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Production planning optimization is the act of effectively distributing limited

NOISIAI

resources, including labor, materials, and equipment, to achieve production

targets while optimizing profit and reducing waste. This study analyzes how
optimization methods can be applied to production planning models in the cooking oil
sector, with a particular emphasis on how linear programming (LP) can be used to
handle usable quality limitations to maximize gross profit. The goal of this study is to
find the best values for decision variables across a variety of inventory-based production
frameworks. It is important in a manufacturing zone where input bound must be
weighed against consumer needs, such as the industry of cooking oil. In order to
provide a computational method for determining the perfect production levels, the
study establishes a linear programming (LP) model and solves it using Python’s SciPy
package. This optimization method uses objective functions involving dense matrices
and numerical equations to solve the production planning problem. In calculating
output levels and profit margins, the numerical results show a significant convergence,
rating the effectiveness and credibility of the suggested approach in providing the
optimal solution for practical industrial planning.
Keywords: Optimization; Linear Programming (LP); Python; Production Planning

Problem; SciPy.
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Introduction:

The purpose of optimization techniques is to find the optimal solution that satisfies
all requirements. Actually, the goal of this research is to employ software and numerical
optimization for linear programming to discover the optimal values of various inventory
systems' decision-making variables to optimize net profit. Additionally, models of the cooking
oil production problem (production planning problem) were fitted with the optimum process
using a variety of methods, including objectives and equations, dense matrices. In a chain of
closed-loop supplies, the goal of production planning, and more especially lot sizing, is to
make the most effective utilization of resources Whitin the planning horizon to meet needs
through manufacturing and remanufacturing. Since the early 20th century, scholars have
focused on production planning. The first researchers on it were Wagner and Whitin. They
used forward dynamic programming to address a production planning problem for a single
product, one stage, and several periods without capacity limitations. Among the many issues
covered in production planning research, lot sizing is one of the most complicated [1].

Finding the best answer that meets all needs is made easier with the use of optimization
techniques [2]. Choosing the best option from a range that satisfies the requirements and does
not go against any constraints is known as optimization [2]. Finding the best solution that
meets every restriction is the aim of optimization strategies. This method was used with several
formats, applying formulas, goals, dense matrices, and sparse matrices to many models of the
production planning issue, most notably the difficulty of producing cooking oil [2][3].

Usually, optimization problems are used to formulate and solve production planning
difficulties [4]. Businesses use production planning as a strategic method when deciding how
to plan their product manufacturing. To ensure efficient and effective production processes,
it entails identifying the product to be produced, production amount, capacity planning,
material requirements, scheduling timelines, and other relevant details [2][3][4][5].

Maximizing income at fixed, known resource and demand levels is the aim of the
production planning problem. Finding the best production plan to maximize income while
keeping in mind demand and resource limits is the goal [2].

The following significant checkpoints are part of the production planning process:
Analysis of customer demand, Planning production capacity, Control finance, quality, and
manufacturing, Evaluate and enhance the production process, and Finish manufacturing the
product. From demand research through final production and delivery, these benchmarks
stand for the important phases of the production planning process [2].

A factory that produces cooking oil will take the following factors into account when
planning its production: Choose the most effective order of operations for obtaining raw
ingredients, processing, producing, packing, and distributing cooking oils. To help with
production planning, represent this sequence as an objective function in a mathematical model.
To account for uncertainty, include interval data in both the objective function and the
limitations. This will produce a more robust optimization approach for the production
planning problem [2]. Establish and optimize processes, including product concentration
levels, for transforming raw materials into finished commodities, raw material mixing ratios,
and packaging needs. Represent these processes and actions as constraints in the mathematical
model to ensure that the optimization function generates feasible and practical solutions. The
purpose of this work is to optimize inventory systems by identifying the optimal values for
decision variables that maximize net profit using numerical linear programming techniques.
The recommended approach reduces waste, increases profitability, and optimizes production
schedules while taking into account real-world constraints for the cooking oil sector. Since the
early 1950s, when production planning problems were first defined and treated as optimization
problems, a vast body of literature has grown. Extensive use of Enterprise Resource Planning
systems, together with advances in scientific computing and information technology, has made
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these methodologies more accessible to a broader industry. This chapter examines the
fundamental formulations that have dominated academic research and industry practice for
the past fifty years, weighing their advantages and disadvantages, and discussing some
interesting new avenues that have recently emerged. We emphasize the difficulty in
establishing expected lead times and focus on models that aid in decisions on production
quantities and order release over time [4].

Obijectives of the Study:

The main objective of this study is to develop and demonstrate a computational
framework for optimizing production planning in the cooking oil sector using Python’s SciPy
library. Specifically, the research aims to design and implement a linear programming (LP)
model that effectively allocates limited resources such as labor, materials, and equipment to
maximize gross profit while meeting demand and quality constraints. By focusing on
inventory-based production frameworks, the study seeks to identify optimal decision variable
values that balance input limitations against consumer requirements, thereby providing
actionable insights for industrial applications.

Novelty of the Statement:

The novelty of this work lies in its integration of Python’s SciPy optimization tools
into the context of production planning for the cooking oil industry, an application domain
that has not been extensively explored in existing literature. Unlike traditional approaches that
rely on generic optimization software or theoretical models, this study delivers a practical,
open-source, and computationally efficient solution that leverages dense matrix operations
and numerical algorithms for real-world industrial planning. The significant convergence of
numerical results underscores the reliability of the proposed method, highlighting its potential
to serve as a credible and cost-effective alternative for industries seeking to optimize
production processes while enhancing profitability. By using Python’s SciPy optimization
tools, one can obtain more efficient results in the cooking oil industry.

Literature Review:

Historically, the first software to adapt to changes in hardware has been dense linear
algebra (DLA). This is because DLA is an effective technique for identifying and putting into
practice solutions to problems presented by novel designs, and it is essential to the accuracy
and effectiveness of a wide range of applications [6]. A common operation in high-
performance and scientific applications is sparse matrix vector multiplication (SpMV), which
is often the cause of application performance constraints. An accessible and current
introduction to the CasADi framework is provided in this article. Over the past seven years,
the CasADi framework has undergone several design advancements [5]. The nested issue
formulation allows us to identify solutions that perform well across a wide range of possible
outcomes, resulting in a robust and reliable solution [7]. With the help of SciPy, scientists,
engineers, and developers may tackle challenging problems in a variety of fields [8]. While the
sparse matrix representation greatly affects the speed of the final application, selecting the
right representation usually requires expert understanding as well as some experimentation [9].

Numerous ways to solve the integrated facility placement and production planning
problems have emerged. The employed methods' numerical results demonstrated a
noteworthy convergence in forecasting the production lines and revenue margins,
demonstrating their precision and effectiveness in arriving at the best answers [2]. Wu et al.
[4] proposed numerous more Dantzig-Wolfe decomposition and column generation (DWCG)
strategies for the CFLPP issue. These ideas have led to advancements in technology for solving
integrated facility placement and production planning problems. However, their capacity to
resolve the CFLPP issue is still restricted. Romeijn et. al. suggested the branch-and-price
method and the approximation algorithm [10].
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Methodology:

In order to enhance decision-making and computational efficiency, this study
investigates numerical optimization techniques for production scheduling in the cooking oil
industry, making use of the Python SciPy and NumPy libraries. The core Python package for
numerical computing is called NumPy. The NumPy n-dimensional array, which is its main
data structure, is comparable to a Python MATLAB matrix. Developed on top of NumPy,
SciPy is a set of modules that address a variety of computing challenges in fields such as
statistics, linear algebra, linear programming, discrete equations, image processing,
interpolation, optimization, sparse matrices, and clustering. Together, NumPy and SciPy
encompass elements from different Toolboxes and the fundamental capabilities of the
MATLAB product [8]. Python's versatility allows it to optimize model parameters, increase
engineering design profitability, and meet quantitative objectives. Pyomo, GEKKO, and SciPy
packages are utilized for optimization purposes [3]. The optimization was done in Python
using the GEKKO package. GEKKO, a Python library, uses machine learning and
optimization capabilities to solve complicated problems like: Mixed-integer and differential
algebraic difficulties, Large-scale optimization (LP, QP, NLP, MILP, and MINL). As an
object-oriented module, GEKKO supports local execution, making it an effective tool for
optimization and machine learning tasks [2].

GEKKO and Pyomo packages were previously utilized to solve production planning
challenges in inventory systems. In real-world optimization applications, strategies that ignore
uncertainty have little practical relevance since data variations can severely impact
performance. Min-max optimization is an effective method for developing robust solutions
that account for uncertainty [7]. For this aim, GEKKO has complex programming codes that
require a significant amount of time and money to execute.

The purpose of this work is to optimize inventory systems by identifying the optimal
values for decision variables that maximize net profit using numerical linear programming
techniques. Equations and objective functions are two of the many approaches used in this
study to maximize the production of cooking oil, i.e, Dense matrices. Python has a package
called SciPy. SciPy is a comprehensive library built on NumPy that provides a wide range of
scientific computing modules for a variety of computational tasks, including linear algebra,
linear programming, statistics, sparse matrices, clustering, differential equations, image
processing, interpolation, and symbolic mathematics. With greater flexibility than that of
widely used modeling languages for algebra, like Pyomo, CasADi, GAMS, AMPL, or JuMP, it
is a general-purpose tool for modeling and solving optimization issues. Differential equation-
constrained problems, or optimum control issues, are especially significant. Despite being
created in self-contained C++, CasADi has fully working interfaces with Octave, MATLAB,
and Python, providing the most convenient way to utilize it. Since its launch in late 2009, it
has been effectively applied in a variety of sectors, such as process control, robotics, and
aerospace, in addition to academic instruction.

We apply numerical optimization techniques for production planning in the cooking
oil industry using Python's SciPy and NumPy modules to increase computational effectiveness
and decision-making. Because supply chain operations are becoming more complicated and
because there is a growing need for economical and sustainable production processes,
advanced optimization approaches are increasingly necessary. The goal of this project is to
create a robust computational framework by integrating SciPy's approaches for dense matrices
and linear programming with NumPy's notable capabilities for solving nonlinear issues.

Here's the computational formulation that presents how to formulate a numerical
optimization problem:

min f(b)
bEB
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Where the set B € R" represents all feasible solutions, and £ B — R is the objective
function to be minimized. It is standard practice to express such problems as minimization
tasks. A maximization problem can be converted into a minimization problem using the
following identity: max {f(4): » EB}= —min {—/f(): b EB}.

If the feasible set B is empty, the problem is termed 7nfeasible, and the objective
value is conventionally written as:

Min {f(b): b EB} = +x.

On the other hand, if the function f is not bounded from below Whitin B, the

problem is referred to as wnbounded, and the objective value is given by:
Min {f(b): b EB} = —.

The goal of solving such a problem is to determine an optimal solution, that is,
a point
b* €B satistying:

S <£0) for all 4 €B.

An optimal solution is not necessarily unique. A point b € B is considered a /locally
optimal solution if there exists a positive number & > 0 such that:

JUb) =f1b) for all » € B such that ||b— bl <e.
Linear Programming with SciPy Optimization:

The process of selecting the best option from a range of feasible or
constraint-compliant alternatives is known as optimization. Actually, Python can
be used to increase the profitability of a future engineering design; model
parameters should be optimized to better fit the data or accomplish other kinds of goals
that use variables and equations to be expressed numerically [2]. For Example, SciPy,
with its advanced mathematical features, including integration, optimization, special
functions, and solvers for ordinary differential equations, which is based on the NumPy
array architecture, raises the bar for scientific programming [9]. The following types
of problems are associated with linear programming (LP), commonly referred to as
linear optimization:

Maximize Z = axi + oxz + o+ opa(l)
Subject to
anxi + axr + ot anx, Shanx + anseo + v+ azx, b
amx1 + apxo + ot e, <b, x1, X0, .., 5, 20

Combining the row vectors into a matrix of size m by n. A produces the
condensed representation.
Production Planning Problem:

The planning problem starts with defining the client demand that the production
plan must satisfy, while considering the limited production resources that cannot be
carried over from one period to the next. The objective of the production scheduling
problem is to maximize profit. To solve it, both resource availability and demand are
assumed to be fixed and allocated accordingly. Typically, only a portion of future demand
is known. Consequently, although forecasts of future demand may be uncertain, they are
still relied upon. Revenue decreases when demand goes unfulfilled Whitin a given period.
Stephen C. Graves formulates a production planning problem focused on maximizing
profits after accounting for manufacturing costs, inventory holding costs, and lost sales.
To solve the objective function, it is assumed that the coefficients, as well as the inequality
and equality constraints, are known values [2][1][6].

Framework of Linear Programming (LP) for Production Planning Dilemma:

Three essential components of the optimization function must be defined to describe

the general formulation of this problem. Since the objective is to determine the production
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level for each month, there are twelve decision variables corresponding to the monthly
production rates. Examining the first month, we obtain the following:

The cost of manufacture is axi. Assuming that the ending inventory level, xi1-pi,
is non-negative, the inventory-holding cost is equal to Ai(x1-p1). The first month’s total
expense is therefore equal to axi + hi(xr —pi).

For the second month, the cost of manufacture is ox.. The ending inventory is
non-negative if it is (x1 —p1 +x2 —p2). Since this month’s beginning inventory level is xi
—p1, the production levelis xz, and p» is the demand for this month, the inventory-holding
cost is Ma(x1 —p1 + 52 — p2). Thus, the entire expense for the second month is equal to
o2 + ha(xr —pr + 52 —po).

The following conclusion is reached after further consideration: The full planning
horizon’s
Production cost, calculated using standard summation notation, is given by

Fale + by (Ticy i = Zicap) |-
Since the third assumption states that deficiency is not permitted, we must ensure
L xi—X_pi=0 forj=12314

i=1"1
As a result, a set of 28 functional constraints is produced. Naturally, as they are
output levels, we also require »; =0 for all 7/ = 1, 2, 14.
The Complete Record Formulation:

Finally, we have formed the following formula:

14 j j
Minimizez ¢jXj + h; z X — z Di
]:1 i=1 i=1
Subject to L xi =X pi=0 forj=1,2314

x; 20 forj=12,14

This linear program includes 14 non-negativity constraints, 14 inventory balance
constraints (to avoid shortages), and a total of 14 decision variables. Altogether, it results
in 28 functional constraints. The values of 4, ¢, p,, and »z must be replaced with specific
numerical values in practical applications [2][11][12].

Algorithm Methodology for Resolving the Issue:

First, define the production planning issue using the constraints and interval
numbers in the target function. Determine the interval values in step two by using the
required intervals as a guide. Convert the nondeterministic issue into a deterministic
problem in step three. To resolve the problem, utilize the SciPy software suite. At the
end, offer a conclusion. Utilizing two ingredients, P and Q, to produce the products 1
and 2, the cooking oil sector represents a fundamental production planning challenge. P
= 55 and @ = 72 units are currently in stock. You will need the following to manufacture
it: 12 units of Q and 5 units of P are needed to produce Product 1. Six units of @ and
seven units of P are required to produce Product 2.

Eight units of Product 2 and a maximum of nine units of Product 1 are
available. Product 1 can be sold for 200, while Product 2 can be sold for 250. To
maximize profit is the aim of this production problem. To address this difficulty and
perhaps develop a viable solution, we must determine the contour plot’s limitations and
label it with the set of feasible choices. Establish the upper and lower bounds as well as a
realistic, impartial response. In certain instances, the upcoming subsection will address
this issue.

Case 1: Equations and Objective
For small problems, using equations and an objective function is advantageous, as
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they result in clear and easily modifiable optimization models.
Listing 1. Python code for solving the production planning problem using SciPy
from scipy. optimize import linprog
#The objective function’s coefficients
¢ = [-200, -250]
# Constraint coefficients
A=15,7],]12, 6]
b = [55,72]
# Bounds for the variables
x0 _bounds = (0, 9)
x1 _bounds = (0, 8)
# Solve the linear programming problem
res = linprog (c, A_ub =A, b_ub =b, bounds = [ x0_bounds, x1
_bounds])
# Print x1 and x2 ’s ideal values.
print (" Value of x17, res. x [0])
print " Value of x27; res. x [1])
# Print the value of the maximum profit
print ( Profit Value?’, - res. fun)
By using the previous Python code implemented with the SciPy optimization
module, the following outcomes are obtained:

Maximum Profit Z Value of x Value of x;
2033.3333333333335 | 3.2222222222222228 | 5.5555555555555555
Case 2: Dense Matrices

SciPy also supports dense matrix representations. For SciPy's linprog, the bounds
input should be provided as a sequence of tuples, each specifying the lower and upper
limits for a particular variable. We used NumPy arrays to define the constraints, limits,
and coefficients of the objective function. After solving the linear programming problem
with the linprog function, the solution remained unchanged.

Listing 2. Python code using dense matrix bounds with SciPy
from scipy. Optimize import linprog import numpy as np
# Coefficients of the objective function ¢ = np. array ([-200, -250])
# Coefficients of the constraints A = np. array (|5, 7], [12, 6])
b = np. array ([55, 72])
# Bounds for the variables x0 _bounds = (0, 9)
x1 _bounds = (0, 8)
# Define the bounds
bounds = [ x0_bounds, x1 _bounds]
# Solve the linear programming problem
res = linprog (c, A_ub =A, b_ub =b, bounds= bounds)
# Print the optimal values of x1 and x2 print " Value of x17, res. x [0])
print  Value of x2?, res. x [1])
The following outcomes were obtained by using the previous code:
Profit Value Z Value of x Value of x»
2033.3333333333335 | 3.2222222222222228 | 5.5555555555555555

Results:
In this section, some results are given regarding production planning problems.
Mathematical Results Using a Contour Plot:

A contour plot can be used to identify the optimal solution. In this example, the

October 2025 | Vol 07 | Issue 04 Page | 2285



« International Journal of Innovations in Science & Technology
productlon of product 1 must be greater than 0 but less than 9, while the production of
product 2 must be greater than 0 but less than 8. For products 1 and 2, only 55 units of
ingredient P and 72 units of ingredient (Q are available. The optimal solution is determined

using the contour plot of the previously defined objective function.
Cooking Oil Production Problem

Product 2 (250L)
i

-1000

Product 1 (200L)

Figure 1. Contour plot
Listing 3. Contour Plot for Cooking Oil Production Problem using SciPy and
Plotly

import numpy as np

from scipy. Optimize import, minimize import plotly. graph_objects as go
# Define the objective function def objective (x):

return -(200* x [0] + 250* x [1])

# Define the constraints

def constraintl (x):

return 5* x [0] + 7* x [1] - 55

def constraint2 (x):

return 12* x [0] + 6* x [1] - 72

# Define the bounds

bounds = [(0, 9), (0, 8)]

x0 = [1, 1]

# Define the constraints dictionary

cons = ({* type”’ ineq’,” fun” constraintl},’

{’ type”’ ineq’, fun’: constraint2})

# Run the optimization

res = minimize (objective, x0, method => SLSQP’, bounds=bounds, constraints=
cons)

# Generate a grid of x1 and x2 values

x1 = np. linspace (0, 9, 100)

x2 = np. linspace (0, 8, 100) X1, X2 = np. meshgrid (x1, x2)

# Calculate the objective function for each point in the grid

7. = -(200* X1 + 250* X2)

# Create a contour plot

fig = go. Figure (data = [ go. Contour (x=x1, y=x2, z=Z, contours= dict(start =
1000, end =0, size =100))])

fig. update_layout (title =” Cooking Oil Production Problem’,

xaxis_title =" x1 (200 L),

yaxis_title =" x2 (250 L)’

fig. show ()

October 2025 | Vol 07 | Issue 04 Page | 2286



OPEN . . . .
International Journal of Innovations in Science & Technology

Contour Plot: Cooking Oil Production Problem
%

optimal (9.00, 8

Product 2 (250L)

Figure 2. SciPy’s Cooking Oil contour plot

This is the graphical representation of a contour plot for SciPy code. It gives us a better
understanding as contour lines for the profit functions are shown in it, and the feasible
region is shaded in it.

Hence, the optimal result is,

Profit Value Value of x Value of x;
2033.3333333333335 | 3.2222222222222228 | 5.5555555555555555
Discussion:

The presented contour plots (Figures 1 and 2) illustrate the optimization framework
applied to the cooking oil production problem, modeled as a linear programming task in
Python. Both visualizations depict the relationship between the two decision variables. x;
(200L batches) and x, (250L batches) subject to production constraints and the objective of
maximizing profit.

Figure 1 complements this analysis by providing a heatmap-style contour visualization,
where darker regions denote lower objective function values and lighter regions represent
higher ones. This figure reinforces the earlier finding that maximum profit occurs toward the
upper boundary of the feasible set. The gradient of the contour lines reflects the trade-off

between producing x; and Product X,, showing how increases in one product can only be
achieved at the expense of the other Whitin the restricted resource framework.

Figure 2, the contour plot provides a clear representation of the feasible region
(highlighted in green) formed by the intersection of linear constraints. Each contour line
corresponds to a constant objective function value, with lines further from the origin
indicating higher profit levels. The optimal solution is marked explicitly at the boundary of the
feasible region. This location confirms that the highest achievable profit is obtained when
production is pushed to the limit of the constraints. The visualization demonstrates the typical
behavior of linear optimization problems, where the optimal solution coincides with a corner
point of the feasible region.

Taken together, these figures confirm the robustness of the optimization results. The
feasible region and the profit contours are consistent with the theoretical underpinnings of
linear programming. Importantly, both plots highlight the sensitivity of the solution to the
imposed constraints: relaxing any resource limit would expand the feasible region and
potentially shift the optimal point further outward, leading to higher profitability. Conversely,
tightening constraints would shrink the feasible area and reduce the maximum achievable
profit. From a practical perspective, the results provide decision-makers in production
planning with visual and quantitative evidence for allocating resources between competing
products. The figures demonstrate that linear programming not only identifies the numerical
optimal solution but also provides a graphical means to understand constraint interactions and
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trade-offs. Such visualizations can enhance managerial decision-making by offering insight

into how changes in production capacity, raw material availability, or demand could affect the

optimal production strategy.

Conclusion:

The purpose of this study was to use linear programming (LP) to find the most
effective production planning method for the cooking oil business under nominal
limitations. In contrast to the earliest studies that used the GEKKO optimization
module, this work solved the LLP problem using Python’s SciPy package. According
to the results, SciPy is a more efficacious option for resolving organized linear
programming issues than GEKKO since it produced optimum solutions in a
slightly less amount of computational time. In addition, contour plots were created
to provide a more exhaustive understanding of select variables by graphically
representing executable areas and perfect solutions. The solutions’ accuracy and
consistency, as well as their magnified execution speed, attest to SciPy’s relevance for real-
world industrial production planning applications, especially those where speedy and
trustworthy optimization is vital.
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