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roduction planning optimization is the act of effectively distributing limited 
resources, including labor, materials, and equipment, to achieve production 
targets while optimizing profit and reducing waste. This study analyzes how 

optimization methods can be applied to production planning models in the cooking oil 
sector, with a particular emphasis on how linear programming (LP) can be used to 
handle usable quality limitations to maximize gross profit. The goal of this study is to 
find the best values for decision variables across a variety of inventory-based production 
frameworks. It is important in a manufacturing zone where input bound must be 
weighed against consumer needs, such as the industry of cooking oil. In order to 
provide a computational method for determining the perfect production levels, the 
study establishes a linear programming (LP) model and solves it using Python’s SciPy 
package. This optimization method uses objective functions involving dense matrices 
and numerical equations to solve the production planning problem. In calculating 
output levels and profit margins, the numerical results show a significant convergence, 
rating the effectiveness and credibility of the suggested approach in providing the 
optimal solution for practical industrial planning. 
Keywords: Optimization; Linear Programming (LP); Python; Production Planning 
Problem; SciPy. 
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Introduction: 
The purpose of optimization techniques is to find the optimal solution that satisfies 

all requirements. Actually, the goal of this research is to employ software and numerical 
optimization for linear programming to discover the optimal values of various inventory 
systems' decision-making variables to optimize net profit. Additionally, models of the cooking 
oil production problem (production planning problem) were fitted with the optimum process 
using a variety of methods, including objectives and equations, dense matrices. In a chain of 
closed-loop supplies, the goal of production planning, and more especially lot sizing, is to 
make the most effective utilization of resources Whitin the planning horizon to meet needs 
through manufacturing and remanufacturing. Since the early 20th century, scholars have 
focused on production planning. The first researchers on it were Wagner and Whitin. They 
used forward dynamic programming to address a production planning problem for a single 
product, one stage, and several periods without capacity limitations. Among the many issues 
covered in production planning research, lot sizing is one of the most complicated [1]. 

Finding the best answer that meets all needs is made easier with the use of optimization 
techniques [2]. Choosing the best option from a range that satisfies the requirements and does 
not go against any constraints is known as optimization [2]. Finding the best solution that 
meets every restriction is the aim of optimization strategies. This method was used with several 
formats, applying formulas, goals, dense matrices, and sparse matrices to many models of the 
production planning issue, most notably the difficulty of producing cooking oil [2][3]. 

Usually, optimization problems are used to formulate and solve production planning 
difficulties [4]. Businesses use production planning as a strategic method when deciding how 
to plan their product manufacturing. To ensure efficient and effective production processes, 
it entails identifying the product to be produced, production amount, capacity planning, 
material requirements, scheduling timelines, and other relevant details [2][3][4][5]. 

Maximizing income at fixed, known resource and demand levels is the aim of the 
production planning problem. Finding the best production plan to maximize income while 
keeping in mind demand and resource limits is the goal [2]. 

The following significant checkpoints are part of the production planning process: 
Analysis of customer demand, Planning production capacity, Control finance, quality, and 
manufacturing, Evaluate and enhance the production process, and Finish manufacturing the 
product. From demand research through final production and delivery, these benchmarks 
stand for the important phases of the production planning process [2]. 

A factory that produces cooking oil will take the following factors into account when 
planning its production: Choose the most effective order of operations for obtaining raw 
ingredients, processing, producing, packing, and distributing cooking oils. To help with 
production planning, represent this sequence as an objective function in a mathematical model. 
To account for uncertainty, include interval data in both the objective function and the 
limitations. This will produce a more robust optimization approach for the production 
planning problem [2]. Establish and optimize processes, including product concentration 
levels, for transforming raw materials into finished commodities, raw material mixing ratios, 
and packaging needs. Represent these processes and actions as constraints in the mathematical 
model to ensure that the optimization function generates feasible and practical solutions. The 
purpose of this work is to optimize inventory systems by identifying the optimal values for 
decision variables that maximize net profit using numerical linear programming techniques. 
The recommended approach reduces waste, increases profitability, and optimizes production 
schedules while taking into account real-world constraints for the cooking oil sector. Since the 
early 1950s, when production planning problems were first defined and treated as optimization 
problems, a vast body of literature has grown. Extensive use of Enterprise Resource Planning 
systems, together with advances in scientific computing and information technology, has made 
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these methodologies more accessible to a broader industry. This chapter examines the 
fundamental formulations that have dominated academic research and industry practice for 
the past fifty years, weighing their advantages and disadvantages, and discussing some 
interesting new avenues that have recently emerged. We emphasize the difficulty in 
establishing expected lead times and focus on models that aid in decisions on production 
quantities and order release over time [4]. 
Objectives of the Study: 

The main objective of this study is to develop and demonstrate a computational 
framework for optimizing production planning in the cooking oil sector using Python’s SciPy 
library. Specifically, the research aims to design and implement a linear programming (LP) 
model that effectively allocates limited resources such as labor, materials, and equipment to 
maximize gross profit while meeting demand and quality constraints. By focusing on 
inventory-based production frameworks, the study seeks to identify optimal decision variable 
values that balance input limitations against consumer requirements, thereby providing 
actionable insights for industrial applications. 
Novelty of the Statement: 

The novelty of this work lies in its integration of Python’s SciPy optimization tools 
into the context of production planning for the cooking oil industry, an application domain 
that has not been extensively explored in existing literature. Unlike traditional approaches that 
rely on generic optimization software or theoretical models, this study delivers a practical, 
open-source, and computationally efficient solution that leverages dense matrix operations 
and numerical algorithms for real-world industrial planning. The significant convergence of 
numerical results underscores the reliability of the proposed method, highlighting its potential 
to serve as a credible and cost-effective alternative for industries seeking to optimize 
production processes while enhancing profitability. By using Python’s SciPy optimization 
tools, one can obtain more efficient results in the cooking oil industry. 
Literature Review: 

Historically, the first software to adapt to changes in hardware has been dense linear 
algebra (DLA). This is because DLA is an effective technique for identifying and putting into 
practice solutions to problems presented by novel designs, and it is essential to the accuracy 
and effectiveness of a wide range of applications [6]. A common operation in high-
performance and scientific applications is sparse matrix vector multiplication (SpMV), which 
is often the cause of application performance constraints. An accessible and current 
introduction to the CasADi framework is provided in this article. Over the past seven years, 
the CasADi framework has undergone several design advancements [5]. The nested issue 
formulation allows us to identify solutions that perform well across a wide range of possible 
outcomes, resulting in a robust and reliable solution [7]. With the help of SciPy, scientists, 
engineers, and developers may tackle challenging problems in a variety of fields [8]. While the 
sparse matrix representation greatly affects the speed of the final application, selecting the 
right representation usually requires expert understanding as well as some experimentation [9]. 

Numerous ways to solve the integrated facility placement and production planning 
problems have emerged. The employed methods' numerical results demonstrated a 
noteworthy convergence in forecasting the production lines and revenue margins, 
demonstrating their precision and effectiveness in arriving at the best answers [2]. Wu et al. 
[4] proposed numerous more Dantzig-Wolfe decomposition and column generation (DWCG) 
strategies for the CFLPP issue. These ideas have led to advancements in technology for solving 
integrated facility placement and production planning problems. However, their capacity to 
resolve the CFLPP issue is still restricted. Romeijn et. al. suggested the branch-and-price 
method and the approximation algorithm [10]. 
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Methodology: 
In order to enhance decision-making and computational efficiency, this study 

investigates numerical optimization techniques for production scheduling in the cooking oil 
industry, making use of the Python SciPy and NumPy libraries. The core Python package for 
numerical computing is called NumPy. The NumPy n-dimensional array, which is its main 
data structure, is comparable to a Python MATLAB matrix. Developed on top of NumPy, 
SciPy is a set of modules that address a variety of computing challenges in fields such as 
statistics, linear algebra, linear programming, discrete equations, image processing, 
interpolation, optimization, sparse matrices, and clustering. Together, NumPy and SciPy 
encompass elements from different Toolboxes and the fundamental capabilities of the 
MATLAB product [8]. Python's versatility allows it to optimize model parameters, increase 
engineering design profitability, and meet quantitative objectives. Pyomo, GEKKO, and SciPy 
packages are utilized for optimization purposes [3]. The optimization was done in Python 
using the GEKKO package. GEKKO, a Python library, uses machine learning and 
optimization capabilities to solve complicated problems like: Mixed-integer and differential 
algebraic difficulties, Large-scale optimization (LP, QP, NLP, MILP, and MINL). As an 
object-oriented module, GEKKO supports local execution, making it an effective tool for 
optimization and machine learning tasks [2]. 

GEKKO and Pyomo packages were previously utilized to solve production planning 
challenges in inventory systems. In real-world optimization applications, strategies that ignore 
uncertainty have little practical relevance since data variations can severely impact 
performance. Min-max optimization is an effective method for developing robust solutions 
that account for uncertainty [7]. For this aim, GEKKO has complex programming codes that 
require a significant amount of time and money to execute. 

The purpose of this work is to optimize inventory systems by identifying the optimal 
values for decision variables that maximize net profit using numerical linear programming 
techniques. Equations and objective functions are two of the many approaches used in this 
study to maximize the production of cooking oil, i.e, Dense matrices. Python has a package 
called SciPy. SciPy is a comprehensive library built on NumPy that provides a wide range of 
scientific computing modules for a variety of computational tasks, including linear algebra, 
linear programming, statistics, sparse matrices, clustering, differential equations, image 
processing, interpolation, and symbolic mathematics. With greater flexibility than that of 
widely used modeling languages for algebra, like Pyomo, CasADi, GAMS, AMPL, or JuMP, it 
is a general-purpose tool for modeling and solving optimization issues. Differential equation-
constrained problems, or optimum control issues, are especially significant. Despite being 
created in self-contained C++, CasADi has fully working interfaces with Octave, MATLAB, 
and Python, providing the most convenient way to utilize it. Since its launch in late 2009, it 
has been effectively applied in a variety of sectors, such as process control, robotics, and 
aerospace, in addition to academic instruction. 

We apply numerical optimization techniques for production planning in the cooking 
oil industry using Python's SciPy and NumPy modules to increase computational effectiveness 
and decision-making. Because supply chain operations are becoming more complicated and 
because there is a growing need for economical and sustainable production processes, 
advanced optimization approaches are increasingly necessary. The goal of this project is to 
create a robust computational framework by integrating SciPy's approaches for dense matrices 
and linear programming with NumPy's notable capabilities for solving nonlinear issues. 

Here's the computational formulation that presents how to formulate a numerical 
optimization problem:  

min f (b) 

b∈B 
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Where the set B ⊆ Rn represents all feasible solutions, and f: B → R is the objective 
function to be minimized. It is standard practice to express such problems as minimization 
tasks. A maximization problem can be converted into a minimization problem using the 

following identity: max {f (b): b ∈ B} = − min {−f (b): b ∈ B}. 
If the feasible set B is empty, the problem is termed infeasible, and the objective 

value is conventionally written as: 

Min {f (b): b ∈ B} = +∞. 
On the other hand, if the function f is not bounded from below Whitin B, the 

problem is referred to as unbounded, and the objective value is given by: 

Min {f (b): b ∈ B} = −∞. 
The goal of solving such a problem is to determine an optimal solution, that is, 

a point 

b∗ ∈ B satisfying: 

f (b∗) ≤ f (b) for all b ∈ B. 

An optimal solution is not necessarily unique. A point b̄ ∈ B is considered a locally 
optimal solution if there exists a positive number ε > 0 such that: 

f ( b̄) ≤ f (b) for all b ∈ B such that  b − ̄b  ≤ ε. 
Linear Programming with SciPy Optimization: 

The process of selecting the best option from a range of feasible or 
constraint-compliant alternatives is known as optimization. Actually, Python can 
be used to increase the profitability of a future engineering design; model 
parameters should be optimized to better fit the data or accomplish other kinds of goals 
that use variables and equations to be expressed numerically [2]. For Example, SciPy, 
with its advanced mathematical features, including integration, optimization, special 
functions, and solvers for ordinary differential equations, which is based on the NumPy 
array architecture, raises the bar for scientific programming [9]. The following types 
of problems are associated with linear programming (LP), commonly referred to as 
linear optimization: 

Maximize Z = c1x1 + c2x2 + · · · + cnxn(1) 
Subject to 
a11x1 + a12x2 + · · · + a1nxn ≤ b1 a21x1 + a22x2 + · · · + a2nxn ≤ b2 
am1x1 + am2x2 + · · · + amnxn ≤ bm x1, x2, . . ., xn ≥ 0 

Combining the row vectors into a matrix of size m by n. A produces the 
condensed representation. 
Production Planning Problem: 

The planning problem starts with defining the client demand that the production 
plan must satisfy, while considering the limited production resources that cannot be 
carried over from one period to the next.  The objective of the production scheduling 
problem is to maximize profit. To solve it, both resource availability and demand are 
assumed to be fixed and allocated accordingly. Typically, only a portion of future demand 
is known. Consequently, although forecasts of future demand may be uncertain, they are 
still relied upon.  Revenue decreases when demand goes unfulfilled Whitin a given period. 
Stephen C. Graves formulates a production planning problem focused on maximizing 
profits after accounting for manufacturing costs, inventory holding costs, and lost sales.  
To solve the objective function, it is assumed that the coefficients, as well as the inequality 
and equality constraints, are known values [2][1][6].  
Framework of Linear Programming (LP) for Production Planning Dilemma: 

Three essential components of the optimization function must be defined to describe 
the general formulation of this problem. Since the objective is to determine the production 
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level for each month, there are twelve decision variables corresponding to the monthly 
production rates. Examining the first month, we obtain the following: 

The cost of manufacture is c1x1. Assuming that the ending inventory level, x1-p1, 
is non-negative, the inventory-holding cost is equal to h1(x1-p1). The first month’s total 
expense is therefore equal to c1x1 + h1(x1 − p1). 

For the second month, the cost of manufacture is c2x2. The ending inventory is 
non-negative if it is (x1 −p1 +x2 −p2). Since this month’s beginning inventory level is x1 
−p1, the production level is x2, and p2 is the demand for this month, the inventory-holding 
cost is h2(x1 − p1 + x2 − p2). Thus, the entire expense for the second month is equal to 
c2x2 + h2(x1 − p1 + x2 − p2). 

The following conclusion is reached after further consideration: The full planning 
horizon’s 
Production cost, calculated using standard summation notation, is given by 

∑ [𝑐𝑗𝑥𝑗 + ℎ𝑗(∑ 𝑥𝑖
𝑗
𝑖=1 − ∑ 𝑝𝑖

𝑗
𝑖=1 ) ]14

𝑗=1 . 

Since the third assumption states that deficiency is not permitted, we must ensure 

∑ 𝑥𝑖
𝑗
𝑖=1 − ∑ 𝑝𝑖

𝑗
𝑖=1  ≥ 0    for j =1,2,3,14 

As a result, a set of 28 functional constraints is produced. Naturally, as they are 
output levels, we also require xj ≥ 0 for all j = 1, 2, 14. 
The Complete Record Formulation: 
Finally, we have formed the following formula: 

Minimize ∑ [cjxj + hj (∑ xi

j

i=1

− ∑ pi

j

i=1

) ]

14

j=1

 

Subject to  ∑ 𝑥𝑖
𝑗
𝑖=1 − ∑ 𝑝𝑖

𝑗
𝑖=1  ≥ 0    for j =1,2,3,14 

0jx  for j=1,2,14 

This linear program includes 14 non-negativity constraints, 14 inventory balance 
constraints (to avoid shortages), and a total of 14 decision variables. Altogether, it results 
in 28 functional constraints. The values of hj, cj, pj, and mj must be replaced with specific 

numerical values in practical applications [2][11][12]. 
Algorithm Methodology for Resolving the Issue: 

First, define the production planning issue using the constraints and interval 
numbers in the target function. Determine the interval values in step two by using the 
required intervals as a guide. Convert the nondeterministic issue into a deterministic 
problem in step three. To resolve the problem, utilize the SciPy software suite.  At the 
end, offer a conclusion. Utilizing two ingredients, P and Q, to produce the products 1 
and 2, the cooking oil sector represents a fundamental production planning challenge.  P 
= 55 and Q = 72 units are currently in stock. You will need the following to manufacture 
it: 12 units of Q and 5 units of P are needed to produce Product 1. Six units of Q and 
seven units of P are required to produce Product 2. 

Eight units of Product 2 and a maximum of nine units of Product 1 are 
available. Product 1 can be sold for 200, while Product 2 can be sold for 250. To 
maximize profit is the aim of this production problem. To address this difficulty and 
perhaps develop a viable solution, we must determine the contour plot’s limitations and 
label it with the set of feasible choices. Establish the upper and lower bounds as well as a 
realistic, impartial response. In certain instances, the upcoming subsection will address 
this issue.  
Case 1: Equations and Objective 

For small problems, using equations and an objective function is advantageous, as 
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they result in clear and easily modifiable optimization models. 
Listing 1. Python code for solving the production planning problem using SciPy 

from scipy. optimize import linprog 
#The objective function’s coefficients 
c = [-200, -250] 
# Constraint coefficients 
A = [5 ,7], [12, 6] 
b = [55,72] 
# Bounds for the variables 
x0 _bounds = (0, 9) 
x1 _bounds = (0, 8) 
# Solve the linear programming problem 
res = linprog (c, A_ub =A, b_ub =b, bounds = [ x0_bounds, x1 
_bounds]) 
# Print x1 and x2 ’s ideal values. 
print (’ Value of x1:’, res. x [0]) 
print (’ Value of x2:’, res. x [1]) 
# Print the value of the maximum profit 
print (’ Profit Value:’, - res. fun) 

By using the previous Python code implemented with the SciPy optimization 
module, the following outcomes are obtained: 

Maximum Profit Z Value of x1 Value of x2 

2033.3333333333335 3.2222222222222228 5.5555555555555555 

Case 2: Dense Matrices 
SciPy also supports dense matrix representations. For SciPy's linprog, the bounds 

input should be provided as a sequence of tuples, each specifying the lower and upper 
limits for a particular variable. We used NumPy arrays to define the constraints, limits, 
and coefficients of the objective function. After solving the linear programming problem 
with the linprog function, the solution remained unchanged.  
Listing 2. Python code using dense matrix bounds with SciPy 

from scipy. Optimize import linprog import numpy as np 
# Coefficients of the objective function c = np. array ([-200, -250]) 
# Coefficients of the constraints A = np. array ([5, 7], [12, 6]) 
b = np. array ([55, 72]) 
# Bounds for the variables x0 _bounds = (0, 9) 
x1 _bounds = (0, 8) 
#  Define the bounds 
bounds = [ x0_bounds, x1 _bounds] 
# Solve the linear programming problem 
res = linprog (c, A_ub =A, b_ub =b, bounds= bounds) 
# Print the optimal values of x1 and x2 print (’ Value of x1:’, res. x [0]) 
print (’ Value of x2:’, res. x [1]) 

The following outcomes were obtained by using the previous code: 

Profit Value Z Value of x1 Value of x2 

2033.3333333333335 3.2222222222222228 5.5555555555555555 

Results: 
In this section, some results are given regarding production planning problems. 
Mathematical Results Using a Contour Plot: 

A contour plot can be used to identify the optimal solution. In this example, the 
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production of product 1 must be greater than 0 but less than 9, while the production of 
product 2 must be greater than 0 but less than 8.  For products 1 and 2, only 55 units of 
ingredient P and 72 units of ingredient Q are available. The optimal solution is determined 
using the contour plot of the previously defined objective function.  

 
Figure 1. Contour plot 

Listing 3. Contour Plot for Cooking Oil Production Problem using SciPy and 
Plotly 

import numpy as np 
from scipy. Optimize import, minimize import plotly. graph_objects as go 
# Define the objective function def objective (x): 
return -(200* x [0] + 250* x [1]) 
# Define the constraints 
def constraint1 (x): 
return 5* x [0] + 7* x [1] - 55 
def constraint2 (x): 
return 12* x [0] + 6* x [1] - 72 
#  Define the bounds 
bounds = [(0, 9), (0, 8)] 
x0 = [1, 1] 
# Define the constraints dictionary 
cons = ({’ type’:’ ineq’,’ fun’: constraint1},’ 
{’ type’:’ ineq’, fun’: constraint2}) 
# Run the optimization 
res = minimize (objective, x0, method =’ SLSQP’, bounds=bounds, constraints= 
cons) 
# Generate a grid of x1 and x2 values 
x1 = np. linspace (0, 9, 100) 
x2 = np. linspace (0, 8, 100) X1, X2 = np. meshgrid (x1, x2) 
# Calculate the objective function for each point in the grid 
Z = -(200* X1 + 250* X2) 
# Create a contour plot 
fig = go. Figure (data = [ go. Contour (x=x1, y=x2, z=Z, contours= dict(start = 
-1000, end =0, size =100))]) 
fig. update_layout (title =’ Cooking Oil Production Problem’, 
xaxis_title =’ x1 (200 L)’, 
yaxis_title =’ x2 (250 L)’) 
fig. show () 
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Figure 2. SciPy’s Cooking Oil contour plot 

This is the graphical representation of a contour plot for SciPy code. It gives us a better 
understanding as contour lines for the profit functions are shown in it, and the feasible 
region is shaded in it. 
Hence, the optimal result is, 

Profit Value Value of x1 Value of x2 

2033.3333333333335 3.2222222222222228 5.5555555555555555 

Discussion: 
The presented contour plots (Figures 1 and 2) illustrate the optimization framework 

applied to the cooking oil production problem, modeled as a linear programming task in 

Python. Both visualizations depict the relationship between the two decision variables. 𝑥1 

(200L batches) and 𝑥2 (250L batches) subject to production constraints and the objective of 
maximizing profit. 

Figure 1 complements this analysis by providing a heatmap-style contour visualization, 
where darker regions denote lower objective function values and lighter regions represent 
higher ones. This figure reinforces the earlier finding that maximum profit occurs toward the 
upper boundary of the feasible set. The gradient of the contour lines reflects the trade-off 

between producing 𝑥1 and Product 𝑥2, showing how increases in one product can only be 
achieved at the expense of the other Whitin the restricted resource framework. 

Figure 2, the contour plot provides a clear representation of the feasible region 
(highlighted in green) formed by the intersection of linear constraints. Each contour line 
corresponds to a constant objective function value, with lines further from the origin 
indicating higher profit levels. The optimal solution is marked explicitly at the boundary of the 
feasible region. This location confirms that the highest achievable profit is obtained when 
production is pushed to the limit of the constraints. The visualization demonstrates the typical 
behavior of linear optimization problems, where the optimal solution coincides with a corner 
point of the feasible region. 

Taken together, these figures confirm the robustness of the optimization results. The 
feasible region and the profit contours are consistent with the theoretical underpinnings of 
linear programming. Importantly, both plots highlight the sensitivity of the solution to the 
imposed constraints: relaxing any resource limit would expand the feasible region and 
potentially shift the optimal point further outward, leading to higher profitability. Conversely, 
tightening constraints would shrink the feasible area and reduce the maximum achievable 
profit. From a practical perspective, the results provide decision-makers in production 
planning with visual and quantitative evidence for allocating resources between competing 
products. The figures demonstrate that linear programming not only identifies the numerical 
optimal solution but also provides a graphical means to understand constraint interactions and 
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trade-offs. Such visualizations can enhance managerial decision-making by offering insight 
into how changes in production capacity, raw material availability, or demand could affect the 
optimal production strategy. 
Conclusion: 

The purpose of this study was to use linear programming (LP) to find the most 
effective production planning method for the cooking oil business under nominal 
limitations. In contrast to the earliest studies that used the GEKKO optimization 
module, this work solved the LP problem using Python’s SciPy package. According 
to the results, SciPy is a more efficacious option for resolving organized linear 
programming issues than GEKKO since it produced optimum solutions in a 
slightly less amount of computational time. In addition, contour plots were created 
to provide a more exhaustive understanding of select variables by graphically 
representing executable areas and perfect solutions. The solutions’ accuracy and 
consistency, as well as their magnified execution speed, attest to SciPy’s relevance for real-
world industrial production planning applications, e specially those where speedy and 
trustworthy optimization is vital. 
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