pastoris; Grass weeds: 
Alopecurus aequalis, Poa annua, 
Bromus japonicus, Echinochloa 
crusgalli; images manually labeled 
and augmented   

RGB-D image fusion, PHA image 
recoding; Faster R-CNN with 
VGG16 backbone; multiscale object 
detection; ensemble learning   

mAP: 42.9% (broad-leaf), 36.1% 
(grass); IoG: 89.3%; PHA improved 
detection 1.35× over depth  

Manual weight tuning in ensemble 
learning; high computational load; 
occlusion from overlapping leave 

Early and On-Ground Image-Based 
Detection of Poppy (Papaver 
rhoeas) in Wheat Using YOLO 
Architectures (2022) – On-ground 
RGB images of wheat fields; 
annotated for early-stage P. rhoeas 
detection (BBCH 12–14) 

Six YOLO models (YOLOv3, 
YOLOv4-P5, YOLOv4-CSP, 
YOLOv5s, YOLOv5m, YOLOv5l) 
image cropping and preprocessing 

YOLOv5s performed best F1-score: 
75.3%, mAP@0.5: 76.2%, accuracy: 
77%; Fastest inference (83 FPS GPU, 
7 FPS CPU 

Small weed size caused information 
loss when resizing; Only RGB 
images were used (no multispectral); 
YOLOv4-P7 and P9 were not tested 
due to memory limits. 

Evaluation of Weed Infestations in 
Row Crops Using Aerial RGB 
Imaging and Deep Learning (2025) 
– UAV-based RGB images over 
maize fields; annotated ROI; 10 

UAV imaging; DeepLabV3 with 
ResNet/DenseNet/VGG 
backbones; ArcGIS pixel-based 
classification 

ResNet-34 performed best (Precision, 
Recall, F1: 0.986); classified 4.1% of 
area as weed-infested; model robust 
against shadow interference 

limited to RGB imaging (spectral 
limitations), not generalized to other 
crops/weeds, small scattered weeds 
not detected, not integrated into real-
time farming workflows 
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backbone models for DeepLabV3 
training; weeds: Chenopodium 
album, Cirsium arvense, Polygonum 
aviculare, Sorghum halepense 

Deep Learning for Image-Based 
Detection of Weeds from 
Emergence to Maturity in Wheat 
Fields (2024) – Drone-based RGB 
images of 185 fields; 145,792 
annotated weed instances; 5 growth 
stages (seedling to fruiting); weeds: 
Charlock mustard, Creeping thistle, 
Forking larkspur ) 

YOLOv5 (nano, small, medium, 
large, xlarge); trained 80/20 split; 
evaluated using precision, recall, F1, 
AUC 

YOLOv5s gave the best results: up to 
96% precision in early stages; worst for 
FL at fruiting (0.45); YOLOv5n 
performed worst (21% lower 
precision); strong correlation across 
metrics (R² ≥ 0.95) 

YOLOv5s-based weed detection 
was limited by 2D RGB imagery and 
a single model, with reduced 
accuracy at later growth stages, 
suggesting future improvements 
through 3D tools, advanced sensors, 
and newer deep learning models. 
 

Multi-Modal Deep Learning for 
Weeds Detection in Wheat Field 
Based on RGB-D Images (2021) 
Dataset: 1,228 RGB-D images (field 
experiment); broadleaf weeds 
(Amaranthus retroflexus, Capsella 
bursa-pastoris) and grass weeds 
(Alopecurus aequalis, Poa annua, 
Bromus japonicus, Echinochloa 
crusgalli); manually labeled and 
augmented. 

Method: RGB-D image fusion; PHA 
image recoding; Faster R-CNN with 
VGG16 backbone; multiscale object 
detection; ensemble learning 

mAP: 42.9% (broad-leaf), 36.1% 
(grass); IoG: 89.3%; PHA improved 
detection 1.35× over depth 

Manual weight tuning in ensemble 
learning; high computational load; 
occlusion from overlapping leaves
  

Multispectral Fine-Grained 
Classification of Blackgrass in 
Wheat and Barley Crops (2024) 
Dataset: 15,929 multispectral 
images (RGB + NIR + Red Edge) 
from 51 wheat and barley fields; 
dataset split by field for 
generalization testing. Target weed: 
Alopecurus myosuroides 
(Blackgrass). 

Method: Deep learning classifiers – 
ResNet-50, EfficientNet-B4, Swin 
Transformer B; evaluated across 
spectral band combinations and 
dataset sizes. 

Swin B achieved the best accuracy: 
87.7%, followed by ResNet-50 (87.3%) 
and EfficientNet B4 (83.0%). The NIR 
band was most effective. Performance 
plateaued after 6,000 training images. 
Barley is harder to classify than wheat. 

Should focus on expanding barley 
image data, optimizing spectral band 
selection, and developing more 
robust, generalizable models, 
possibly integrating temporal crop 
stage features for improved 
detection across growth stages. 
 
 
 

Identification of Weeds Based on 
Hyperspectral Imaging and 
Machine Learning (2021) 
Dataset: 120 hyperspectral samples 
(greenhouse-grown weeds); grass 

Method: Machine learning models 
(PLS-DA, SVM, MLP) with SNV 
preprocessing; compared pixel-level 
vs. superpixel spectra. 

MLP with Sp data gave the best results 
(up to 90% accuracy); well (70–100%); 
specific spectral regions identified 
(550–750, 995–1,005, 1,110–1,220, 
1,380–1,470 nm) 

 
 
Pixel-level classification had lower 
accuracy; manual patch selection in 
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weeds (Setaria pumila, Wind grass), 
broadleaf weeds (Ranunculus acris, 
Carduus tenuiflorus); spectral 
segmentation via thresholding and 
superpixel. 

Sp segmentation was limited to four 
weed species. 

Deep Learning-Based Decision 
Support System for Weeds 
Detection in Wheat Fields (2022) 
Dataset: 1,318 real RGB images 
captured in wheat fields (Nikon 
D7000) under varying lighting; 
weeds: Convolvulus arvensis (dicot) 
and Phalaris paradoxa (monocot). 

Method: YOLOv5 object detection 
with CNN backbone (CSP, FPN, 
PAN); augmentation (flip, crop, 
exposure); GIoU loss; deployed on 
Raspberry Pi. 

Precision: 83%- Recall: 93%- 
mAP@0.5: 94.4%- Accurate real-time 
detection- Efficient localized spraying 

Only two weed species included- 
Model may need reprogramming for 
more weed types- Raspberry Pi may 
limit scalability for larger farms 

Remote Sensing for Italian Ryegrass 
Detection in Winter Wheat (2021) 
Dataset: Field experiments (2016–
2017, two sites); UAV-based 
multispectral imagery (5-band) of 
winter wheat fields; simulated weed 
densities with herbicide variations; 
target weed: Lolium perenne ssp. 
multiflorum (Italian ryegrass). 

Method: UAV imaging; supervised 
classification; NIR reflectance 
analysis; compared across dates and 
altitudes. 

Supervised classification achieved 
>70% accuracy; NIR band showed 
strong differentiation across densities, 
altitudes, and dates 

Inconsistent lighting conditions 
between dates made unsupervised 
classification unreliable; reflectance 
values varied too much to be reused 
across dates 

 
Figure 4. Conceptual Flowchart of Deep Learning-Based Weed Detection Pipeline in Wheat Fields 
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As shown in Figure 4, the flowchart illustrates the typical research pipeline adopted in 
recent studies on deep learning–based weed detection in wheat. The process begins with input 
data collection using UAVs, ground cameras, or mobile devices. The acquired images undergo 
preprocessing steps such as annotation, augmentation, and normalization to prepare training 
datasets. Next, an appropriate model architecture (e.g., CNNs, YOLO variants, or 
segmentation networks) is selected and optimized. The chosen model is then subjected to 
training and validation to learn discriminative features for crop–weed differentiation. 
Performance is assessed during the evaluation stage using metrics such as accuracy, mean 
Average Precision (mAP), and F1-score. Finally, successful models are integrated into 
deployment systems, including UAV-based monitoring, field robots, or precision sprayers, for 
real-time weed management in precision agriculture. 
Challenges and Prospects for AI-Powered Weed Detection in Wheat Fields: 

Although deep learning has greatly advanced automated weed detection, several 
persistent challenges still limit large-scale adoption in wheat production. A key difficulty lies 
in the high visual similarity between wheat and certain weeds, particularly during early growth 
stages, which leads to frequent misclassification. Dataset limitations remain another major 
bottleneck, as many studies rely on region-specific or imbalanced collections that reduce 
generalizability across diverse environments and weed species. Environmental variability—
including differences in illumination, soil texture, crop density, and seasonal changes—further 
degrades model robustness. Detecting small, overlapping, or partially occluded weeds 
continues to pose difficulties, even for state-of-the-art models. Moreover, many deep 
architectures demand heavy computational resources, which constrain their practical 
deployment for real-time applications in wheat fields. 

Looking forward, progress will depend on a multipronged strategy. Incorporating 
multiple weed categories into the dataset will enhance training and support more accurate 
classification. The development of lightweight yet accurate deep learning architectures is 
essential to enable real-time detection on resource-constrained devices such as UAVs, mobile 
platforms, and smart sprayers. Enhancing robustness under complex environmental 
conditions, together with optimizing early detection of weeds, will further strengthen field-
ready systems. Collectively, these advances will enable robust, efficient, and sustainable AI-
driven weed detection systems, contributing to higher wheat yields and supporting cost-
effective and environmentally responsible farming practices. 
Conclusion: 

This review highlights the rapid evolution of deep learning approaches for weed 
detection in wheat fields, shifting from conventional image-based approaches to highly 
efficient models capable of operating under complex field conditions. These developments 
highlight the transformative role of deep learning in precision agriculture, where accurate weed 
identification is central to reducing herbicide use, preserving crop yield, and supporting 
sustainable farming. Despite impressive detection accuracies reported across many studies, 
several barriers remain before large-scale deployment can be realized. Current research is still 
constrained by the limited availability of diverse and openly accessible datasets, challenges in 
detecting small or occluded weeds, and the computational burden of running advanced models 
on lightweight devices suitable for field applications. Future progress will depend on open and 
standardized datasets, developing architectures that balance accuracy with efficiency, and 
exploring multimodal integration of UAV imagery, multispectral sensing, and IoT platforms. 
Beyond technical improvements, attention should also be directed toward practical 
implementation, including cost-effective hardware, user-friendly interfaces for farmers, and 
strategies for reducing reliance on chemical herbicides. By addressing these gaps, deep learning 
has the potential not only to improve weed detection but also to fundamentally reshape wheat 
production into a more precise, resource-efficient, and environmentally sustainable practice. 
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