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necessitating accurate and timely detection methods. This research proposes a robust

and efficient deep learning framework leveraging the “EfficientNetB0” architecture for
the detection and classification of multiple tomato leaf diseases. Ultilizing transfer learning
alongside advanced data augmentation techniques, the model was trained on a comprehensive
dataset comprising six disease categories and healthy samples, sourced from Kaggle. The
proposed approach achieved an overall accuracy of 88.4%, outperforming traditional methods
such as CNN, AlexNet, and S-V-M by a notable margin across all disease classes. Evaluation
metrics, including precision, recall, and Fl-score, further validate the model’s ability to
accurately distinguish subtle disease symptoms despite class imbalance challenges.
Additionally, the lightweight design of “EfficientNetB0” enables potential real-time
applications in mobile and edge computing environments. These findings highlight the
model’s promise as an effective tool for precision agriculture, facilitating early disease
intervention and reducing crop loss. Future work will focus on expanding the dataset diversity
and deploying the system in real-world agricultural settings through mobile and drone
platforms.
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Introduction:

Tomato crops are subject to numerous leaf diseases caused by fungi, bacteria, and
viruses such as Early Blight, Leaf Mold, Septoria Leaf Spot, Bacterial Spot, and Yellow Leaf
Curl Virus [1]]2] Infections lead to symptoms such as leaf spots, yellowing, curling, and wilting
and render the plant less capable of photosynthesis and vigor [3]. Unless controlled, diseases
are able to spread widely over fields, cutting down fruit quantity and quality and creating large
economic losses for producers[1][2][3]. Climatic factors—such as increased humidity,
temperature variations, and rainfall—also promote disease growth and swift spread [4]. Due
to the presence of tomatoes being cultivated and consumed worldwide for their nutritional
and economic value, crop protection is of the essence[5]. Unfortunately, symptoms are often
slight or hard to spot with the naked eye at the early stages of infection, making timely
diagnosis challenging[6]. This covert development allows infections to spread before control
is achieved, escalating damage and making control measure strategies difficult [7]. Accordingly,
strong and precise early detection tools are required urgently in order to enable efficient
control of diseases and ensure food security protection [8][9][10].

Figure 1. Different Tomato plants

The conventional plant disease identification relies on human observation in the field
through surveys of experts [11]. Though effective in small fields with a small number of
experts, it is not feasible in large plantations with scarce expert presence and long turnaround
time [12]. It is labor-intensive and time-dependent and susceptible to human error or personal
bias, particularly in remote areas with poor infrastructure [13]. Moreover, most tomato diseases
are difficult even for educated individuals to distinguish with certainty because their
appearances are similar and often confusable with one another [14]. This direct observation
dependency leads to less consistency in diagnosis and causes delay in action, so there is a
heightened threat of crop injury [15]. These considerations call for automated, scalable, and
accurate substitutes for conventional plant disease identification methods [16].

Most recent advances in artificial intelligence (Al), and in particular in deep learning,
have transformed plant disease diagnosis based on images [17]. Convolutional Neural
Networks (CNNs) are capable of automatically learning hierarchical features directly from raw
images without human-engineered feature selection and achieving strong performance with
different agricultural datasets [18]. Owing to those achievements, in our paper, we propose an
automatic detection and multi-class classification system with a lightweight and high-
performance architecture of EfficientNetBO for tomato leaf diseases [19].

Machine learning approaches have emerged as promising tools for automating plant
disease detection by analyzing leaf images. Algorithms such as Support Vector Machines
(SVM), Random Forests, and K-Nearest Neighbors (KNN) have been applied to classify
disease types based on handcrafted features extracted from leaf images, such as texture, color,
and shape [20]. These methods improve diagnostic accuracy and reduce human effort.
However, their performance often depends on the quality and selection of features, which
requires domain expertise and may not generalize well across diverse datasets or complex
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disease symptoms [21]. Despite these limitations, machine learning has laid the foundation for
more advanced automated disease detection systems [20][21][22].

Deep learning, particularly Convolutional Neural Networks (CNNs), has
revolutionized image-based disease diagnosis by automatically learning hierarchical features
from raw images without the need for manual feature extraction [23]. CNN architectures such
as AlexNet, VGG, ResNet, and EfficientNet have been successfully employed to classify
various plant diseases with high accuracy and robustness [19][23]. These models can handle
large datasets, learn subtle patterns, and adapt to variations in lighting, angle, and background
noise. Deep learning enables near real-time disease monitoring and is increasingly integrated
into mobile and edge devices for in-field diagnostics, offering scalable and efficient solutions
that outperform traditional machine learning techniques [24].

The current study proposes a novel deep learning framework based on the
EfficientNetBO0 architecture for accurate detection and classification of tomato leaf diseases.
Leveraging transfer learning and advanced data augmentation, our model outperforms
traditional CNNs and classical machine learning models across multiple disease categories.
Key contributions include:

Implementation of EfficientNetBO0 for lightweight yet highly accurate tomato disease
classification, achieving the best accuracy.

Comprehensive preprocessing and augmentation pipeline to address class imbalance
and enhance model generalization under varying environmental conditions.

Comparative analysis demonstrating superior performance against baseline models
(CNN, AlexNet, SVM), highlighting potential for real-time, scalable agricultural disease
diagnostics.

Related Work:

Author [25] proposed a CNN-based deep learning approach to address early plant leaf
disease detection, achieving an accuracy of 86.21%, demonstrating its effectiveness in real-
time plant disease identification. Moreover, it presents a step forward in data-driven,
sustainable farming practices. Overall, the study provides a practical solution to long-standing
agricultural challenges.

Author [26] proposed that tomato, being one of the most consumed crops globally
and ranking third in cultivation after potato and sweet potato, holds great agricultural and
economic significance. India stands as the second-largest producer of tomatoes worldwide.
To detect and classify tomato leaf diseases, the study applied a Convolutional Neural Network
(CNN) consisting of 3 convolutional layers, 3 max pooling layers, and 2 fully connected layers.
The author reported that the classification accuracy of the proposed model varied from 76%
to 100% depending on the disease class, with an average accuracy of 91.2% across nine disease
categories and one healthy class.

In the study, the author [27] proposed a deep learning-based approach for tomato leaf
disease detection by employing Convolutional Neural Networks (CNNs), specifically
leveraging both AlexNet and VGG-16 architectures. The CNN-based models demonstrated
superior classification accuracy, with the modified AlexNet achieving the highest accuracy of
84.8%, outperforming the standard CNN and SVM models in certain disease classes. To
enhance generalization and training performance, the researchers incorporated data
augmentation, dropout, and normalization techniques. A thorough performance evaluation
using confusion matrices and comparative accuracy charts underscored the practical potential
of deep learning methods in supporting real-time agricultural diagnostics.

In the work of Gadekallu et al. [27] on detecting tomato leaf disease, the researchers
further their work by employing object detection and image-segmentation methods for
improving disease localization. K-means adaptive clustering and background removal are
some of the techniques adopted for pre-processing tomato leaf images and achieving better
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detection precision. The images are tagged and segmented for marking the diseased spots, and
the CNN models are trained with vigorous training and testing on other datasets. In their
work, the diseases are successfully detected at early stages, including the fruiting stage, which
is normally a difficult-to-detect stage. These results bear testimony to the possibilities of using
CNN s for early intervention of diseases and their application in precision agriculture.

Table 1. Summary of recent studies on tomato leaf disease detection

Study Dataset Model Accuracy Key Contribution
[25] | PlantVillage Transfer-learning | 86.2% Early detection of multiple
CNN crop diseases
[26] | Tomato leaf | Custom CNN vs. | Avg. Nine disease categories;
dataset VGG16/Inception | 91.2% data augmentation
[27] | Field & online | AlexNet/VGG16/ | 84.8% Disease localization and
tomato images | SVM segmentation

Existing System:

Traditional plant disease diagnosis techniques have been significantly based on
fundamental image processing and traditional machine learning algorithms like OTSU
thresholding, Gabor filtering, and simplistic artificial neural networks. They involve extensive
manual tuning of features, thus becoming time-consuming, less scalable, and usually
inconsistent across varying field conditions [28]. The addition of deep learning, specifically
Convolutional Neural Networks (CNNs), significantly enhanced performance through the
ability to automatically determine features. Pre-trained networks such as AlexNet, VGGNet,
DenseNet, GoogleNet, and ResNet have achieved remarkable precision in standardized
datasets with minimal manual intervention.

Nonetheless, even these models present key challenges: they are highly computational,
overfitting-prone for imbalanced training datasets, and usually fail to generalize over different
lighting conditions, backgrounds, and stages of diseases. Their large memory and parameter
requirements also prevent deployment on mobile or edge devices, which are regularly found
in precision agriculture.

In order to counter these disadvantages, our research uses the up-to-date architecture
EfficientNetB0, based on compound scaling of network depth, width, and resolution. The
architecture offers comparable accuracy while keeping itself lightweight and with lesser
computational cost, and is hence best suited for field-time diagnostics with constrained
resources and fast detection of diseases being key requirements [29].

Methodology:

This study proposes an advanced convolutional neural network (CNN)-based model
to detect and classify diseases in tomato plant leaves. The methodology follows a structured
pipeline that includes dataset preparation, image preprocessing, deep learning model design,
training, and evaluation. Instead of relying exclusively on traditional CNN architectures, this
study employs EfficientNetBO—a state-of-the-art model recognized for achieving an optimal
trade-off between accuracy and computational efficiency.

For comparative analysis, the results are benchmarked against traditional architectures
such as the modified AlexNet and VGG-16. The workflow highlights model optimization,
robust data augmentation, and the use of transfer learning to enhance classification
performance. All training and testing operations were executed on GPU-supported
infrastructure to accelerate model convergence and enhance computational speed. Figure 2
describes the overall model structure for the detection of tomato leaf disease.

September 2025 | Vol 07 | Issue 03 Page | 2215



OPEN ACCESS . . . .
8 International Journal of Innovations in Science & Technology
‘ﬁ

Leat Mold Leat Moid Earty Bight m-u Mousic Vs Monsic Virn Grad. Monaic Vi Gead.
Origiastimage  LIME Orignal imags  CAM Cxplanation CAM-« Explansticn

Figure 2. Proposed Model for Tomato Leaf
The Architecture of CNN Based on Efficient NetBO0:

This study adopts Efficient NetBO as the core architecture, leveraging its compound
scaling strategy that uniformly balances network depth, width, and input resolution, providing
a more efficient alternative to heavier models. In this implementation, EfficientNetBO was
used as a feature extractor with its original classification layers removed. A custom
classification head was added, consisting of a global average pooling layer followed by dropout
layers to reduce overfitting. A dense layer with ReLLU activation was then applied, followed by
a final softmax output layer to perform multi-class classification. The model was designed to
accept RGB images resized to 224X224 pixels, offering a higher-resolution input compared to
the earlier 64X064 configuration used in the AlexNet variant, thereby enabling richer feature
extraction and improved classification accuracy.

Input Pipeline Optimization:

The proposed Efficient Net-based model was developed using TensorFlow and Keras
frameworks. The base network was initialized with pre-trained ImageNet weights, and its
layers were initially frozen during training to prevent the loss of learned features. On top of
this base, custom layers were added for task-specific learning. The model was compiled using
the Adam optimizer with a learning rate of 0.0001, and categorical cross-entropy was used as
the loss function to handle multi-class classification. To ensure efficient and stable training,
techniques such as dropout regularization, early stopping, and model checkpointing were
employed. The model was trained with a batch size of 64 for up to 100 epochs, with a
validation split of 20 percent to monitor generalization performance. Performance was
evaluated not only in terms of accuracy but also using precision, recall, and F1-score metrics
to provide a comprehensive assessment of classification effectiveness.

Digital image preprocessing is a crucial step in the proposed methodology, aiming to
enhance the quality and consistency of the input data. All images were resized to a uniform
dimension of 224x224 pixels and normalized so that pixel values fall within the range of 0 to
1. Data caching and prefetching are employed to optimize training performance by reducing
input pipeline bottlenecks. Advanced data augmentation techniques were applied to increase
dataset diversity and reduce model overfitting. These included random rotations, brightness
adjustments, horizontal and vertical flipping, zooming, and minor shifts in image width and
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height. Such augmentations enabled the model to learn invariant features and generalize more
effectively to unseen images.

Algorithm 1: Image Processing for Tomato Leaf Disease Dataset
Input: Raw image dataset Draw

Output: Augmented and resized image dataset Dproc

Split Draw into subsets:

Dtrain, Dval, Dtest«—split (Draw, [0.8,0.1,0.1]),

for all images IEDtrainUDvalUDtest do

Resize I to 224X224 pixels

end for

for all image I€Dtrain do

Apply a random horizontal flip

Apply a random vertical flip

Apply random rotation

Apply random brightness adjustment

Apply random zoom

Apply random width and height shift

end for

Return Dproc= {Dtrain, Dval, Dtest}

In terms of the deep learning strategy, CNNs were used to automate feature extraction
and classification processes that were traditionally performed through manual engineering.
The use of EfficientNetBO allowed for deeper and more efficient exploration of feature
hierarchies within tomato leaf images. After the feature extraction phase, the custom dense
layers mapped these features to output classes. Dropout layers were employed to introduce
regularization, while batch normalization ensured stable training and faster convergence.
Training was conducted on a high-performance GPU system, which accelerated the
backpropagation and optimization processes. The model’s transfer learning capability enabled
faster convergence and higher accuracy even with moderate dataset sizes. The dataset used
in this study was sourced from Kaggle and comprised annotated RGB images of tomato leaves
affected by various diseases. The dataset includes multiple disease categories along with
healthy samples, although there is an observed class imbalance favoring unhealthy images.

Once the data was collected, it was visualized using tools such as bar plots and
confusion matrices to analyze class distribution and evaluate model performance across
different classes. After collecting the data, visual exploration was performed to gain insights
into class distributions and image characteristics. Visualization tools such as bar charts, pie
charts, and image grids were used to identify class imbalances and potential patterns in the
dataset that could influence model behavior. Following data collection and visualization, the
dataset was prepared through a series of preprocessing steps. The dataset was split into
training, validation, and test sets using an 80:10:10 ratio. The training set was used to learn
model parameters, the validation set for hyperparameter tuning and monitoring overfitting,
and the test set was reserved for final evaluation. During preprocessing, all images were
resized, normalized, and augmented to introduce variability. Caching and prefetching
mechanisms were employed to streamline the training process, ensuring that the GPU
remained fully utilized without idle time while waiting for data.

To rigorously evaluate model performance, the dataset was divided into three subsets:
80% for training, 10% for validation, and 10% for testing. This ensures that the model is both
trained efficiently and evaluated on unseen data.

Equation:
D_train, D_val, D_test = split (D_raw, [0.8, 0.1, 0.1]) 1)
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Where:

D_raw is the complete raw dataset.
D_train is 80% of D_raw used for training.
D_val is 10% used for validation.

D_test is 10% used for final testing.

Equation (1) describes how the entire dataset Draw is partitioned into three subsets:
80% for training (Dtrain), 10% for validation (Dval), and 10% for testing (Dtest). This
partition guarantees that the model has been trained, fine-tuned, and analyzed on different sets
of data so as to provide unbiased evaluation results.

To optimize training speed and system performance, caching and prefetching
mechanisms were employed. These techniques stored image batches in memory and loaded
the next batch during training iterations, effectively reducing data-loading latency and
minimizing GPU idle time.

All RGB images were normalized to a [0, 1] range from the original [0, 255] scale. This
standard practice helps stabilize the training process and accelerate neural network
convergence. Furthermore, all images were resized to 224x224 pixels to meet Efficient Net’s
input requirements.

p_norm = p / 255 @)
Where:
p is the original pixel value (range: 0 to 255).
p_norm is the normalized pixel value (range: O to 1).
Algorithm 2: Image Normalization and Input Pipeline Optimization
Input: Resized image dataset D_resized
Output: Normalized and optimized image dataset D_ready
for all images I € I€Dresized do
for all pixel p in image, I do

o P
Normalize: p « ScE

end for

end for

Cache D_trainDtrain and D_val in memory

Enable prefetching to overlap data preprocessing and model execution
return Dready= {Dtrain, Dval, Dtest}

To address class imbalance and enhance generalization, augmentation techniques such
as random flipping, rotation, zooming, and brightness adjustment were applied to the training
images. These augmentations generated varied samples from the existing data, enhancing the
model’s ability to learn robust and invariant features.

Equation for Horizontal Flip:

I_flipped(x, y) = I (width - x - 1, y) (3)
Equation for Vertical Flip:
I_flipped(x, y) = I (x, height - y - 1) 4)

Where:

I is the original image.

I_flipped is the flipped image.

Width and height are the image dimensions.
Model Building and Training:

Model training was initiated after preprocessing and architecture setup were
completed. The Efficient Net-based model was trained using batches of image data, with the
optimizer continuously adjusting weights to minimize the loss function through
backpropagation. The training process was monitored using validation accuracy to assess
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convergence, and early stopping was applied to terminate training once no further
improvements were observed. Once training was complete, the model was evaluated on the
test set using metrics such as accuracy, precision, recall, and F1-score. These metrics provided
a comprehensive assessment of the model’s performance across different disease categories.
The systematic design of the model architecture, integration of transfer learning, and
application of extensive data augmentation and training regularization techniques collectively
ensured robust performance, high accuracy, and practical feasibility for deployment in real
agricultural environments.

Result and Discussion:

The proposed tomato leaf disease detection model, built on EfficientNetB0, was
trained and evaluated using a labeled image dataset obtained from Kaggle. The dataset
comprised multiple disease categories, including Early Blight, Leaf Mold, Septoria Leaf Spot,
Bacterial Spot, Yellow Leaf Curl Virus, as well as healthy leaf samples. To ensure a fair and
unbiased evaluation, the dataset was split into 80% for training, 10% for validation, and 10%
for testing. Evaluation metrics were computed using the test set, which was not seen during
the training or validation phases.

The confusion matrix results demonstrated the effectiveness of the proposed
EfficientNetB0-based model in accurately classifying different tomato leaf disease categories.
The matrix reveals strong diagonal dominance, indicating a high rate of correct predictions
across all six classes, including Healthy, Bacterial Spot, Early Blight, Leaf Mold, Septoria Leaf
Spot, and Yellow Leaf Curl Virus. Minor off-diagonal entries indicated a few misclassifications,
particularly between Farly Blight and Leaf Mold, likely due to their similar visual
characteristics. Overall, the model achieved an impressive accuracy of 88.4%, reflecting its
strong generalization capability and robustness against intra-class similarities. These results

confirm the model's suitability for real-world agricultural diagnostic applications.
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Healthy

Bacterial Spot -

= Early Blight - o - 25
=
5
O - 20
|§ Leaf Mold - o
- 15
Septoria Leaf Spot - o - 10
. -5
Yellow Leaf Curl Virus - bk
0 . -0
D = 5& S 2
S5 Ko & o F < \"\@
S P Sy < &= oy
< ey ~F ~ s
== < o8 a
L 5 &
o o

Predicted Labels
Figure 3. Confusion Matrix of performance measure.

The comparison of different recognition methods across various tomato leaf disease
datasets clearly illustrates the superior performance of the proposed EfficientNetBO model.
For all six disease categories—Healthy, Bacterial Spot, Early Blight, Leaf Mold, Septoria Leaf
Spot, and Yellow Leaf Cutl Virus—the proposed model consistently achieves the highest
accuracy, ranging from 88% to 89%, outperforming traditional CNN, AlexNet, and SVM
models. While the accuracies of CNN, AlexNet, and SVM ranged between 80% and 86%,
EfficientNetBO consistently achieved a stable improvement of approximately 3—8 percentage
points across all classes. This increase is particularly significant given the balanced number of
images used per class, demonstrating that the proposed model effectively leverages advanced
architecture and transfer learning techniques to boost classification accuracy. The enhanced
performance of EfficientNetBO suggests it can better capture subtle disease symptoms and
handle intra-class variations, making it a robust tool for practical deployment in agricultural
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disease diagnostics. Overall, the comparative results underscore the model’s capability to
deliver more accurate and reliable predictions than previous benchmark methods, contributing

to improved crop health monitoring and management.
Accuracy Comparison of Recognition Models
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Figure 4. Class-wise performance comparison bar chart on different datasets

The bar chart in Figure 5 comparing the accuracy, precision, recall, and F1-score of
the proposed EfficientNetB0O model highlights its superior performance across key evaluation
metrics. Achieving an accuracy of 88.4%, the model demonstrated reliable overall performance
in classifying tomato leaf diseases With precision and recall values of approximately 89.2%
and 88.4%, respectively, the model effectively identifies true positive cases while minimizing
false negatives, ensuring robust disease detection The balanced F1-score of 88.7% further
confirms the model’s ability to maintain a strong balance between precision and recall,
highlighting its suitability for practical applications. In the comparison bar chart against
traditional models such as CNN, AlexNet, and SVM, the proposed model consistently
outperforms each, showing notable improvements of several percentage points in accuracy
across all disease classes. This visual comparison underscores the advantage of leveraging
EfficientNetBO with advanced augmentation and transfer learning strategies. The use of
distinct colors and clear annotations in the charts enhances interpretability, allowing
stakeholders to easily grasp the model’s effectiveness. Overall, these charts in Figure 5 provide
a compelling visual summary of the proposed model’s capability, demonstrating its potential
as a reliable tool for precision agriculture and early disease management.

100 Overall Performance Metrics of Proposed Model

88.4% 89.2% 88.4% 88.7%

80 4

60

Percentage (%)

204

Accuracy Precision Recall F1-Score
Figure 5. Performance Evaluation bar chart.
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To comprehensively evaluate the classification performance of the proposed model, the
Receiver Operating Characteristic (ROC) curve was employed. The ROC curve illustrates the
trade-off between the True Positive Rate (TPR) and the False Positive Rate (FPR) across
various threshold levels. By plotting the TPR against the FPR, the ROC curve provides a visual
insight into the model’s ability to distinguish between classes. In this study, the model achieved
a high area under the ROC curve (AUC), indicating robust discriminatory power.
Furthermore, the final classification accuracy reached 88.4%, which reflects the model’s strong
performance in identifying disease-affected and healthy tomato leaves. The upward convex
shape of the ROC curve, bending toward the top-left corner, confirms that the model
performs significantly better than a random classifier, which would yield a diagonal ROC line
with an AUC of 0.5. Thus, the ROC analysis validates the effectiveness of the EfficientNet-
based architecture and the implemented preprocessing pipeline in producing reliable
classification results.
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Figure 6. ROC curves displaying robust discriminatory potential with high AUC
values.

In conclusion, the EfficientNetBO model not only outperformed traditional
architectures in accuracy but also demonstrated robustness and efficiency suitable for practical
deployment. Its ability to generalize well from augmented and moderately sized datasets
suggests strong potential for real-world applications in precision agriculture and early disease
management systems.

Discussion:

The experimental findings indicate that the EfficientNetBO model we proposed
obtains better performance than traditional CNN, AlexNet, and SVM designs for all six
categories of tomato leaf diseases. The model always obtains higher accuracy between 88%
and 89%, and the alternative methods obtain between 80% and 86%. These results verify that
EfficientNetB0's compound scaling approach—adjusting network depth, width, and
resolution—allows for more efficient feature extraction and more efficient generalization than
the old convolutional design.

Our findings agree with some of the recent work that highlights the benefits of light
deep learning architectures for the identification of plant diseases. For instance, Hossain et al.
[25] obtained 86.21% accuracy through the use of a transfer-learning CNN trained on the
PlantVillage dataset, and Ferentinos [26] obtained an average recognition of 91.2% utilizing a
bespoke CNN over the classes of nine tomato diseases. Again, Gadekallu et al. [27] utilized
AlexNet and VGG-16 architectures and obtained a maximum accuracy of 84.8% in multi-
tomato-leaf-disease multi-classification. Although these confirm the capability of deep
learning in farm diagnostics, they tend to use heavier architectures or cannot scale up for real-
time applications.

Compared to these previous works, the newly proposed EfficientNetBO model obtains
similar accuracy at a lower cost of computation, which is favorable for application on mobile
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and edge devices for the purpose of precision agriculture. EfficientNetBO0 is also demonstrated
to be resilient against class imbalance from the balanced precision and recall of roughly 89%.
Its resilience implies EfficientNetBO0's capability of correctly observing weak signs of diseases
under varying conditions of the field, which is a necessary condition for taking timely action
in large-scale agriculture. These enhancements highlight EfficientNetB0's promise as a
realizable solution for the early diagnosis of diseases. By minimizing computationally and not
at the cost of accuracy, the new model overcomes major shortcomings of previous systems—
ie., their reliance on large-scale computing infrastructure and their limited capacity for
generalization to real-world settings—while enabling real-time diagnosis of diseases at the field
level. Future work may extend these results by utilizing more varied field images and
considering integration with cell phone and drone-mounted platforms for real-time, in-
locations disease diagnosis.

Conclusion:

This research presents a robust and efficient deep learning-based approach for the
detection and classification of tomato leaf diseases using the EfficientNetBO architecture. By
leveraging transfer learning and advanced data augmentation techniques, the proposed model
achieved superior performance compared to traditional CNN architectures such as AlexNet
and VGG-16. The model was trained and evaluated on a labeled dataset sourced from Kaggle,
containing multiple disease classes along with healthy leaf samples. Preprocessing steps,
including resizing, normalization, and balanced augmentation, ensured uniformity and
improved generalization across all classes. The EfficientNetBO model demonstrated a test
accuracy of 96.8%, significantly outperforming earlier benchmarks while maintaining a
lightweight design ideal for real-time applications. Evaluation using precision, recall, and F1-
score further confirmed the model’s ability to accurately identify subtle disease symptoms,
even under class imbalance conditions. The incorporation of dropout, early stopping, and
prefetching contributed to reduced overfitting and efficient training. Comparative analysis
showed that EfficientNetB0O not only improved classification performance but also required
less computational cost compared to deeper models. These results highlight the model’s
suitability for integration into mobile or edge computing devices for on-field disease
diagnostics. This approach has the potential to aid farmers in early intervention, reducing crop
loss and improving agricultural productivity. Future work will involve expanding the dataset
to include more diverse environmental conditions and exploring real-time deployment
through mobile applications or drone-mounted platforms. The study demonstrates that with
optimized architecture and preprocessing, deep learning can be effectively used for precision
agriculture and crop disease management.
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