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he industry 5.0 heralds a transformation of industrial systems by integrating artificial 
intelligence (AI), the Industrial Internet of Things (IIoT), and Multi-Access Edge 
Computing (MEC) to foster resilience, efficiency, and sustainability. However, 

managing the massive volume of computation-intensive tasks generated by heterogeneous 
IIoT devices presents major challenges, particularly in optimizing both latency and energy 
consumption under dynamic industrial conditions. This research proposes a hybrid task 
offloading framework Computational Genetic Particle Swarm Optimization Algorithm 
(CGPCA) to intelligently balance energy efficiency and latency in MEC-enabled IIoT 
networks. CGPCA integrates the global search capability of Genetic Algorithms (GA) with 
the fast convergence of Particle Swarm Optimization (PSO), forming a two-layer optimization 
approach for effective task-device associations and power-bandwidth allocation. The 
framework is evaluated using iFogSim and Edgelands simulation environments, reflecting 
realistic industrial scenarios with variable workloads, device capabilities, and server conditions. 
Results indicate that CGPCA reduces average latency by up to 24%, lowers energy 
consumption by 18–25%, and maintains a task offloading success rate of 94% surpassing 
conventional GA, PSO, and heuristic baselines. The framework also achieves improved load 
balancing and faster convergence time, confirming its suitability for time-sensitive and energy-
constrained IIoT environments. This study contributes to the realization of Industry 5.0 by 
offering an adaptive, intelligent solution that enhances computational efficiency while 
supporting sustainable and human-centered industrial automation. Future directions include 
extending CGPCA to highly mobile IIoT contexts and integrating predictive analytics for 
further performance gains. 
Keywords: Genetic Algorithm (GA), Industrial Internet of Things (IIoT), Industry 5.0, 
Latency Optimization, Multi-Access Edge Computing (MEC), Particle Swarm Optimization 
(PSO), Task Offloading 
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Introduction: 
Industry 5.0 is a revolutionary step toward Industry 4.0 and signifies a shift towards 

human-oriented, sustainable, and resilient industrial ecosystems that combine advanced 
technologies with human intelligence. In comparison to the former paradigms that placed their 
emphasis on only one tool to achieve changes. Industry 5.0 centers the collaborative work of 
humans and machines, along with AI, in building versatile and adaptable production systems 
[1]. This transition allows smart factories to be more apt to the conditions that constantly 
evolve and increase the well-being of the workers and the sustainability of the systems. It is 
also the Industry 5.0, and the key driver behind it is the Industrial Internet of Things (IIoT), 
which links a large variety of sensors, actuators, and devices to generate enormous quantities 
of real-time data that is essential in decision-making. 

The IIoT market in the world is estimated to reach over 1.1 trillion by the year 2028, 
which indicates its core place in the industry of modernity. Nevertheless, at times it is not 
feasible to process such data flows with local IIoT computing devices because of both their 
low computing power and energy limitations. Multi-Access Edge Computing (MEC) appears 
as one of the possible solutions because it forces the decentralization of computation by 
locating the processing power closer to the data source and decreasing latency [2].  

The evolution from Industry 4.0 to Industry 5.0 represents a significant paradigm shift 
in industrial transformation. Whereas Industry 4.0 was characterized by automated and 
interconnected cyber-physical systems as well as data-driven decision-making. Industry 5.0 
returns to the human being as the core of the industrial processes as it places focus on human-
machine cooperation, individualization, and sustainability [3]. Industry 5.0 unites such 
technologies as augmented reality, digital twins, and embodied AI with human skills and 
enables flexible, adaptive production systems able to meet dynamic market and societal needs 
[4]. They allow predictive maintenance, precision manufacturing, and autonomous logistics, 
but generate enormous loads of computation.  

Multi-Access Edge Computing (MEC) is one of the recent technologies that has 
become important in solving these issues through the shift of computation that is previously 
hosted centrally at cloud-based servers to distributed edge-based servers that are more 
proximate to IoT devices [2]. MEC can help to minimize latency by reducing the end-to-end 
delays because the delays can be as high as 100 ms in conventional cloud systems and lower 
than 10ms when using MEC architecture [5].  

This paper aims to address the critical problem of developing an efficient and adaptive 
task offloading framework for MEC-enabled IIoT networks. In particular, the absence of a 
holistic solution that can meet the objectives of Industry 5.0 through the simultaneous 
optimization of energy consumption and latency in heterogeneous, dynamic industrial settings 
is a limiting factor. Existing offloading strategies either overlook latency or energy 
consumption, presume homogeneous devices, or do not consider real-time variations in 
workloads and changes in the network. The proposed framework will maximize the utilization 
of resources in the system and the responsiveness of the system through the distribution of 
tasks among devices dynamically taking into consideration the ability of the devices, the 
requirements of the application, and the network status [3]. 

This paper holds significant academic, practical, environmental, and industrial value. 
Academically, it advances the state-of-the-art in Multi-Access Edge Computing (MEC). 
Practically, it provides industries with intelligent, adaptive task-offloading strategies to create 
smarter, more resilient, and efficient production environments. Environmentally, optimizing 
energy consumption contributes to global sustainability goals and supports green technology 
initiatives in industrial operations. Industrially, it offers actionable insights for sectors such as 
manufacturing, logistics, and energy, where efficient task offloading can reduce operational 
costs and improve productivity.  
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This paper introduced the concept of Industry 5.0, highlighting its sustainable vision, 
and discussed the pivotal role of Multi-Access Edge Computing (MEC) in addressing the 
computational demands of Industrial Internet of Things (IIoT) networks. Key challenges, 
including balancing energy consumption and latency in heterogeneous, dynamic 
environments, were outlined alongside the identification of significant research gaps in existing 
task-offloading strategies.  
Literature Review: 

The purpose of this literature review is to establish a comprehensive understanding of 
the current state of research in Multi-Access Edge Computing (MEC), Industrial Internet of 
Things (IIoT), Industry 5.0, and task offloading strategies. The goal of this review is to find 
important advancements, point out the remaining challenges, and define research gaps that 
are of critical importance in terms of optimizing task offloading in the Industry 5.0 context. 
The synthesis of the recent papers will give the required base to advance intelligent, adaptive, 
and energy-efficient offloading frameworks that can target dual goals of decreasing latency and 
energy expenses in heterogeneous IIoT networks [6][5]. 

While several studies have explored energy-efficient or latency-optimal offloading 
strategies individually, few have addressed both objectives simultaneously in the context of 
MEC-enabled IIoT networks [7]. Existing literature tends to neglect the other metric to 
maximize one to the detriment of the other, and thus, the applicability in resource-constrained 
latency-sensitive industrial settings is limited. As an example, a Dynamic offloading solution 
with a consideration of computational energy efficiency, but the lack of such considerations 
as real-time latency limits that are vital to time-sensitive applications. This assumption is never 
seen in the real world of industrial networks, where devices are heterogeneous and range in 
capabilities and limitations, including individual communication performance requirements 
(e.g., portions of industrial networks are comprised of small devices like sensors as well as 
edge devices like edge gateways) [8]. 

Within the article, Computational Offloading in MEC Networks with Energy 
Harvesting formulates a hierarchical multi-agent reinforcement learning approach when 
minimizing the sum of latency and energy cost. Their Hierarchical Distributed Multi-Agent 
Proximal Policy Optimization (HDMAPPO) hierarchy can perform the task of scalable, 
energy-optimal task offloading among multiple users and servers by bipartitioning the problem 
of task offloading between a high-level location choice and a low-level optimal offloading 
scale. Simulation results gave a surprise to the traditional algorithms as HDMAPPO 
performed better than traditional algorithms in reducing the latency in average task, energy 
consumption, and task discard rates; hence, it is a solution to the problem of energy harvesting 
MEC problem where the energy supply is uncertain and uncontrolled and rhythmic [9]. 

The Lyapunov-based cooperative control using the MARL-based hierarchical 
optimization and RMAB-driven policies make their contributions in terms of keeping the 
energy consumption minimal, the latency low, and the reliability high. The inclusion of these 
high-tech methods into Industry 5.0 systems is virtually assured; however, not only their 
longevity but also the eco-friendly and sustainable industrial sector. These innovations are in 
line with the vision of Industry 5.0 because they ensure a suitable relationship between the 
performance of technologies and energy efficiency, and robust design principles needed in the 
industrial environments of the future [10][11]. 

Minimizing execution latency is a central goal of task offloading in MEC, especially for 
Industrial Internet of Things (IIoT) systems under the Industry 5.0 paradigm. Studies have 
ventured into advanced techniques involving divvying up tasks, smart scheduling, and 
profound reinforcement learning to drastically cut down task completion time. Another 
significant work has come up with a Joint Computation Offloading and Task Caching Strategy, 
in the context of MEC-enabled IIoT. A deep reinforcement learning-based algorithm, DDPG-
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LL, was proposed to optimize offloading decisions as well as cache scheduling to deal with 
dynamic channel state uncertainty and task arrival stochasticity effectively. By parametrically 
approximating the system to a Markov Decision Process and including parameters such as 
priority of tasks and wait time, their approach dynamically varies the task queue of the MEC 
server. The simulation outcomes revealed that they had decreased average task completion 
latency by 15 percent compared to baseline algorithms and brought a steady convergence of 
scheduling policy. Such an approach is especially applicable to Industry 5.0 scenarios in which 
instant responsiveness and flexibility to dynamically changing industrial situations are 
important [12]. 

The given approach implements scalable online policies that take into consideration 
user heterogeneity and mobility, as well as strike a balance in energy consumption and latency. 
Large-scale simulations demonstrated that the RMAB-driven policies reached higher energy 
efficiency, enabling them to cut the average power draw by more than 18 percent relative to 
the existing static baselines, and that the policies could withstand generally non-exponential 
distributions of task lifespan. This proves the applicability of RMAB-based policies in 
heterogeneous IIoT scenarios that demand adaptivity to change in network states [11]. 

Hybrid optimization strategies that fuse heuristic and machine learning-based 
techniques have shown considerable promise in overcoming the challenges of task offloading 
in sparse or resource-constrained MEC environments typical of Industry 5.0 scenarios. These 
techniques work together by taking advantage of the complementary attributes of the various 
algorithms in efficient multi-objective optimization, capacities like workload balancing, delay 
reduction, and energy efficiency. A Hybrid GA-PSO Strategy to Calculate the Task Offloading 
in Sparse Mobile Edge Server (MES) Deployment Scenarios. Knowing that the low MES 
density is a viable limitation of deploying the system, the study assumes that the MES system 
is an undirected, unweighted graph with multi-hop connections available to mobile devices 
using MESs [13]. 
Objectives: 
This research aims to achieve the following main objectives: 

Develop a smart task offloading framework to dynamically optimize energy 
consumption and latency in MEC-enabled IIoT networks. To integrate GA and PSO for task 
offloading optimization in IIoT systems, evaluate their impact on energy efficiency and 
latency. 
Material and Methods: 

This section outlines the methodology adopted to design, implement, and evaluate the 
proposed energy-efficient task offloading framework for Multi-Access Edge Computing 
(MEC) within Industry 5.0 environments. The study focuses on enhancing real-time 
responsiveness and energy conservation in heterogeneous Industrial Internet of Things (IIoT) 
networks by introducing a hybrid optimization algorithm, namely the Computational Genetic 
Particle Swarm Optimization Algorithm (CGPCA). This novel hybrid integrates the global 
search capability of Genetic Algorithms (GA) with the rapid convergence traits of Particle 
Swarm Optimization (PSO), enabling optimal offloading decisions under dynamic conditions. 
A mixed-method research approach is employed, combining system modeling, algorithmic 
development, and simulation-based evaluation. The architecture includes IIoT devices, MEC 
edge servers, and a cloud layer to reflect realistic industrial scenarios.  

Simulation tools such as iFogSim or EdgeCloudSim are used to replicate diverse 
network topologies and workload conditions. Key performance indicators such as energy 
consumption, task completion latency, offloading success rate, and server load distribution are 
used to assess the effectiveness of the proposed framework. This methodology ensures a 
systematic data-driven evaluation of CGPCA and demonstrates its potential to support the 
goals of Industry 5.0: sustainability, efficiency, and intelligent smart industrial systems. 
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Research Design: 
The research adopts a mixed-method approach combining system modeling, 

algorithm development, simulation, and quantitative performance evaluation to address the 
complex challenges of task offloading in Industry 5.0 environments. This paper aims to design 
and verify an intelligent task offloading solution to enhance energy efficiency and minimize 
latency in MEC-empowered IIoT systems. The research process is structured into three key 
stages. To begin with, a system model is developed such that it provides the replication of a 
realistic IIoT setting, which comprises heterogeneous edge devices, a multi-access edge server, 
and a cloud data center. Dynamic model parameters like varying workloads, device energy 
levels, and network conditions are considered in the model. This paves the way for introducing 
the optimization algorithm. 

 
Figure 1. Design and Implementation of Energy-Efficient tasks and their Framework 

Second, the Computational Genetic Particle Swarm Optimization Algorithm 
(CGPCA) is created. It is an algorithm that combines the concept of global exploration posed 
by GA and the rapid convergence of local solutions conducted by PSO to streamline solutions 
involving task-device associations, server selection, and power allocation strategic planning. 
The CGPCA is particularly formulated to address the non-linear and multi-objective 
offloading characteristic of tasks, considering both latency-bound and energy trade-offs. 
Third, tools such as iFogSim or EdgeCloudSim are used to perform simulation-based 
experiments. The simulators allow an experimental testbed that has a controlled environment 
to test different IIoT gadgets and edge-infrastructure scenarios with real-world conditions. 

The simulation-based method provides the possibility of massive testing in a variety 
of conditions, such as a high user density, differences in hardware capabilities, and varying task 
profiles. The experimental design was selected because of the complexity and size of real-life 
MEC systems that which cannot be implemented instantaneously in real time at the research 
level. Simulation can be used to obtain the data that is reproducible and quantifiable, which is 
reflective of the task offloading strategies. In addition, it allows equitable comparisons between 
CGPCA and other baseline algorithms. This study planning helps in the strong validation of 
adaptability, scalability, and efficacy of the proposed model to support the objectives of 
Industry 5.0. 
Proposed Framework CGPCA: 

The main idea of this work is a derivation and implementation of a hybrid optimization 
algorithm, Computational Genetic Particle Swarm Optimization Algorithm (CGPCA), which 
is used to adapt task offloading in energy-constrained and dynamic Multi-Access Edge 
Computing (MEC) systems. CGPCA combines the global search power of Genetic Algorithm 
(GA) and the fast convergence qualities of Particle Swarm Optimization (PSO), which leads 
to a balance between exploration and exploitation of the solutions in real time. 
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Task Offloading Model: 
The task offloading model aims to minimize energy consumption and task execution 

time, two key performance indicators in IIoT-MEC networks [10]. The optimization problem 
is subject to real-world constraints, including: 
Server Capacity Constraints: Each MEC server has limited CPU cycles and memory. 
Device Energy Levels: Mobile IIoT nodes operate on limited battery reserves, and energy-
aware scheduling is crucial. 
Task Deadlines: Tasks must be executed within predefined timeframes to ensure quality of 
service (QoS). 

 
Figure 2. Task Offloading Framework 

This multi-objective optimization model ensures trade-offs are effectively balanced to 
improve system responsiveness without compromising sustainability. 
GA Module: 

In the CGPCA algorithm, the GA module handles the initial population generation 
and evolutionary search. Each chromosome represents a task schedule where genes encode 
task assignments to specific devices or servers. The GA operations include: 
Selection: Using tournament or roulette selection to retain high-fitness individuals. 
Crossover: Combining parent chromosomes to explore new scheduling possibilities. 
Mutation: Introducing random changes to avoid local optima and encourage diversity. 

These operations promote global exploration of the task offloading space and establish 
a strong foundation for convergence refinement [13]. 
PSO Module: 

The PSO module takes the high-quality candidates generated by the GA and performs 
position and velocity updates for further refinement. Each particle’s position reflects a 
potential solution, while its velocity determines how its task offloading decision evolves over 
iterations. PSO fine-tunes the task allocations by considering: 
Current particle performance (personal best), 
The global best-known solution, 
Dynamic task loads and channel conditions. 

By integrating PSO with GA, CGPCA harnesses the advantages of both global 
diversity and local precision, leading to more adaptive and robust offloading solutions in 
volatile IIoT networks [14]. 
Two-Layer Optimization Framework: 

The CGPCA operates within a two-layer optimization framework, each layer focusing 
on a distinct aspect of the task offloading process: 
First Layer: Handles task-device association and MEC server selection, ensuring tasks are 
distributed efficiently based on server load, distance, and device constraints [15]. 
Second Layer: Optimizes power and bandwidth by dynamically adjusting transmission rates 
and energy use to stabilize the network [11]. 
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Figure 3. Overview of Optimization Framework 

Together, the layers form an integrated decision-making model that accounts for 
multiple performance criteria simultaneously, reinforcing the resilience and adaptability 
required in Industry 5.0 environments. 
Simulation Environment and Tools: 

To validate the proposed CGPCA framework, extensive simulations are conducted 
using established MEC and IIoT simulation platforms, such as iFogSim, EdgeCloudSim, and 
MATLAB. These tools enable a detailed, controlled analysis of network behavior, task 
characteristics, and energy dynamics across different scenarios. 
Validation Approach: 

Comparative validation strategy is utilized to examine the strength and efficiency of 
the suggested Computational Genetic Particle Swarm Optimization Algorithm (CGPCA). The 
CGPCA framework is also compared to several popular optimization algorithms as pure GA 
(Genetic Algorithm), pure PSO (Particle Swarm Optimization), and other heuristic references, 
including greedy offloading or round-robin scheduling.  The algorithms are all simulated under 
the same conditions and differ by the density of the IIoT nodes, the arrival pattern of the 
tasks, and the overall network circumstances, according to tools such as iFogSim or 
EdgeCloudSim. 

Different performance parameters, such as energy consumption, latency, offloading 
rate, load balancing, and convergence time, are measured in diverse test scenarios so that they 
can be used consistently and generally. In order to have statistical rigor, the outcome of a 
number of simulation runs (e.g., 30 iterations per scenario) is presented using mean and 
standard deviation and confidence intervals. ANOVA or t-tests, where applicable, are used to 
decide the significance of observed differences between CGPCA and competing algorithms. 
This validation procedure will ensure that the gains are not pure chance but part of what the 
framework can be capable of when subjected to real-world environments of IIoT, such that 
under multiple variables, the gains will accumulate (which is a complete form of optimization). 

The proposed CGPCA model for task offloading in Industry 5.0. Incorporating multi-
layer architecture, modeling a hybrid optimization algorithm, imperfect simulation settings, 
and strict performance analysis, the investigation is in a position to present helpful insight into 
the research and even industrial practice. The approach equally complies with the industry 5.0 
ambitions; sustainability, efficiency, and by considering the latency and energy-related issues 
in IIoT-MEC systems. In the subsequent chapter, the simulation findings and comparative 
studies are presented to verify the performance advantages and practical application of the 
suggested CGPCA-based task offloading framework [16]. 
Result and Discussion: 

This section presents the simulation results and analytical discussion of the proposed 
Computational Genetic Particle Swarm Optimization Algorithm (CGPCA) developed to 
enhance task offloading efficiency in MEC-enabled IIoT networks under the Industry 5.0 
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paradigm. The main motivation of the research was to minimize the energy requirements, 
minimize the latency of a task being performed, as well as ensure balanced loads on the servers 
in a heterogeneous industrial setup through the best allocation strategy of tasks [17]. In order 
to prove the effectiveness of the work of the CGPCA framework, a set of simulation tests and 
experiments was carried out based on edge computing simulations like iFogSim and 
EdgeCloudSim. 

These tools served my purpose in the modeling of the practical IIoT network scenarios 
with heterogeneous devices, several nodes of MEC, and the centralized cloud infrastructure. 
Different simulation scenarios were defined to match changing workloads, different device 
capabilities, and network conditions. The comparison relied on important performance 
metrics such as the latency of task completion, consumed energy, offloading hit rate, load 
balancing performance, and convergence time of algorithms. The evaluation of each of the 
metrics was done by comparison with other baseline approaches that include standalone GA, 
PSO, and conventional heuristic methodologies[18]. The present chapter is organized in such 
a way that it offers an elaborate outline of the simulation parameters, assessment criteria, 
scenario-specific analysis, comparative results, as well as a thorough debate on the findings 
with respect to Industry 5.0 objectives. 
Simulation Configuration and Experiment: 

To estimate the efficacy of the suggested CGPCA-based task offloading framework, a 
simulation mechanism has been built with access to iFogSim and EdgeCloudSim, which are 
two popular settings used to simulate resource distribution and task offloading in edge 
computing environments. Such tools facilitate the development of IIoT-MEC customizable 
environments and perform controlled experimentation concerning latency, energy 
consumption, and workload placement between the network layers. The network architecture 
is simulated and has three main layers IIoT device layer, the MEC edge layer, and the cloud 
layer. In both test scenarios, the number of IIoT nodes varied (between 20 and 100), and it 
created heterogeneous computation tasks on varying levels of urgency. The MEC layer 
consisted of 5 to 10 edge servers strategically located to provide high coverage and resource 
capacity diversity. To be used as a comparative point and as an overflow processing system, a 
centralized cloud data center was modeled. 

 
Figure 4. Comparison Results with Other Algorithms 

Key assumptions include a stable communication environment, predefined mobility 
patterns, and a uniform task generation interval. Boundary conditions were established to 
simulate worst-case and best-case scenarios, such as server overload, task spikes, and partial 
node failures. This experimental setup supports robust validation of the CGPCA algorithm 
across diverse Industry 5.0 conditions, ensuring meaningful and generalizable results in 
energy-aware and latency-sensitive edge computing systems. 
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Evaluation Metrics: 
In this section, the evaluation metrics that would be used to confirm the performance 

of the proposed Computational Genetic Particle Swarm Optimization Algorithm (CGPCA) 
in ensuring energy-efficient task offloading in IIoT in MEC-enabled environments would be 
discussed. According to the meanings of the latency and energy consumption, offloading 
success rate or server load balancing, and convergence time, five core metrics are evaluated 
and will reflect the practical performance of the system under Industry 5.0 conditions. 
Task Completion Latency: 

Latency is an important value in IIoT environments, especially in those cases when an 
immediate reaction time is needed. The term latency in this research is the time it takes to 
execute one task after another; it includes transmission delay, queuing delay, and processing 
delay as well. The CGPCA framework was contrasted to generic GA, PSO, and as well as 
heuristic models. The findings reveal that CGPCA registered an average latency of 53ms, 
whereas results indicated that GA and PSO registered 67ms and 60ms, respectively, in the 
same load conditions. Figure 5 illustrates this comparison. 

 
Figure 5. Comparison between Task Completion Latency 

These results confirm that CGPCA effectively reduces latency by optimizing task-to-
server mapping in dynamic networks. 
Energy Consumption Device and Network: 

Energy consumption remains a bottleneck for IIoT deployment. The energy metric 
accounts for device-level energy spent on data transmission and computation, as well as the 
energy used by MEC servers and the cloud.  As shown in Figure 6, CGPCA consumes 
approximately 18% less energy than GA and 12% less than PSO, with the average device-level 
consumption dropping from 1.7 J to 1.4 J. 

 
Figure 6. Energy Consumption per Device 

This energy efficiency aligns with the green computing goals of Industry 5.0 
Offloading Success Rate: 

Offloading success rate is defined as the percentage of tasks successfully offloaded and 
executed without exceeding energy or latency thresholds. CGPCA demonstrated a success rate 
of 94%, outperforming GA (88%) and PSO (91%) (Bui & Yoo, 2025; Birhanie & Adem, 2024). 
This metric proves CGPCA's reliability in heterogeneous and fluctuating MEC environments. 
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Figure 7. Task Offloading Success Rate Comparison 

Server Load Balancing: 
To measure load balancing, we calculated the standard deviation of task distribution 

across servers. Lower values indicate better balancing. CGPCA reduced the standard deviation 
of server loads to 0.19 compared to 0.29 for PSO and 0.35 for GA, indicating more even 
distribution and improved server utilization. 

 
Figure 8. Server Load Distribution Analysis 

Balanced loads are critical in avoiding server bottlenecks and maintaining system 
efficiency. 
Convergence time of the CGPCA Algorithm: 

Convergence time reflects how quickly the algorithm arrives at an optimal or near-
optimal solution. CGPCA achieved convergence within 38 iterations, while GA required 57 
and PSO needed 44. This is depicted in Figure 9, showing CGPCA's accelerated convergence 
due to its dual-strategy optimization design. 

 
Figure 9. Convergence Time Comparison 

Faster convergence implies quicker decision-making for real-time IIoT operations. 
Collectively, these metrics establish the superiority of CGPCA in enabling sustainable, low-
latency, and energy-efficient offloading in MEC-enabled Industry 5.0 environments, 
reinforcing its practical viability and academic contribution. 
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Scenario-Based Analysis: 
This section presents the performance of the proposed CGPCA-based task offloading 

strategy across multiple industrial edge computing scenarios designed to simulate real-world 
Industry 5.0 conditions. 
Performance under Static Workloads: 

In the static workload scenario, each IIoT device generated tasks of fixed size and 
frequency. Simulation involved 50 IIoT devices and 5 MEC nodes. Results showed that 
CGPCA achieved an average task completion latency of 42.7ms compared to 58.9ms for GA 
and 61.5ms for PSO. 

 
Figure 10. Performance under Static Workloads 

The improved latency is attributed to the local convergence and global optimization 
balance in CGPCA, enabling effective server selection. Similarly emphasized the importance 
of efficient mapping in static scenarios for energy preservation was emphasized. 
Performance under Dynamic Network Conditions: 

Workload generation and bandwidth in dynamic simulations varied randomly every 10 
seconds to resemble the dynamics in industry. CGPCA was also dynamically controlling the 
task migration paths depending on the server loading, available bandwidth, and queue status. 
Under network variation, latency was less than 50ms on average and had only 5.1 per cent task 
failure, as compared to GA and PSO, which had over 12 per cent task failure and a latency 
range greater than 70ms under network spikes. The resilience of CGPCA in this regard is 
similar toauthor, who also used adaptive RMAB policies and were able to provide comparable 
reliability under variability. 
Performance with increasing Network of Tasks: 

To assess scalability, task volume was increased from 100 to 600 over time. As shown 
in Table 1, CGPCA consistently maintained superior energy efficiency while handling 
increased load. 

Table 1. Performance Comparison of CGPCA and GA with Increasing Task Volume 

Tasks CGPCA Latency (ms) GA Latency (ms) CGPCA Energy (J) 

100 38.4 52.7 0.35 

300 45.9 66.1 0.42 

600 59.7 78.5 0.51 

These task dependency models can bottleneck offloading when task concurrency 
grows. The multi-objective formulation in CGPCA helps resolve this by balancing CPU load 
and link utilization. 
Comparative Performance Evaluation: 

This section compares CGPCA’s overall performance against traditional GA, PSO, 
and heuristic baselines, using benchmarks from recent studies. 
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Latency Comparison: 
CGPCA delivered up to 24% lower average latency compared to GA and PSO in all 

test scenarios, similar gains using task partitioning with MILP, though with higher 
computational overhead. 
Energy Efficiency: 

CGPCA reduced energy consumption by 18–25% compared to standalone methods. 
This efficiency aligns with the findings that use Lyapunov optimization for energy-aware 
WPT-MEC systems. 
Server Load Balance and Success Rate: 

CGPCA ensured better task distribution, avoiding server overloading and maintaining 
a task success rate of over 95%, even under resource contention. The hybrid design echoes 
found that GA-PSO could reduce edge server imbalance by over 90% in MES scenarios, 
supporting our system's architecture. 

Table 2. Comparative Analysis of CGPCA with Existing Studies 

Study Method Used Latency (ms) Energy (J) Remarks 

Aljubayrin et 
al. (2023) 

Heuristic WPT 
+ MEC 

58 0.49 
Energy-focused lacks 
task partitioning 

Hou et al. 
(2023) 

RMAB Policy 55 0.46 
Scalable complex in 
real-time 

Moshiri et al. 
(2025) 

MILP + 
Cuckoo Search 

51 0.44 
Excellent accuracy, 
high computation 

Study CGPCA GA + PSO 46.3 0.39 
Balanced trade-off, 
real-time capable 

By testing a complete set of scenarios and comparing with some well-known 
benchmarks, CGPCA turns out to be an efficient, dynamic, and energy-efficient system of 
MEC-based task offloading. It excels in heterogeneous, latency-sensitive, and high-load 
industrial environments. Its hybrid quality makes it significantly surpass the performance of 
the traditional metaheuristics with a reasonable calculation complexity, well in correlation with 
the objectives of the Industry 5.0 of eco-friendliness. 

The performances of the CGPCA-based offloading strategy were studied under 
multiple realistic scenarios. Confirming that CGPCA is always superior to traditional methods, 
results suggested that servers can satisfy more demands and meet the requirements with an 
improved latency index, energy savings, and balanced load [19][20]. These results confirm that 
the suggested framework supports the main goals of the study- the development of energy-
efficient and real-time task offloading on the basis of Industry 5.0. The lessons learned in this 
section form the basis of the final chapter, which discusses the research contributions of the 
work, limitations, and recommends possible future improvements to make industrial systems 
smarter, greener. 
Conclusion: 

The emergence of Industry 5.0 emphasizes the need for intelligent, efficient, and 
sustainable industrial systems. This research aimed to address one of the critical challenges in 
this domain designing an energy-efficient and low-latency task offloading mechanism for 
Multi-Access Edge Computing (MEC) environments supporting heterogeneous Industrial 
Internet of Things (IIoT) networks. The study proposed and justified the development of a 
**hybrid Computational Genetic Particle Swarm Optimization Algorithm (CGPCA) ** as a 
smart computational framework for optimizing resource utilization, reducing latency, and 
minimizing energy consumption within such complex systems. 

The proposed CGPCA algorithm achieves a balanced trade-off between exploration 
and exploitation by integrating the **global search capabilities of Genetic Algorithms (GA)** 
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with the **rapid convergence properties of Particle Swarm Optimization (PSO). This synergy 
enables efficient decision-making in dynamic and resource-constrained industrial 
environments. 

The successful design and validation of the CGPCA framework demonstrate its 
effectiveness in achieving **energy-aware, latency-sensitive task offloading** for MEC-
enabled IIoT systems. The research contributes to the advancement of Industry 5.0 by 
showcasing the algorithm’s adaptability to heterogeneous conditions and its ability to optimize 
multiple performance objectives simultaneously. Despite certain limitations, the study offers 
practical insights for industrial deployment and provides a foundation for future exploration 
into **AI-driven, sustainable edge computing solutions. 

Ultimately, this work reinforces the vision of **Industry 5.0** as not merely a 
technological evolution but as a **human-centric, eco-conscious, and intelligent ecosystem**, 
where innovations such as CGPCA-enabled edge computing play a pivotal role in fostering 
synergy between humans, machines, and the environment. 
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