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NOISIAI

eed infestation is a major constraint in wheat production, causing yield losses and
x K / higher herbicide dependence. Traditional control methods often lack precision,
highlighting the need for intelligent, sustainable solutions. Deep learning has
recently emerged as a powerful tool for automated and accurate weed detection in precision
agriculture. This review summarizes the latest advances in deep learning applied to wheat weed
identification, emphasizing model architectures, datasets, and imaging techniques. Approaches
such as YOLO variants, Faster R-CNN, U-Net, and transformer-based models have achieved
high accuracy in distinguishing wheat from diverse weed species, even under complex field
conditions. Integration of UAV imagery, multispectral sensors, and spectral indices further
enhances detection at early growth stages. Recent innovations, including attention
mechanisms, feature fusion, optimized loss functions, and lightweight designs, have improved
precision, speed, and generalization. Key challenges remain in dataset quality, class imbalance,
and cross-field applicability. This work outlines current trends, identifies gaps, and highlights
future directions for scalable and sustainable deep learning-based weed detection in wheat
agriculture.
Keywords: Weed detection, Wheat Crops, Smart farming, Artificial intelligence (Al) in
Agriculture, Convolutional Neural Networks (CNN), YOLO Architecture, UAV-Based Weed
Mapping
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Introduction:

Wheat (Triticum aestivum L.) is one of the most widely cultivated crops worldwide,
covering more than 237 million hectares annually and producing approximately 765 million
tons [1]. In Pakistan, Punjab and Sindh are the major wheat-producing regions, with Sindh
achieving slightly higher yields per hectare [2]. Wheat adapts to diverse climates, tolerating
temperatures from 3-32 °C and rainfall from 250-1700 mm. It is a staple food, consumed
globally more than rice, maize, and potatoes [3], and contributes 8.9% to agricultural value
addition and 1.6% to Pakistan’s GDP [4]. Meeting the growing food demand, especially with
Pakistan’s population projected to surpass 225 million by 2025, requires boosting wheat
production. However, weeds pose a serious threat to wheat production because they compete
with crops for vital resources like nutrients, light, and water. Moreover, weeds serve as hosts
for pests and diseases, thereby further diminishing crop productivity [5]. Studies show that
weeds, pests, and diseases together cause nearly 40% of annual global crop losses [6]. In wheat
fields specifically, uncontrolled weed infestations can result in yield losses ranging from 40%
to 50% [3]. Flowering plants (angiosperms) were traditionally classified into two groups:
monocotyledons and dicotyledons, before being combined into a unified system [7]. As wheat
belongs to the monocotyledons, broadleaf (dicotyledonous) weeds are more easily managed
with selective herbicides, whereas grassy (monocotyledonous) weeds demand the use of
specialized grass-targeting herbicides [8]. These grass weeds not only reduce yield and harvest
efficiency but also cause annual economic losses amounting to millions of dollars [9]. Without
appropriate control methods, weed damage can occasionally reach 100%, and technical failures
have been known to result in yield losses of up to 20% in wheat production even when control
measures are in place. Maintaining crop yield and minimizing financial losses requires the
implementation of efficient weed management strategies. [10]. [11] reported that inadequate
weed management in Northwestern Pakistan led to significant reductions in wheat yield. Their
findings showed that adopting reduced or zero tillage practices along with suitable herbicides
like Affinity enhanced weed control efficiency (up to 94.1%) and improved wheat productivity
compared to conventional tillage. This highlights the importance of effective weed
management strategies for sustaining wheat growth and yield.

In wheat fields, weeds are especially troublesome because, in their eatly stages of
growth, they closely resemble wheat, making hand identification difficult. [12]. Recent
advances in computer vision and machine learning have created new opportunities, with
researchers making notable progress in developing and optimizing models for weed detection
[13][14][15]. Furthermore, conventional weeding practices—mechanical, chemical, and
manual—also carry inherent drawbacks. An example is chemical weeding, where herbicides
are frequently applied uniformly across whole fields, leading to higher operational expenses
and greater environmental hazards. Although it complies with sustainable farming techniques,
mechanical weeding is not effective, time-consuming, and risky of causing damage to crops.
[16]. Scholars have considered sophisticated methods such as deep learning and machine
vision for automated weed detection to address such limitations. Deep learning (DL) is an
aspect of machine learning and, in turn, artificial intelligence. Neural networks (NN) would be
applied in deep learning applications to detect objects in images or classify images. [17]. Deep
learning classification methods have been widely applied in fields like pattern recognition and
computer vision. [18].

Nowadays, various farming practices enhance the precision of weed detection through
cameras, drones, and deep learning techniques. High-end machine learning models,
particularly Convolutional Neural Networks (CNNs) and object detection systems such as
YOLO, have demonstrated promise in effectively determining the distinction between wheat
and other weeds. Those advanced imaging technologies, such as 3D, spectral, and thermal
sensors, contribute to higher accuracies of detection, though their potential in large-scale
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applications related to agriculture is limited due to their high costs and requirements for
controlled environments. [19]. This highlights the need for affordable, adaptable solutions that
can perform effectively across diverse outdoor environments. A deep learning-based approach
to tackle issues of weed detection has been proposed in this study.

The research is concerned with the creation of an effective and dependable solution
based on the use of image data and robust machine learning practices to increase the
effectiveness of the weed identification and eradication processes. Recent advances in
computer vision and deep learning (DL) offer potential solutions. Deep learning, a subset of
machine learning, uses neural networks to classify and detect objects in images [17]. DL
methods, especially Convolutional Neural Networks (CNNs) and object detection systems like
YOLO, have shown high accuracy in distinguishing wheat from weeds [13][14]. Advanced
imaging technologies such as spectral, 3D, and thermal sensors further improve detection
accuracy but remain costly and impractical for large-scale field use [19]. Thus, there is a clear
technology gap: while precision tools exist, they are either too expensive or impractical for
widespread adoption. This study addresses that gap by proposing a deep learning-based,
image-driven approach for effective and reliable weed detection, aimed at improving both

efficiency and sustainability in wheat production.
Weed Detection in Wheat Fields
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Figure 1. Visual representation of weed distribution within a wheat field during field
monitoring. (author’s own illustration)

Obijectives:
The main objectives of this study are:
To review and synthesize recent deep learning approaches applied to weed detection in wheat
fields.
To categorize and compare commonly used models, including YOLO variants, CNN-based
classifiers, segmentation networks, transformer-based hybrids, and multimodal techniques.
To examine the role of imaging methods such as UAV-based sensing,
multispectral/hyperspectral imaging, and mobile-based systems in enhancing weed detection.
To identify research gaps and limitations, particularly related to dataset diversity, weed—wheat
similarity, occlusion challenges, and computational constraints.
To highlight future directions for developing lightweight, robust, and scalable AlI-powered
weed detection systems for precision agriculture.
Novelty Statement:

This study provides a focused and up-to-date review of deep learning-based methods
for weed detection in wheat fields. Unlike earlier surveys that broadly address precision
agriculture or general crop—weed detection, this work specifically examines the performance
of recent deep learning architectures, including CNNs, YOLO variants, segmentation
networks, and transformer-enhanced hybrids, alongside their integration with UAV and
spectral imaging systems. By combining performance comparisons with an analysis of dataset
challenges, model limitations, and deployment issues, this review uniquely bridges the gap
between academic research and practical field applications, offering a roadmap for more
intelligent and sustainable weed management in wheat agriculture.
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Literature Review:
Introduction to Weed Detection Challenges:

Weed infestation poses a major challenge to wheat production, causing yield losses,
increasing competition for resources, and raising dependence on herbicides. Traditional
control methods, such as blanket herbicide application, are both expensive and associated with
environmental contamination and the development of herbicide resistance. These challenges
underscore the urgent need for sustainable, precise, and automated approaches to weed
management. Recent advances in artificial intelligence (AI) and deep learning (DL) have
opened new opportunities for site-specific, real-time weed detection. By enabling accurate
crop—weed differentiation, these technologies support precision agriculture practices such as
monitoring, mapping, and automated spraying. Current research emphasizes object detection
frameworks like YOLO, pixel-level segmentation, multi-modal fusion, UAV-based imaging,
and hyperspectral sensing, alongside efforts in dataset development and integrated spraying
systems. Together, these innovations aim to make weed management more efficient, scalable,
and environmentally friendly.

YOLO-Based Detection Models:

YOLO architectures have dominated wheat weed detection because of their balance
of speed and accuracy. [20] tested YOLOvV3 to YOLOVS5 variants for early detection of
Papaver rhoeas in wheat fields, finding YOLOV5 the most effective (mAP 76.2%, F1-score
75.3%). Similarly, [21] applied YOLOvV5 to UAV images across 185 wheat fields in Turkey,
covering five phenological stages of charlock mustard, creeping thistle, and forking larkspur.
YOLOV5s achieved a peak precision of 0.96 for thistle during vegetative stages, but its
performance declined at fruiting stages, highlighting the challenges of late-stage detection. To
overcome issues such as occlusion and small-weed recognition, researchers have developed
enhanced YOLO variants. [22] proposed CSCW-YOLOvV7 with CARAFE upsampling, SE
attention, a Contextual Transformer, and Wise IoU loss, achieving 97.7% accuracy and 94.4%
mAP on a five-weed dataset. [23] By integrating MobileViTv3 for global-local feature
extraction, BiFPN for multi-scale fusion, and a new MPDIOU loss function, the model
achieved 92.7% accuracy, with precision, recall, and mAP values improving by nearly 10%
over baseline YOLOvVS8s. These enhancements are architecture-dependent, as they result from
changes in feature extraction, feature fusion, and loss optimization rather than dataset-specific
factors. Compared with YOLOvV5-based approaches, YOLOv8-MBM showed superior
accuracy on single-weed detection, but its limited evaluation on only Artemisia reduced its
generalizability. In contrast, other models, such as YOLOv5s (used by [21]), remained more
versatile across multiple weed species and growth stages. Thus, while YOLOv8-MBM
advanced performance, it traded generality for precision in a narrower setting. [24] introduced
PMDNet, an improved YOLOvS8-based model for weed detection in wheat fields. By
integrating PKINet for multi-scale feature extraction, MSFPN for enhanced feature fusion,
and DyHead for adaptive detection, PMDNet achieved notable improvements, raising
mAP@0.5 to 85.8% and mAP@0.50:0.95 to 69.6%, with a precision of 94.5%. It
outperformed Faster R-CNN, RetinaNet, and RT-DETR-L, while maintaining 87.7 FPS in
real-time tests. However, compared to lighter models such as the YOLOv5s spraying system
[25], PMDNet demanded higher computational power, limiting its suitability for embedded or
mobile deployment. While its accuracy and speed were strong, its regional dataset and difficulty
with very small weeds restricted scalability across diverse field conditions. This highlights a
trade-off between PMDNet’s high precision and the lightweight efficiency needed for farmer-
ready solutions. [25] integrated a lightweight YOLOv5s model with a hysteresis control
algorithm for precision spraying, reducing GFLOPs by 52.2% and achieving spraying
accuracies of 99.8%—95.7% across field speeds. These efforts highlight the continued
evolution of YOLO models toward real-time, scalable, and field-ready detection and control.
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Collectlvely, these studies demonstrate YOLO’s dominance while highlighting ongoing
refinements for robustness in complex field conditions.

Table 1 presents YOLO-based weed detection methods in wheat fields. [26] enhanced
YOLOV8 using MobileViTv3 and BiFPN to achieve higher accuracy; however, their
evaluation was limited to Artemisia. The performance gains were architecture-dependent, as
they came from changes in feature extraction (MobileViTv3), feature fusion (BiFPN), and loss
optimization (MPDIOU), not from dataset-related factors. [24] introduced PMDNet,
achieving top precision and speed, but limited by heavy computation and regional data. [25]
integrated a lightweight YOLOv5s into a spraying system, ensuring high accuracy, though
performance dropped at higher speeds. [21] applied YOLOv5s on UAV imagery, effective in
early stages but less accurate at fruiting. Overall, the table shows a clear shift from YOLOv5
to YOLOV8-based models, improving accuracy and real-time applicability but still facing limits
in weed diversity and scalability. In comparative terms, YOLOv8-based variants such as MBM
and PMDNet demonstrate higher detection accuracy, particularly for small or occluded weeds,
while YOLOV5 remains more lightweight and better suited for real-time field spraying. This
contrast highlights the trade-off between accuracy and deployability, an issue that future
research must address.

CNN and Two-Stage Models:

While YOLO dominates, CNNs and two-stage detectors remain valuable. [27] Applied
ResNet50 on mobile devices in Indian wheat fields, achieving a validation accuracy of 93.25%
across five weed types, showing the feasibility of farmer-accessible tools. [28] compared
PyTorch and TensorFlow on 6,000 wheat field images, reporting that PyTorch was faster (9.43
ms per image) and more accurate, with weed removal accuracy ranging from 0.89 to 0.91,
though performance was constrained by limited weed diversity. Additionally, two-stage
models such as Faster R-CNN have demonstrated strong effectiveness. [29] Applied an
enhanced Faster R-CNN with transfer learning and preprocessing, which outperformed
baseline models under MS COCO evaluation metrics. Although the exact accuracy value was
not reported in the summary, the study demonstrated improved detection rates in complex
wheat field conditions. However, computational cost and lack of hardware integration
restricted real-world deployment. While CNNs and two-stage models offer strong
classification performance, their slower inference speed makes them more suitable for offline
analysis or mobile-specific applications.

Segmentation and Pixel-Level Approaches:

Segmentation-based models provide pixel-level precision for canopy mapping. [30]
evaluated U-Net, DeepLabV3, and PSPNet on UAV images at wheat jointing and booting
stages. PSPNet achieved the best accuracy (80%), outperforming U-Net (75%) and DLV3
(56.5%). While effective for canopy distribution and quantifying weed pressure, these models
struggled with fine species differentiation—U-Net underclassified minor weeds, while PSPNet
blended overlapping classes. Segmentation thus excels at canopy-scale analysis but is less
suited for species-specific detection.
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Table 1. YOLO-Based Wheat Weed Detection Studies

Study Model/Variant Dataset (images/species) Key Features Performance
[20] YOLOV3— Field images of Papaver thoeas | Early-stage, high- mAP 76.2%, F1 75.3%
YOLOV5 precision, UAV +
YOLOV5s best ground images
[21] YOLOV5s Charlock mustard, creeping UAV dataset: 185 Mean precision 0.86; best precision
thistle, forking larkspur fields, 145,792 objects, | 0.96 (seedling—vegetative stages);
15 growth-stage lower at the fruiting stage
scenarios
[22] CSCW-YOLOv7 5 weed species CARAFE upsampling, | Accuracy 97.7%, mAP 94.4%
SE attention, CoT,
WiloU loss
[23] YOLOv8-MBM Artemisia (single weed) MobileViTv3, BiFPN, | Precision 93.2%
MPDIOU
[24] PMDNet 5,967 images / 8 weeds PKINet, MSFPN, Precision 94.5%, 87 FPS
(YOLOv8-based) DyHead
[25] YOLOvV5s Tillering-stage wheat Hysteresis algorithm, GFLOPs |52.2%, mAP 91.4%,
(lightweight) + solenoid valve control | spraying 99.8-95.7%
hysteresis control
algorithm
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UAV-Based Imaging and Field Monitoring:

UAVs provide a scalable solution for weed monitoring across large fields. [20]
integrated UAV imagery with DeeplabV3+, achieving detection precision of 91.27% in
scattered fields and 87.51% in drilled fields. Beyond weed detection, [26] also quantified weed-
induced yield losses of up to 60% under heavy infestations. However, weeds at the regrowth
stage were challenging to distinguish due to occlusion, while the use of high-resolution
hyperspectral sensors substantially increased costs. Similarly, [21] used UAV imagery across
multiple growth stages, though reliance on 2D RGB limited late-stage accuracy. UAV-based
systems thus provide valuable spatial variability insights but face trade-offs in cost, resolution,
and annotation effort.

Hyperspectral and Multispectral Imaging:

Spectral imaging expands detection by capturing reflectance differences. [31] applied
hyperspectral data and ML classifiers (PLS-DA, SVM, MLP) to ryegrass and clover pastures,
with MLP achieving 89.1% accuracy after SNV preprocessing. [32] used UAV multispectral
imagery to identify Italian ryegrass in wheat, achieving >70% accuracy, with NIR bands most
effective. [33] combined multispectral sensing with CNN and transformer models for
blackgrass detection in Europe, approaching 90% accuracy on previously unseen field images.
Despite the promise, these methods remain limited by sensor cost, dataset transferability, and
scalability under field variability.

Transformer and Attention-Based Enhancements:

Attention mechanisms and transformers are increasingly integrated into detection
pipelines. [22]’s CSCW-YOLOv7 included SE and CoT modules, while [23]’s YOLOv8-MBM
embedded MobileViTv3 for global attention. These hybrid CNN-transformer designs
improved recognition of small, overlapping, and morphologically similar weeds, reflecting a
shift toward architectures that balance local detail with contextual awareness.

Dataset Contributions:

High-quality datasets are essential for training robust models. [34] released Weed25, a
dataset of 14,035 images across 25 species, achieving over 92% accuracy with YOLOV5. [24]
curated 5,967 images of eight weed species for PMDNet. Despite these efforts, many datasets
remain limited in species diversity, geographic coverage, and phenological stages, restricting
model generalization.

Multi-Modal Fusion Techniques:

Integrating multiple data modalities improves discrimination between visually similar
weeds. [35] combined RGB and depth image features with AdaBoost, achieving 88% accuracy
at the tillering stage (0.2 s processing) and 81.1% at the jointing stage (0.69 s). This approach
surpassed RGB-only detection but remained limited by segmentation errors, occlusion, and
noisy depth data in low-light settings. To address these issues, [35] introduced a three-branch
CNN framework that independently processes RGB and depth inputs before fusing them at
the decision stage. Depth images are converted into an RGB-like three-channel format for
CNN feature extraction, and multi-scale feature fusion enhances model robustness.

The model reached a mean average precision of 36.1% for grass weeds, 42.9% for
broadleaf weeds, and an IoG accuracy of 89.3%, with fusion weights of 0.4 (RGB) and 0.3
(depth). Despite surpassing RGB-only methods, challenges remained, including manual weight
tuning, high computational load, and occlusion from overlapping leaves. Future work
emphasized automated weight optimization, model compression, and multi-perspective
imaging to improve precision and efficiency.

Hybrid ML-DL Frameworks:

Combining ML and DL enhances classification accuracy. [36] Extract statistical
features (Hu moments, entropy, GLCM) for ML classifiers such as SVM and ANN, while DL
models (VGG16, DenseNet, ConvNeXtBase) provide feature learning. YOLOv8m is applied
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for detection before classification. SVM achieves 99.5% accuracy on the Early Crop—Weed
dataset, while ConvNeXtBase combined with Random Forest achieves 98% on other datasets.

Despite high accuracy, reliance on SMOTE balancing and sensitivity to lighting limits field
readiness. This hybrid design illustrates the complementary strengths of ML and DL in
addressing complex crop—weed detection scenarios.

Low-Cost and Embedded Systems:

To enhance accessibility, researchers have investigated the use of low-cost hardware
for weed detection. [37] implemented CNN-based detection and spraying on Raspberry Pi,
enabling real-time control but restricted to only two weed species. While embedded solutions
help reduce costs, they face challenges of scalability and limited computational capacity,
underscoring the need for lightweight yet versatile models.

Spraying and Actuation Systems:

The integration of detection and spraying is essential for effective site-specific
management. [25] integrated a lightweight YOLOv5s with a hysteresis control algorithm,
achieving a 52% reduction in GFLOPs and a 42% decrease in model size. The system achieved
a mAP of 91.4% and an Fl-score of 85.3%, with spraying rates of 99.8%, 98.2%, and 95.7%
at speeds of 0.3, 0.5, and 0.6 m/s, respectively. However, petformance declined at higher
speeds due to velocity feedback limitations. These results demonstrate the feasibility of
coupling lightweight DI. models with actuation systems for precise and efficient herbicide
application.

Region-Specific Weed Detection:

Several studies highlight region-specific challenges. [33] focused on blackgrass in
Europe, integrating spectral and transformer models to achieve ~90% accuracy, while [27]
built a mobile system for Indian wheat fields. These examples highlight both adaptability and
the importance of broader validation across geographies and environments.

Mobile and Farmer-Friendly Solutions:

Mobile-based platforms improve accessibility. [27]"The ResNet50 mobile app achieved
93.25% accuracy, showing potential for smallholder farmers despite limited weed coverage
and grayscale imagery constraints. Such tools represent early steps toward democratizing Al
in agriculture, bridging gaps between research and practice.

Synthesis and Research Gaps:

Across studies, YOLO-based models dominate due to their efficiency, with extensions
such as CSCW-YOLOv7, YOLOv8-MBM, and PMDNet offering improvements in accuracy
and robustness. Segmentation models are valuable for canopy mapping but face limitations in
fine species-level classification, whereas CNNs and hybrid ML-DL frameworks offer
complementary strengths. UAV-based imaging expands monitoring capabilities but remains
constrained by cost and scalability challenges. Several gaps remain unaddressed. Dataset
limitations, especially the scarcity of diverse weed species and balanced samples, restrict the
generalizability of models across regions. Detecting small, overlapping, or partially occluded
weeds continues to be problematic, especially in early growth stages. Current models often
demand high computational resources, which restricts their use in real-time, field-ready
applications. While multimodal sensing (hyperspectral, LiIDAR, depth fusion) shows promise,
practical approaches increasingly emphasize RGB imagery due to its accessibility, cost-
effectiveness, and scalability in real farming environments. Current research focuses on
developing high-resolution, diverse RGB datasets, designing lightweight yet robust
architectures, and advancing early-stage multi-species detection under real-world field
conditions. Addressing these gaps forms the foundation for intelligent, real-time, and scalable
weed detection systems in wheat fields.
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Accuracy / Precision / mAP Comparison of Weed Detection Studies
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Figure 2. Reported Accuracy of Deep Learning Models for Weed Detection in Wheat Fields
(2021-2025).

As shown in Figure 2, the reported accuracy of deep learning models for wheat weed
detection between 2021 and 2025. The Figure compares results from a wide range of
architectures, including YOLO variants (v3—v9, MBM, PMDNet), CNN-based classifiers
(ResNet, VGG, DenseNet), segmentation networks (U-Net, DeeplLabV3, PSPNet), and
transformer-integrated hybrids. Most studies consistently achieved accuracy levels above 85%,
with YOLOv7/YOLOVS and transformer-enhanced models pushing performance closer to
95% under complex field conditions. Earlier CNN approaches performed reliably but were
slower, while segmentation models excelled in canopy mapping rather than species-specific
classification. The trend shown in Figure 2 reflects the steady improvement of deep learning

techniques in balancing accuracy, real-time speed, and adaptability to field variability.
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Figure 3. Flowchart of Wheat Weed Detection Methods

Figure 3: Flowchart of Wheat Weed Detection Methods. The diagram provides an
overview of the principal strategies used in recent studies. YOLO-based detectors dominate
due to their speed and strong object-level recognition capabilities, making them suitable for
UAYV imagery and real-time spraying. CNN classifiers are widely used in mobile and low-cost
systems for species recognition, but are less efficient in real-time detection. Segmentation
methods such as U-Net, DeepLabV3, and PSPNet are effective for canopy-scale mapping and
quantifying weed pressure but struggle with fine-grained species identification. Hybrid and
multimodal techniques combine RGB imagery with depth, hyperspectral, or transformer-
based features, improving robustness under occlusion and visual similarity. As shown in Figure
3, the flowchart highlights the evolution of these methods and how each contributes
differently to precision agriculture by balancing trade-offs between accuracy, computation, and
practical deployment in real field conditions.
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Table 2. Overview of deep learning-based methods for weed detection in wheat crops.

Dataset Method Performance Limitation
Weed Detection in Wheat Crops | DL: YOLOvV3-Tiny, YOLOv4-Tiny, | YOLOv5l: Highest precision in | Only one weed type was used.
Using Image Analysis and AT (2023) | YOLOv5s/m/1  (TensotFlow & | PyTorch  (0.84).  YOLOv4-Tiny: | Images from one location only.
6000 RGB images of Cirsium | PyTorch);  Transfer  Learning; | Highest accuracy overall (0.97). | Might not generalize to other weeds,
arvense collected via mobile and | Preprocessing: resizing, cropping, | Inference time: 9.43 ms (YOLOv4- | crops, or weather conditions
HD  webcam, labeled, and | augmentation Tiny), 12.38 ms
preprocessed

Harnessing UAVs and DL for
Grass Weed Detection (2024)
8wheat plots: 6 infested, 2 weed-
free, UAV imaging of Grass weeds:

DeepLabV3+ (best segmentation);
NDVI, SAVI, RVIL, SVR for
biomass; ResNet-50  backbone,
Python + LabelMe for training

Weed  detection  accuracy:91.27%
(broadcast fields), 87.51% (drilled
fields). Yield loss due to weeds: up to
60%. Biomass estimation R* > (.85.

Hard to distinguish weeds during the
regrowth stage due to occlusion.
DeepLabV3+ can’t estimate the
amount of

weeds, only

Alopecurus  aequalis  (Meadow NDVI bands showed a high | presence/absence. High-resolution
foxtail), Poa annua (Annual correlation with weed biomass hyperspectral ~cameras are still
bluegrass), Biomass &  yield limited. —Mislabeling edges of
measured wheat/weed in the dataset

Deep  Learning-Based = Target | YOLOv5-SGS (improved | GFLOPs reduced by 52.2%, model | Slight drop in performance at higher

Spraying Control of weeds on wheat
field at tillering stage 2025). Wheat
fields, four weeds: Silene conoidea,
Malcolmia africana, Descurainia
sophia, Capsella bursa-pastoris;
real-time sprayer system

YOLOv5s) - Ghost Module -

GSConv - SimAM attention -
Target spraying decision algorithm -
Hysteresis  delay ~ compensation
algorithm..

size reduced by 42.4%. Accuracy: mAP
91.4%, F1 score 85.3% Spraying
accuracy: 99.8% at 0.3-0.4 m/s, 98.2%
at 0.4-0.5 m/s, 95.7% at 0.5-0.6 m/s.
Coverage rate: over 93% at slower
speeds; slightly drops at higher speeds

sprayer speeds (e.g., above 0.5 m/s).
Needs  higher-frequency  speed
teedback hardware for improved
accuracy at fast operation speeds

Weed25: A Deep Learning Dataset
for Weed Identification (2022) —
14,035 images of 25 weed species
from 14 families, annotated and
split into train/val/test sets

Object detection models: YOLOV3,
YOLOV5, Faster R-CNN; Training
with 100 epochs, batch size 4, IoU
0.5

YOLOv5  achieved  the  best
performance with a 92.4% mAP and
strong precision—recall tradeoff, while
YOLOvV3 and Faster R-CNN were
slightly lower. Still, overlapping leaves
and background interference caused
reduced accuracy for species like
crabgrass and green foxtail.

The study was limited to 25 species,
with misclassification issues arising

from background noise,
morphological  similarity among
grass weeds, and environmental

factors like lighting and leaf overlap.
Such challenges reduced accuracy
and occasionally caused false
predictions.

YOLOv8 Model for Weed
Detection in Wheat Fields Based on
a Visual Converter and Multi-Scale
Feature Fusion (2024). Custom
dataset with wheat and Artemisia
weed images.

Improved YOLOv8s-MBM:
MobileViTv3 (backbone), BiFPN
(feature fusion), MPDIoU (loss
function); Grad-CAM for visual
interpretation

Precision: 92.7%- Recall: 87.6%-
mAP@0.5 (mAP1): 89.7%-
mAP@0.5-0.95 (mAP2): 85.2%- FPS
(speed): 35.5- Outperforms YOLOv3—
YOLOV9 and Fast R-CNN models.

Only one weed species was used
(Artemisia)- Limited weed diversity
and growth stages- Detection
performance drops slightly for
occluded or very small weeds.
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Examining Deep Learning Pixel-
Based Classification Algorithms for
Mapping Weed Canopy Cover in
Wheat Production Using Drone

Data (2025). Drone-based
multispectral images at 4 wheat
growth stages (Mayweed,
Speedwell,  Hairy  Buttercup,

Common Vetch, others); 2012 &
2205 training polygons

Deep Learning: U-Net, DeepLabV3
(DLV3), PSPNet (all using ResNet34
backbone)

PSPNet: 80% accuracy (best overall) -
U-Net: 75% accuracy (best
generalization) - DLV3: 56.5%
accuracy (best precision for species-
specific weeds)

DLV3 struggled with
underclassification and fine detail
detection - PSPNet tended to blend
weed classes - U-Net underclassified
some less dominant weeds

Weed Detection and Recognition in
Complex Wheat Fields Based on an
Improved YOLOv7 (2024) 2,614
field images from Henan, China; 5
weed species (Descurainia sophia,
Thistle, Golden saxifrage,
Shepherd’s purse, Artemisia argyi*)

YOLOV7 enhanced using CARAFE,
SE, CoT, and WloUv3, then trained
on an 80/20 split with validation
from the training set.

Precision: 97.7%- Recall: 98%- mAP:
94.4%- Reduced parameters by 10.7%-
Lower FLOPs by 10%- Outperformed
YOLOv5m, YOLOvV7, Faster RCNN

Model limited to 5 weed species- A.
argyl detection less accurate due to

fewer samples- Background
occlusion caused some false
positives  (e.g., wheat leaves
misidentified as thistle)- High

similarity between wheat and some
weeds caused detection errors.

PMDNet: An Improved Object
Detection Model for Wheat Field
Weed (2025) 5,967 wheat field
images; 8 weed species (Artemisia
capillaris, Agropyron cristatum,
Chenopodium  album,  Bassia
scoparia, Cirsium arvense, Kali
collinum, Raphanus raphanistrum,
Thermopsis lanceolata)

YOLOvS8-based PMDNet: PKINet
(multi-scale  backbone), MSFPN
(feature fusion), DyHead (attention
head); data augmentation; ablation
studies

mAP@0.5 1 from 83.6% to 85.8%.
mAP@0.5:0.95 1 from 65.7% to
69.6%. Precision: 94.5%. Speed: 87.7
FPS. Outperformed YOLOV5n,
YOLOvV10n, Faster-RCNN, RetinaNet

Heavy model—not suitable for low-
power devices. The dataset is from a
single region. It struggles with
thin/small weeds. Limited weed
species coverage

Identification of Weeds in Wheat

ResNet-50 CNN  with transfer

Accuracy: 93.25%- Precision: 92.79%-

Only five weed species were used.

Crop Using Artificial Intelligence | learning; Fine-tuning on image | Recall: 93.10%- F1-score: 92.90% Not generalized to other crops.
Techniques (2023) Collected 1,869 | preprocessing; deployed on an No testing under complex field
weed images from ICAR-IARI | Android mobile app. conditions or multiple locations.
wheat  fields of 5  weeds Grayscale input may limit colot-
(Chenopodium album, Coronopus based detection precision.

didymus, Convolvulus arvensis,

Malva neglecta, Medicago

polymorpha)

Identification and Classification | Image  dataset creation (web | AP: 91.64%, AR: 75.87%, real-time: | Only software-level; no hardware
Model of Wheat and Weed Based | scraping), augmentation (RGB | 0.44s/image, better than VGG16 & | (IoT) deployment yet due to time

on Improved Faster R-CNN (2024)

patching, flipping, blurring), model

MobileNetV2

and budget constraints
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Dataset of wheat + 5 weed types
(e.g., Setaria viridis, Echinochloa
crus-galli); images collected via web
scraping and augmented (RGB
patching, flipping, blurring)

training using ResNet-50+FPN as
backbone in Faster R-CNN, transfer
learning

Revolutionizing Agriculture: | Manual & deep feature extraction: | ANN: 89.26% (CottonWeedlD15). | Datasets are unbalanced. Detection
Machine and Deep Learning | GLCM, LBP, Hu moments, | SVM (poly kernel): 99% (Early-Crop- | is difficult due to similar weed-crop
Solutions  for Enhanced Crop | statistical features; Deep: VGG16, | Weed). ConvNeXt + RFE: 98% (Early- | texture and lighting conditions. Need
Quality and Weed Control (2024) — | VGG19, Xception, DenseNet, | Crop-Weed), 89% | for more real-time capable models
Two datasets: Early-Crop-Weed | ConvNeXt  (transfer  learning); | (CottonWeedID15). YOLOv8-M: | and larger datasets.

(Black Nightshade, Velvetleaf) and | Object  detection: ~YOLOv8-M; | mAP 89%

CottonWeedID15 (15  species, | Classification via ANN, SVM,

including Carpetweed, Crabgrass, | Random Forest

Goosegrass, = Morning  Glory,

others); images annotated and class-

balanced via SMOTE

Multi-Modal Deep Learning for | RGB-D image fusion, PHA image | mAP: 42.9% (broad-leaf), 36.1% | Manual weight tuning in ensemble

Weeds Detection in Wheat Field
Based on RGB-D Images (2021) —
1,228 field images captured with an
RGB-D camera; Broad-leaf weeds:
Amaranthus retroflexus, Capsella
bursa-pastoris;  Grass ~ weeds:
Alopecurus aequalis, Poa annua,
Bromus japonicus, Echinochloa
crusgalli; images manually labeled
and augmented

recoding; Faster R-CNN with
VGG16 backbone; multiscale object
detection; ensemble learning

(grass); 1oG: 89.3%; PHA improved
detection 1.35X over depth

learning; high computational load;
occlusion from overlapping leave

Early and On-Ground Image-Based
Detection of Poppy (Papaver
rhoeas) in Wheat Using YOLO
Architectures (2022) — On-ground
RGB images of wheat fields;
annotated for early-stage P. rhoeas
detection (BBCH 12-14)

Six YOLO models (YOLOV3,
YOLOv4-P5, YOLOvV4-CSP,
YOLOvV5s, YOLOv5m, YOLOVS5])
image cropping and preprocessing

YOLOv5s performed best Fl-score:
75.3%, mAP@0.5: 76.2%, accuracy:
77%; Fastest inference (83 FPS GPU,
7 FPS CPU

Small weed size caused information
loss when resizing; Only RGB
images were used (no multispectral);
YOLOvV4-P7 and P9 were not tested
due to memory limits.

Evaluation of Weed Infestations in
Row Crops Using Aerial RGB
Imaging and Deep Learning (2025)
— UAV-based RGB images over
maize fields; annotated ROI; 10

UAV imaging; DeeplabV3 with
ResNet/DenseNet/ VGG
backbones;  ArcGIS  pixel-based
classification

ResNet-34 performed best (Precision,
Recall, F1: 0.986); classified 4.1% of
area as weed-infested; model robust
against shadow interference

limited to RGB imaging (spectral
limitations), not generalized to other
crops/weeds, small scattered weeds
not detected, not integrated into real-
time farming workflows
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backbone models for DeepLabV3
training; weeds: Chenopodium
album, Cirsium arvense, Polygonum
aviculare, Sorghum halepense

Deep Learning for Image-Based
Detection  of  Weeds  from
Emergence to Maturity in Wheat
Fields (2024) — Drone-based RGB
images of 185 fields; 145,792
annotated weed instances; 5 growth
stages (seedling to fruiting); weeds:
Chatlock mustard, Creeping thistle,
Forking larkspur )

YOLOvV5 (nano, small, medium,
large, xlarge); trained 80/20 split;
evaluated using precision, recall, F1,

AUC

YOLOv5s gave the best results: up to
96% precision in early stages; worst for
FL at fruiting (0.45); YOLOv5n
performed  worst  (21%  lower
precision); strong correlation across

metrics (R* = 0.95)

YOLOv5s-based weed detection
was limited by 2D RGB imagery and
a single model, with reduced
accuracy at later growth stages,
suggesting  future improvements
through 3D tools, advanced sensors,
and newer deep learning models.

Multi-Modal Deep Learning for
Weeds Detection in Wheat Field
Based on RGB-D Images (2021)
Dataset: 1,228 RGB-D images (field
experiment);  broadleaf  weeds
(Amaranthus retroflexus, Capsella
bursa-pastoris) and grass weeds
(Alopecurus aequalis, Poa annua,
Bromus japonicus, Echinochloa
crusgalli); manually labeled and
augmented.

Method: RGB-D image fusion; PHA
image recoding; Faster R-CNN with
VGG16 backbone; multiscale object
detection; ensemble learning

mAP:  42.9%  (broad-leaf), 36.1%
(grass); IoG: 89.3%; PHA improved
detection 1.35% over depth

Manual weight tuning in ensemble
learning; high computational load;
occlusion from overlapping leaves

Multispectral Fine-Grained
Classification of Blackgrass in
Wheat and Batley Crops (2024)

Dataset: 15,929  multispectral
images (RGB + NIR + Red Edge)
from 51 wheat and batley fields;

Method: Deep learning classifiers —
ResNet-50, EfficientNet-B4, Swin
Transformer B; evaluated across
spectral band combinations and
dataset sizes.

Swin B achieved the best accuracy:
87.7%, followed by ResNet-50 (87.3%)
and EfficientNet B4 (83.0%). The NIR
band was most effective. Performance
plateaued after 6,000 training images.
Barley is harder to classify than wheat.

Should focus on expanding barley
image data, optimizing spectral band
selection, and developing more
robust, generalizable models,
possibly integrating temporal crop
stage features for improved

dataset  split by field for detection across growth stages.
generalization testing. Target weed:

Alopecurus myosuroides

(Blackgrass).

Identification of Weeds Based on ] . . MLP with Sp data gave the best results

Hyperspectral Imaging and Method: Machine learning models (up to 90% accuracy); well (70-100%);

Machine Learning (2021)
Dataset: 120 hyperspectral samples
(greenhouse-grown weeds); grass

(PLS-DA, SVM, MLP) with SNV
preprocessing; compared pixel-level
vs. superpixel spectra.

specific spectral regions identified
(550-750,  995-1,005, 1,110-1,220,
1,380-1,470 nm)

Pixel-level classification had lower
accuracy; manual patch selection in
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weeds (Setaria pumila, Wind grass),
broadleaf weeds (Ranunculus actis,
Carduus  tenuiflorus);  spectral
segmentation via thresholding and
superpixel.

Sp segmentation was limited to four
weed species.

Deep Learning-Based Decision
Support  System  for  Weeds
Detection in Wheat Fields (2022)

Dataset: 1,318 real RGB images
captured in wheat fields (Nikon
D7000) under varying lighting;
weeds: Convolvulus arvensis (dicot)
and Phalaris paradoxa (monocot).

Method: YOLOV5 object detection
with CNN backbone (CSP, FPN,
PAN); augmentation (flip, crop,
exposure); GloU loss; deployed on
Raspberry Pi.

Precision:  83%-  Recall:  93%-
mAP@0.5: 94.4%- Accurate real-time
detection- Efficient localized spraying

Only two weed species included-
Model may need reprogramming for
more weed types- Raspberry Pi may
limit scalability for larger farms

Remote Sensing for Italian Ryegrass
Detection in Winter Wheat (2021)
Dataset: Field experiments (2016—
2017, two sites); UAV-based
multispectral imagery (5-band) of
winter wheat fields; simulated weed
densities with herbicide variations;
target weed: Lolium perenne ssp.
multiflorum (Italian ryegrass).

Method: UAV imaging; supervised
classification;  NIR  reflectance
analysis; compared across dates and
altitudes.

Supervised  classification  achieved
>70% accuracy; NIR band showed
strong differentiation across densities,
altitudes, and dates

Inconsistent  lighting  conditions
between dates made unsupervised
classification unreliable; reflectance
values varied too much to be reused
across dates

Input Data
(LAY | Mobile | Grownd)

Preprocessing Model Selection
natation, Augmentation h HN | YOLO | Segmentatio

Evaluation

L (mAP, Accuracy, F1)

—p

—»

IDepleyment
(Fiesd | Sprayer)

Figure 4. Conceptual Flowchart of Deep Learning-Based Weed Detection Pipeline in Wheat Fields
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As shown in Figure 4, the flowchart illustrates the typical research pipeline adopted in
recent studies on deep learning—based weed detection in wheat. The process begins with input
data collection using UAVs, ground cameras, or mobile devices. The acquired images undergo
preprocessing steps such as annotation, augmentation, and normalization to prepare training
datasets. Next, an appropriate model architecture (e.g., CNNs, YOLO variants, or
segmentation networks) is selected and optimized. The chosen model is then subjected to
training and validation to learn discriminative features for crop—weed differentiation.
Performance is assessed during the evaluation stage using metrics such as accuracy, mean
Average Precision (mAP), and Fl-score. Finally, successful models are integrated into
deployment systems, including UAV-based monitoring, field robots, or precision sprayers, for
real-time weed management in precision agriculture.

Challenges and Prospects for AI-Powered Weed Detection in Wheat Fields:

Although deep learning has greatly advanced automated weed detection, several
persistent challenges still limit large-scale adoption in wheat production. A key difficulty lies
in the high visual similarity between wheat and certain weeds, particularly during early growth
stages, which leads to frequent misclassification. Dataset limitations remain another major
bottleneck, as many studies rely on region-specific or imbalanced collections that reduce
generalizability across diverse environments and weed species. Environmental variability—
including differences in illumination, soil texture, crop density, and seasonal changes—further
degrades model robustness. Detecting small, overlapping, or partially occluded weeds
continues to pose difficulties, even for state-of-the-art models. Moreover, many deep
architectures demand heavy computational resources, which constrain their practical
deployment for real-time applications in wheat fields.

Looking forward, progress will depend on a multipronged strategy. Incorporating
multiple weed categories into the dataset will enhance training and support more accurate
classification. The development of lightweight yet accurate deep learning architectures is
essential to enable real-time detection on resource-constrained devices such as UAVs, mobile
platforms, and smart sprayers. Enhancing robustness under complex environmental
conditions, together with optimizing early detection of weeds, will further strengthen field-
ready systems. Collectively, these advances will enable robust, efficient, and sustainable Al-
driven weed detection systems, contributing to higher wheat yields and supporting cost-
effective and environmentally responsible farming practices.

Conclusion:

This review highlights the rapid evolution of deep learning approaches for weed
detection in wheat fields, shifting from conventional image-based approaches to highly
efficient models capable of operating under complex field conditions. These developments
highlight the transformative role of deep learning in precision agriculture, where accurate weed
identification is central to reducing herbicide use, preserving crop yield, and supporting
sustainable farming. Despite impressive detection accuracies reported across many studies,
several barriers remain before large-scale deployment can be realized. Current research is still
constrained by the limited availability of diverse and openly accessible datasets, challenges in
detecting small or occluded weeds, and the computational burden of running advanced models
on lightweight devices suitable for field applications. Future progress will depend on open and
standardized datasets, developing architectures that balance accuracy with efficiency, and
exploring multimodal integration of UAV imagery, multispectral sensing, and IoT platforms.
Beyond technical improvements, attention should also be directed toward practical
implementation, including cost-effective hardware, user-friendly interfaces for farmers, and
strategies for reducing reliance on chemical herbicides. By addressing these gaps, deep learning
has the potential not only to improve weed detection but also to fundamentally reshape wheat
production into a more precise, resource-efficient, and environmentally sustainable practice.
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