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omato leaf diseases significantly impact agricultural productivity worldwide, 
necessitating accurate and timely detection methods. This research proposes a robust 
and efficient deep learning framework leveraging the “EfficientNetB0” architecture for 

the detection and classification of multiple tomato leaf diseases. Utilizing transfer learning 
alongside advanced data augmentation techniques, the model was trained on a comprehensive 
dataset comprising six disease categories and healthy samples, sourced from Kaggle. The 
proposed approach achieved an overall accuracy of 88.4%, outperforming traditional methods 
such as CNN, AlexNet, and S-V-M by a notable margin across all disease classes. Evaluation 
metrics, including precision, recall, and F1-score, further validate the model’s ability to 
accurately distinguish subtle disease symptoms despite class imbalance challenges. 
Additionally, the lightweight design of “EfficientNetB0” enables potential real-time 
applications in mobile and edge computing environments. These findings highlight the 
model’s promise as an effective tool for precision agriculture, facilitating early disease 
intervention and reducing crop loss. Future work will focus on expanding the dataset diversity 
and deploying the system in real-world agricultural settings through mobile and drone 
platforms. 
Keywords: Efficient NetB0; Deep Learning; Tomato Plant Diseases; Image Classification; 
Transfer Learning 
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Introduction: 
Tomato crops are subject to numerous leaf diseases caused by fungi, bacteria, and 

viruses such as Early Blight, Leaf Mold, Septoria Leaf Spot, Bacterial Spot, and Yellow Leaf 
Curl Virus [1][2] Infections lead to symptoms such as leaf spots, yellowing, curling, and wilting 
and render the plant less capable of photosynthesis and vigor [3]. Unless controlled, diseases 
are able to spread widely over fields, cutting down fruit quantity and quality and creating large 
economic losses for producers[1][2][3]. Climatic factors—such as increased humidity, 
temperature variations, and rainfall—also promote disease growth and swift spread [4]. Due 
to the presence of tomatoes being cultivated and consumed worldwide for their nutritional 
and economic value, crop protection is of the essence[5]. Unfortunately, symptoms are often 
slight or hard to spot with the naked eye at the early stages of infection, making timely 
diagnosis challenging[6]. This covert development allows infections to spread before control 
is achieved, escalating damage and making control measure strategies difficult [7]. Accordingly, 
strong and precise early detection tools are required urgently in order to enable efficient 
control of diseases and ensure food security protection [8][9][10]. 

 
Figure 1. Different Tomato plants 

The conventional plant disease identification relies on human observation in the field 
through surveys of experts [11]. Though effective in small fields with a small number of 
experts, it is not feasible in large plantations with scarce expert presence and long turnaround 
time [12]. It is labor-intensive and time-dependent and susceptible to human error or personal 
bias, particularly in remote areas with poor infrastructure [13]. Moreover, most tomato diseases 
are difficult even for educated individuals to distinguish with certainty because their 
appearances are similar and often confusable with one another [14]. This direct observation 
dependency leads to less consistency in diagnosis and causes delay in action, so there is a 
heightened threat of crop injury [15]. These considerations call for automated, scalable, and 
accurate substitutes for conventional plant disease identification methods [16]. 

Most recent advances in artificial intelligence (AI), and in particular in deep learning, 
have transformed plant disease diagnosis based on images [17]. Convolutional Neural 
Networks (CNNs) are capable of automatically learning hierarchical features directly from raw 
images without human-engineered feature selection and achieving strong performance with 
different agricultural datasets [18]. Owing to those achievements, in our paper, we propose an 
automatic detection and multi-class classification system with a lightweight and high-
performance architecture of EfficientNetB0 for tomato leaf diseases [19]. 

Machine learning approaches have emerged as promising tools for automating plant 
disease detection by analyzing leaf images. Algorithms such as Support Vector Machines 
(SVM), Random Forests, and K-Nearest Neighbors (KNN) have been applied to classify 
disease types based on handcrafted features extracted from leaf images, such as texture, color, 
and shape [20]. These methods improve diagnostic accuracy and reduce human effort. 
However, their performance often depends on the quality and selection of features, which 
requires domain expertise and may not generalize well across diverse datasets or complex 



                            International Journal of Innovations in Science & Technology 

September 2025|Vol 07 | Issue 03                                                                Page |2214 

disease symptoms [21]. Despite these limitations, machine learning has laid the foundation for 
more advanced automated disease detection systems [20][21][22]. 

Deep learning, particularly Convolutional Neural Networks (CNNs), has 
revolutionized image-based disease diagnosis by automatically learning hierarchical features 
from raw images without the need for manual feature extraction [23]. CNN architectures such 
as AlexNet, VGG, ResNet, and EfficientNet have been successfully employed to classify 
various plant diseases with high accuracy and robustness [19][23]. These models can handle 
large datasets, learn subtle patterns, and adapt to variations in lighting, angle, and background 
noise. Deep learning enables near real-time disease monitoring and is increasingly integrated 
into mobile and edge devices for in-field diagnostics, offering scalable and efficient solutions 
that outperform traditional machine learning techniques [24]. 

The current study proposes a novel deep learning framework based on the 
EfficientNetB0 architecture for accurate detection and classification of tomato leaf diseases. 
Leveraging transfer learning and advanced data augmentation, our model outperforms 
traditional CNNs and classical machine learning models across multiple disease categories. 
Key contributions include: 

Implementation of EfficientNetB0 for lightweight yet highly accurate tomato disease 
classification, achieving the best accuracy. 

Comprehensive preprocessing and augmentation pipeline to address class imbalance 
and enhance model generalization under varying environmental conditions. 

Comparative analysis demonstrating superior performance against baseline models 
(CNN, AlexNet, SVM), highlighting potential for real-time, scalable agricultural disease 
diagnostics. 
Related Work: 

Author [25] proposed a CNN-based deep learning approach to address early plant leaf 
disease detection, achieving an accuracy of 86.21%, demonstrating its effectiveness in real-
time plant disease identification. Moreover, it presents a step forward in data-driven, 
sustainable farming practices. Overall, the study provides a practical solution to long-standing 
agricultural challenges. 

Author [26] proposed that tomato, being one of the most consumed crops globally 
and ranking third in cultivation after potato and sweet potato, holds great agricultural and 
economic significance. India stands as the second-largest producer of tomatoes worldwide. 
To detect and classify tomato leaf diseases, the study applied a Convolutional Neural Network 
(CNN) consisting of 3 convolutional layers, 3 max pooling layers, and 2 fully connected layers. 
The author reported that the classification accuracy of the proposed model varied from 76% 
to 100% depending on the disease class, with an average accuracy of 91.2% across nine disease 
categories and one healthy class. 

In the study, the author [27] proposed a deep learning-based approach for tomato leaf 
disease detection by employing Convolutional Neural Networks (CNNs), specifically 
leveraging both AlexNet and VGG-16 architectures. The CNN-based models demonstrated 
superior classification accuracy, with the modified AlexNet achieving the highest accuracy of 
84.8%, outperforming the standard CNN and SVM models in certain disease classes. To 
enhance generalization and training performance, the researchers incorporated data 
augmentation, dropout, and normalization techniques. A thorough performance evaluation 
using confusion matrices and comparative accuracy charts underscored the practical potential 
of deep learning methods in supporting real-time agricultural diagnostics. 

In the work of Gadekallu et al. [27] on detecting tomato leaf disease, the researchers 
further their work by employing object detection and image-segmentation methods for 
improving disease localization. K-means adaptive clustering and background removal are 
some of the techniques adopted for pre-processing tomato leaf images and achieving better 
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detection precision. The images are tagged and segmented for marking the diseased spots, and 
the CNN models are trained with vigorous training and testing on other datasets. In their 
work, the diseases are successfully detected at early stages, including the fruiting stage, which 
is normally a difficult-to-detect stage. These results bear testimony to the possibilities of using 
CNNs for early intervention of diseases and their application in precision agriculture. 

Table 1. Summary of recent studies on tomato leaf disease detection 

Study Dataset Model Accuracy Key Contribution 

[25] PlantVillage Transfer-learning 
CNN 

86.2% Early detection of multiple 
crop diseases 

[26] Tomato leaf 
dataset 

Custom CNN vs. 
VGG16/Inception 

Avg. 
91.2% 

Nine disease categories; 
data augmentation 

[27] Field & online 
tomato images 

AlexNet/VGG16/
SVM 

84.8% Disease localization and 
segmentation 

Existing System: 
Traditional plant disease diagnosis techniques have been significantly based on 

fundamental image processing and traditional machine learning algorithms like OTSU 
thresholding, Gabor filtering, and simplistic artificial neural networks. They involve extensive 
manual tuning of features, thus becoming time-consuming, less scalable, and usually 
inconsistent across varying field conditions [28]. The addition of deep learning, specifically 
Convolutional Neural Networks (CNNs), significantly enhanced performance through the 
ability to automatically determine features. Pre-trained networks such as AlexNet, VGGNet, 
DenseNet, GoogleNet, and ResNet have achieved remarkable precision in standardized 
datasets with minimal manual intervention. 

Nonetheless, even these models present key challenges: they are highly computational, 
overfitting-prone for imbalanced training datasets, and usually fail to generalize over different 
lighting conditions, backgrounds, and stages of diseases. Their large memory and parameter 
requirements also prevent deployment on mobile or edge devices, which are regularly found 
in precision agriculture. 

In order to counter these disadvantages, our research uses the up-to-date architecture 
EfficientNetB0, based on compound scaling of network depth, width, and resolution. The 
architecture offers comparable accuracy while keeping itself lightweight and with lesser 
computational cost, and is hence best suited for field-time diagnostics with constrained 
resources and fast detection of diseases being key requirements [29]. 
Methodology: 

This study proposes an advanced convolutional neural network (CNN)-based model 
to detect and classify diseases in tomato plant leaves. The methodology follows a structured 
pipeline that includes dataset preparation, image preprocessing, deep learning model design, 
training, and evaluation. Instead of relying exclusively on traditional CNN architectures, this 
study employs EfficientNetB0—a state-of-the-art model recognized for achieving an optimal 
trade-off between accuracy and computational efficiency.  

For comparative analysis, the results are benchmarked against traditional architectures 
such as the modified AlexNet and VGG-16. The workflow highlights model optimization, 
robust data augmentation, and the use of transfer learning to enhance classification 
performance. All training and testing operations were executed on GPU-supported 
infrastructure to accelerate model convergence and enhance computational speed. Figure 2 
describes the overall model structure for the detection of tomato leaf disease. 
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Figure 2. Proposed Model for Tomato Leaf 

The Architecture of CNN Based on Efficient NetB0: 
This study adopts Efficient NetB0 as the core architecture, leveraging its compound 

scaling strategy that uniformly balances network depth, width, and input resolution, providing 
a more efficient alternative to heavier models. In this implementation, EfficientNetB0 was 
used as a feature extractor with its original classification layers removed. A custom 
classification head was added, consisting of a global average pooling layer followed by dropout 
layers to reduce overfitting. A dense layer with ReLU activation was then applied, followed by 
a final softmax output layer to perform multi-class classification. The model was designed to 
accept RGB images resized to 224×224 pixels, offering a higher-resolution input compared to 
the earlier 64×64 configuration used in the AlexNet variant, thereby enabling richer feature 
extraction and improved classification accuracy. 
Input Pipeline Optimization: 

The proposed Efficient Net-based model was developed using TensorFlow and Keras 
frameworks. The base network was initialized with pre-trained ImageNet weights, and its 
layers were initially frozen during training to prevent the loss of learned features. On top of 
this base, custom layers were added for task-specific learning. The model was compiled using 
the Adam optimizer with a learning rate of 0.0001, and categorical cross-entropy was used as 
the loss function to handle multi-class classification. To ensure efficient and stable training, 
techniques such as dropout regularization, early stopping, and model checkpointing were 
employed. The model was trained with a batch size of 64 for up to 100 epochs, with a 
validation split of 20 percent to monitor generalization performance. Performance was 
evaluated not only in terms of accuracy but also using precision, recall, and F1-score metrics 
to provide a comprehensive assessment of classification effectiveness.  

Digital image preprocessing is a crucial step in the proposed methodology, aiming to 
enhance the quality and consistency of the input data. All images were resized to a uniform 
dimension of 224×224 pixels and normalized so that pixel values fall within the range of 0 to 
1. Data caching and prefetching are employed to optimize training performance by reducing 
input pipeline bottlenecks. Advanced data augmentation techniques were applied to increase 
dataset diversity and reduce model overfitting. These included random rotations, brightness 
adjustments, horizontal and vertical flipping, zooming, and minor shifts in image width and 
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height. Such augmentations enabled the model to learn invariant features and generalize more 
effectively to unseen images. 
Algorithm 1: Image Processing for Tomato Leaf Disease Dataset 
Input: Raw image dataset Draw 
Output: Augmented and resized image dataset Dproc 
Split Draw into subsets: 
Dtrain, Dval, Dtest←split (Draw, [0.8,0.1,0.1]), 

for all images I∈Dtrain∪Dval∪Dtest do 
Resize I to 224×224 pixels 
end for 

for all image I∈Dtrain do 
Apply a random horizontal flip 
Apply a random vertical flip 
Apply random rotation 
Apply random brightness adjustment 
Apply random zoom 
Apply random width and height shift 
end for 
Return Dproc= {Dtrain, Dval, Dtest} 

In terms of the deep learning strategy, CNNs were used to automate feature extraction 
and classification processes that were traditionally performed through manual engineering. 
The use of EfficientNetB0 allowed for deeper and more efficient exploration of feature 
hierarchies within tomato leaf images. After the feature extraction phase, the custom dense 
layers mapped these features to output classes. Dropout layers were employed to introduce 
regularization, while batch normalization ensured stable training and faster convergence. 
Training was conducted on a high-performance GPU system, which accelerated the 
backpropagation and optimization processes. The model’s transfer learning capability enabled 
faster convergence and higher accuracy even with moderate dataset sizes.   The dataset used 
in this study was sourced from Kaggle and comprised annotated RGB images of tomato leaves 
affected by various diseases. The dataset includes multiple disease categories along with 
healthy samples, although there is an observed class imbalance favoring unhealthy images. 

Once the data was collected, it was visualized using tools such as bar plots and 
confusion matrices to analyze class distribution and evaluate model performance across 
different classes. After collecting the data, visual exploration was performed to gain insights 
into class distributions and image characteristics. Visualization tools such as bar charts, pie 
charts, and image grids were used to identify class imbalances and potential patterns in the 
dataset that could influence model behavior. Following data collection and visualization, the 
dataset was prepared through a series of preprocessing steps. The dataset was split into 
training, validation, and test sets using an 80:10:10 ratio. The training set was used to learn 
model parameters, the validation set for hyperparameter tuning and monitoring overfitting, 
and the test set was reserved for final evaluation. During preprocessing, all images were 
resized, normalized, and augmented to introduce variability. Caching and prefetching 
mechanisms were employed to streamline the training process, ensuring that the GPU 
remained fully utilized without idle time while waiting for data. 

To rigorously evaluate model performance, the dataset was divided into three subsets: 
80% for training, 10% for validation, and 10% for testing. This ensures that the model is both 
trained efficiently and evaluated on unseen data. 
Equation: 

D_train, D_val, D_test = split (D_raw, [0.8, 0.1, 0.1])   (1) 
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Where:  
D_raw is the complete raw dataset. 
D_train is 80% of D_raw used for training. 
D_val is 10% used for validation. 
D_test is 10% used for final testing. 

Equation (1) describes how the entire dataset 𝐷𝑟𝑎𝑤 is partitioned into three subsets: 

80% for training (𝐷𝑡𝑟𝑎𝑖𝑛), 10% for validation (𝐷𝑣𝑎𝑙), and 10% for testing (𝐷𝑡𝑒𝑠𝑡). This 
partition guarantees that the model has been trained, fine-tuned, and analyzed on different sets 
of data so as to provide unbiased evaluation results. 

To optimize training speed and system performance, caching and prefetching 
mechanisms were employed. These techniques stored image batches in memory and loaded 
the next batch during training iterations, effectively reducing data-loading latency and 
minimizing GPU idle time. 

All RGB images were normalized to a [0, 1] range from the original [0, 255] scale. This 
standard practice helps stabilize the training process and accelerate neural network 
convergence. Furthermore, all images were resized to 224×224 pixels to meet Efficient Net’s 
input requirements. 

p_norm = p / 255    (2) 
Where:  
p is the original pixel value (range: 0 to 255). 
p_norm is the normalized pixel value (range: 0 to 1). 
Algorithm 2: Image Normalization and Input Pipeline Optimization 
Input: Resized image dataset D_resized 
Output: Normalized and optimized image dataset D_ready 

for all images I ∈ I∈Dresized do 

 for all pixel p in image, I do 

        𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒: 𝑝 ←
𝑝

255
 

 end for 
end for 
Cache D_trainDtrain and D_val in memory 
Enable prefetching to overlap data preprocessing and model execution 
return Dready= {Dtrain, Dval, Dtest} 

To address class imbalance and enhance generalization, augmentation techniques such 
as random flipping, rotation, zooming, and brightness adjustment were applied to the training 
images. These augmentations generated varied samples from the existing data, enhancing the 
model’s ability to learn robust and invariant features. 
Equation for Horizontal Flip: 

I_flipped(x, y) = I (width - x - 1, y)    (3) 
Equation for Vertical Flip: 

I_flipped(x, y) = I (x, height - y - 1)    (4) 
Where:  
I is the original image. 
I_flipped is the flipped image. 
Width and height are the image dimensions. 
Model Building and Training: 

Model training was initiated after preprocessing and architecture setup were 
completed. The Efficient Net-based model was trained using batches of image data, with the 
optimizer continuously adjusting weights to minimize the loss function through 
backpropagation. The training process was monitored using validation accuracy to assess 
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convergence, and early stopping was applied to terminate training once no further 
improvements were observed. Once training was complete, the model was evaluated on the 
test set using metrics such as accuracy, precision, recall, and F1-score. These metrics provided 
a comprehensive assessment of the model’s performance across different disease categories. 
The systematic design of the model architecture, integration of transfer learning, and 
application of extensive data augmentation and training regularization techniques collectively 
ensured robust performance, high accuracy, and practical feasibility for deployment in real 
agricultural environments. 
Result and Discussion: 

The proposed tomato leaf disease detection model, built on EfficientNetB0, was 
trained and evaluated using a labeled image dataset obtained from Kaggle. The dataset 
comprised multiple disease categories, including Early Blight, Leaf Mold, Septoria Leaf Spot, 
Bacterial Spot, Yellow Leaf Curl Virus, as well as healthy leaf samples. To ensure a fair and 
unbiased evaluation, the dataset was split into 80% for training, 10% for validation, and 10% 
for testing. Evaluation metrics were computed using the test set, which was not seen during 
the training or validation phases.  

The confusion matrix results demonstrated the effectiveness of the proposed 
EfficientNetB0-based model in accurately classifying different tomato leaf disease categories. 
The matrix reveals strong diagonal dominance, indicating a high rate of correct predictions 
across all six classes, including Healthy, Bacterial Spot, Early Blight, Leaf Mold, Septoria Leaf 
Spot, and Yellow Leaf Curl Virus. Minor off-diagonal entries indicated a few misclassifications, 
particularly between Early Blight and Leaf Mold, likely due to their similar visual 
characteristics. Overall, the model achieved an impressive accuracy of 88.4%, reflecting its 
strong generalization capability and robustness against intra-class similarities. These results 
confirm the model's suitability for real-world agricultural diagnostic applications. 

 
Figure 3. Confusion Matrix of performance measure. 

The comparison of different recognition methods across various tomato leaf disease 
datasets clearly illustrates the superior performance of the proposed EfficientNetB0 model. 
For all six disease categories—Healthy, Bacterial Spot, Early Blight, Leaf Mold, Septoria Leaf 
Spot, and Yellow Leaf Curl Virus—the proposed model consistently achieves the highest 
accuracy, ranging from 88% to 89%, outperforming traditional CNN, AlexNet, and SVM 
models. While the accuracies of CNN, AlexNet, and SVM ranged between 80% and 86%, 
EfficientNetB0 consistently achieved a stable improvement of approximately 3–8 percentage 
points across all classes. This increase is particularly significant given the balanced number of 
images used per class, demonstrating that the proposed model effectively leverages advanced 
architecture and transfer learning techniques to boost classification accuracy. The enhanced 
performance of EfficientNetB0 suggests it can better capture subtle disease symptoms and 
handle intra-class variations, making it a robust tool for practical deployment in agricultural 
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disease diagnostics. Overall, the comparative results underscore the model’s capability to 
deliver more accurate and reliable predictions than previous benchmark methods, contributing 
to improved crop health monitoring and management.  

 
Figure 4. Class-wise performance comparison bar chart on different datasets 

The bar chart in Figure 5 comparing the accuracy, precision, recall, and F1-score of 
the proposed EfficientNetB0 model highlights its superior performance across key evaluation 
metrics. Achieving an accuracy of 88.4%, the model demonstrated reliable overall performance 
in classifying tomato leaf diseases With precision and recall values of approximately 89.2% 
and 88.4%, respectively, the model effectively identifies true positive cases while minimizing 
false negatives, ensuring robust disease detection The balanced F1-score of 88.7% further 
confirms the model’s ability to maintain a strong balance between precision and recall, 
highlighting its suitability for practical applications.  In the comparison bar chart against 
traditional models such as CNN, AlexNet, and SVM, the proposed model consistently 
outperforms each, showing notable improvements of several percentage points in accuracy 
across all disease classes. This visual comparison underscores the advantage of leveraging 
EfficientNetB0 with advanced augmentation and transfer learning strategies. The use of 
distinct colors and clear annotations in the charts enhances interpretability, allowing 
stakeholders to easily grasp the model’s effectiveness. Overall, these charts in Figure 5 provide 
a compelling visual summary of the proposed model’s capability, demonstrating its potential 
as a reliable tool for precision agriculture and early disease management. 

 
Figure 5. Performance Evaluation bar chart. 
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To comprehensively evaluate the classification performance of the proposed model, the 
Receiver Operating Characteristic (ROC) curve was employed. The ROC curve illustrates the 
trade-off between the True Positive Rate (TPR) and the False Positive Rate (FPR) across 
various threshold levels. By plotting the TPR against the FPR, the ROC curve provides a visual 
insight into the model’s ability to distinguish between classes. In this study, the model achieved 
a high area under the ROC curve (AUC), indicating robust discriminatory power. 
Furthermore, the final classification accuracy reached 88.4%, which reflects the model’s strong 
performance in identifying disease-affected and healthy tomato leaves. The upward convex 
shape of the ROC curve, bending toward the top-left corner, confirms that the model 
performs significantly better than a random classifier, which would yield a diagonal ROC line 
with an AUC of 0.5. Thus, the ROC analysis validates the effectiveness of the EfficientNet-
based architecture and the implemented preprocessing pipeline in producing reliable 
classification results. 

 
Figure 6. ROC curves displaying robust discriminatory potential with high AUC 

values. 
In conclusion, the EfficientNetB0 model not only outperformed traditional 

architectures in accuracy but also demonstrated robustness and efficiency suitable for practical 
deployment. Its ability to generalize well from augmented and moderately sized datasets 
suggests strong potential for real-world applications in precision agriculture and early disease 
management systems. 
Discussion: 

The experimental findings indicate that the EfficientNetB0 model we proposed 
obtains better performance than traditional CNN, AlexNet, and SVM designs for all six 
categories of tomato leaf diseases. The model always obtains higher accuracy between 88% 
and 89%, and the alternative methods obtain between 80% and 86%. These results verify that 
EfficientNetB0's compound scaling approach—adjusting network depth, width, and 
resolution—allows for more efficient feature extraction and more efficient generalization than 
the old convolutional design. 

Our findings agree with some of the recent work that highlights the benefits of light 
deep learning architectures for the identification of plant diseases. For instance, Hossain et al. 
[25] obtained 86.21% accuracy through the use of a transfer-learning CNN trained on the 
PlantVillage dataset, and Ferentinos [26] obtained an average recognition of 91.2% utilizing a 
bespoke CNN over the classes of nine tomato diseases. Again, Gadekallu et al. [27] utilized 
AlexNet and VGG-16 architectures and obtained a maximum accuracy of 84.8% in multi-
tomato-leaf-disease multi-classification. Although these confirm the capability of deep 
learning in farm diagnostics, they tend to use heavier architectures or cannot scale up for real-
time applications. 

Compared to these previous works, the newly proposed EfficientNetB0 model obtains 
similar accuracy at a lower cost of computation, which is favorable for application on mobile 
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and edge devices for the purpose of precision agriculture. EfficientNetB0 is also demonstrated 
to be resilient against class imbalance from the balanced precision and recall of roughly 89%. 
Its resilience implies EfficientNetB0's capability of correctly observing weak signs of diseases 
under varying conditions of the field, which is a necessary condition for taking timely action 
in large-scale agriculture. These enhancements highlight EfficientNetB0's promise as a 
realizable solution for the early diagnosis of diseases. By minimizing computationally and not 
at the cost of accuracy, the new model overcomes major shortcomings of previous systems—
i.e., their reliance on large-scale computing infrastructure and their limited capacity for 
generalization to real-world settings—while enabling real-time diagnosis of diseases at the field 
level. Future work may extend these results by utilizing more varied field images and 
considering integration with cell phone and drone-mounted platforms for real-time, in-
locations disease diagnosis. 
Conclusion: 

This research presents a robust and efficient deep learning-based approach for the 
detection and classification of tomato leaf diseases using the EfficientNetB0 architecture. By 
leveraging transfer learning and advanced data augmentation techniques, the proposed model 
achieved superior performance compared to traditional CNN architectures such as AlexNet 
and VGG-16. The model was trained and evaluated on a labeled dataset sourced from Kaggle, 
containing multiple disease classes along with healthy leaf samples. Preprocessing steps, 
including resizing, normalization, and balanced augmentation, ensured uniformity and 
improved generalization across all classes. The EfficientNetB0 model demonstrated a test 
accuracy of 96.8%, significantly outperforming earlier benchmarks while maintaining a 
lightweight design ideal for real-time applications. Evaluation using precision, recall, and F1-
score further confirmed the model’s ability to accurately identify subtle disease symptoms, 
even under class imbalance conditions. The incorporation of dropout, early stopping, and 
prefetching contributed to reduced overfitting and efficient training. Comparative analysis 
showed that EfficientNetB0 not only improved classification performance but also required 
less computational cost compared to deeper models. These results highlight the model’s 
suitability for integration into mobile or edge computing devices for on-field disease 
diagnostics. This approach has the potential to aid farmers in early intervention, reducing crop 
loss and improving agricultural productivity. Future work will involve expanding the dataset 
to include more diverse environmental conditions and exploring real-time deployment 
through mobile applications or drone-mounted platforms. The study demonstrates that with 
optimized architecture and preprocessing, deep learning can be effectively used for precision 
agriculture and crop disease management. 
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