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loods is among the most devastating natural hazards in South Asia. The September 2025 flood 
in the Ravi Basin was triggered by heavy monsoon rainfall and the release of water from cross-
border dams. This study utilized Sentinel-1 SAR data, including both ascending and descending 

passes in VH polarization, to map flood inundation across the basin using a Random Forest classifier. 
Pre-flood and post-flood composites were prepared for April-May and 27 August to 5 September, 
respectively. The predictors feature includes VH_pre, VH_post, VH_diff, and VH_ratio. Terrain 
correction using the NASA DEM and landcover filtering with ESA WorldCover at 10m improved 
classification accuracy. Results showed that 1,885 km² of land was inundated, representing 5% of the 
total basin area. Approximately 260 settlements were impacted, including Dera Baba Nanak, Kartarpur, 
and the low-lying regions of Lahore. Croplands were the most affected class, with 1,610 km² flooded, 
followed by grasslands (90 km²) and sparse vegetation (62 km²). Built-up areas accounted for 0.7 km² 
of inundation, though the socio-economic impact was disproportionately high. Precipitation analysis 
from NOAA CPC confirmed rainfall clustering in the Sialkot and Narowal corridor. The peaks 
exceeding 800 mm/day cause this region as the epicenter of the flood. News reports corroborated 
satellite findings, noting that over 2.5 million displaced and more than 100 lives were lost. The study 
highlights how tributary floods involving the Ravi, Sutlej, and Chenab are emerging as severe hazards 
for Punjab. Findings underline the need for improved monitoring, resilient agricultural strategies, and 
disaster preparedness to mitigate future economic and food security risks. 
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Introduction: 
In the 21st century, disasters have become a significant challenge, impacting societies and 

economies on a large scale [1]. Among various hazards, floods are considered the most destructive, 
causing substantial economic losses and numerous human casualties worldwide [2][3][4]. Rapid 
urbanization, population growth, and the intensification of climate change are increasing community 
vulnerability to flooding events [5]. The Intergovernmental Panel on Climate Change (IPCC) has 
consistently highlighted that global warming intensifies the hydrological cycle, leading to increased 
rainfall extremes and more frequent high-magnitude flood events [6][7]. This highlights the urgent need 
for reliable monitoring systems to provide timely flood information for preparedness, response, and 
adaptation. Climate change is increasingly associated with altered precipitation patterns, glacier retreat, 
and rising sea levels, all of which amplify flood risk [8][9][10][11][12]. Recent studies indicate that 
warming-induced changes in monsoon dynamics and convective storms are generating extreme rainfall 
events in both humid and arid regions [13][14][15]. Such extremes are particularly evident in South 
Asia, where densely populated river basins such as the Indus, Ganges, and Brahmaputra frequently 
experience devastating floods [16][17][18][19]. Flooding can result from various factors, including 
heavy rainfall, snowmelt, glacial lake outburst floods (GLOFs), and river overflows, with its impacts 
influenced by topography, land use, and socio-economic exposure [20][21]. The 2020 floods in 
Bangladesh and India and the 2022 floods in Pakistan highlight how climatic variability drives large-
scale humanitarian crises [17][22][23][24]. The September 2025 floods in Pakistan stand out as a major 
event requiring a detailed scientific assessment. Severe monsoon rains have triggered high to medium 
flooding in rivers and nullahs across Punjab [25]. Flooding led to the evacuation of over 200,000 people 
from low-lying areas [26]. For the first time, simultaneous flooding was recorded in three major rivers: 
the Ravi, Sutlej, and Chenab[27]. The precipitation spell began on August 15 and lasted until September 
10, with a peak of 364 mm recorded within just 24 hours in the upper Punjab region [28]. Remote 
sensing has revolutionized flood monitoring by providing spatially consistent and temporally 
repeatable observations over large areas [29]. Optical sensors such as Landsat and Sentinel-2 are widely 
used for flood mapping through indices like NDWI and MNDWI; however, their effectiveness is often 
limited by persistent cloud cover during flood events [30][29][31][15][32]. The same limitation affected 
the use of optical data during the study event. In contrast, microwave sensors, particularly Synthetic 
Aperture Radar (SAR), overcome these challenges as they operate independently of sunlight and 
weather conditions. [31]. SAR data allow the detection of smooth water surfaces due to their low 
backscatter, making them a preferred choice for flood mapping [33].  

Several methodologies are employed for flood detection using SAR, including traditional 
approaches such as backscatter histogram thresholding, change detection between pre- and post-event 
images, and supervised classification techniques [4]. More advanced techniques utilize interferometric 
coherence to detect surface changes caused by inundation [33][34], while hybrid frameworks that 
integrate thresholding, object-based analysis, and region-growing algorithms offer improved accuracy 
[35][36].  Automatic thresholding methods, such as Otsu’s algorithm, have been effectively 
implemented on cloud-based platforms like Google Earth Engine for rapid flood assessment [37]. Case 
studies in Namibia, Bangladesh, and India further demonstrate the robustness of these techniques for 
operational applications [16][38][39][23]. SAR backscatter is highly sensitive to surface roughness and 
dielectric properties, enabling the delineation of open water and inundated vegetation alike [40]. The 
free availability of Sentinel-1 SAR data has enabled large-scale, near-real-time flood monitoring, even 
in data-scarce regions [34]. Taken together, these advantages make SAR an indispensable component 
of modern flood risk assessment frameworks. This study specifically aims to map the September 2025 
flood in the Ravi Basin (Figure 1), a critical sub-catchment of the Indus River in Pakistan. The Ravi 
basin, which sustains agriculture, major settlements have experienced extensive inundation during this 
event [41]. The objectives of the study are: (i) to employ SAR-based methodology for precise 
delineation of flood extent; (ii) to assess the spatial distribution of inundation across different land-use 
categories. By focusing on this event, the research not only contributes to the scientific understanding 
of climate-driven flood hazards but also supports policy frameworks for disaster resilience in Pakistan 
and the wider South Asian region. 
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Figure 1. Study area map of the Ravi River basin (C) and its locators (A, B) 

Methodology: 
Data Collection: 

This study employed Sentinel-1 synthetic aperture radar (SAR) data at 10m spatial resolution 
for mapping flood extents in the Ravi Basin during the September 2025 flood event. Both ascending 
and descending pass images in VH polarization were acquired in Interferometric Wide (IW) swath 
mode from the Google Earth Engine (GEE) repository. Two temporal windows were defined: a pre-
flood reference period spanning April to May, and a flood period from August 27 to September 4. 
Mean backscatter composites were derived for each pass under both pre-flood and post-flood 
conditions. The ascending and descending composites were subsequently processed separately and 
later merged to enhance spatial coverage and minimize geometric distortions. Figure 2 and Table 1 
present the locations and acquisition dates of both passes.   

 
Figure 2. Coverage of Sentinel-1 satellite orbits over the Ravi River Basin. 

Table 1. Sentinel-1 ascending and descending acquisitions over the Ravi Basin during late 
August–early September 2025, showing coverage of upper, middle, and lower reaches. 

Orbit Direction Acquisition Date Coverage Area 
Ascending 27 August 2025 Middle Ravi Basin 

 01 September 2025 Lower Ravi Basin 

 03 September 2025 Upper Ravi Basin 

Descending 28 August 2025 Lower Ravi Basin 

 04 September 2025 Upper Ravi Basin 
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From these composites, additional predictor layers were derived, including the pre-flood VH 
(VH_pre), post-flood VH (VH_post), difference (VH_diff), and ratio (VH_ratio). These bands were 
combined into a multi-band composite, which served as the input feature stack for classification 
(Figures 3 and 4). In the pre-/post-flood stack, red areas indicate flooding, while black to dark blue 
areas represent permanent water bodies. Based on this spectral response, training regions of interest 
(ROIs) were manually digitized for two main classes: flooded and non-flooded areas, with additional 
ROIs used to mark permanent water bodies. A total of 300 ROIs (150 per class) were sampled across 
different parts of the basin to ensure representativeness. A Random Forest classifier with 50 decision 
trees was then trained and applied to generate the flood classification map. To reduce false positives, 
terrain correction was integrated using NASA’s SRTM-derived DEM. Pixels in areas with slopes 
greater than 45° were masked to eliminate steep-terrain errors caused by SAR shadow effects, ensuring 
that the classification remained confined to plausible floodplain zones. Similarly, snow and ice regions 
were removed using ESA WorldCover 2020 data, thereby constraining flood detection to lowland 
areas. The resultant 10 m resolution flood mask was further intersected with land cover to estimate 
inundated croplands and urban settlements. Accuracy assessment was performed using an independent 
set of validation ROIs, yielding an overall accuracy of 98.3% and a Kappa coefficient of 0.97, 
confirming the robustness of the classification.  In addition, OpenStreetMap (OSM) settlement data 
were overlaid with the flood extent, allowing estimation of settlements directly affected by inundation. 

 
Figure 3. Flowchart of the methodology showing integration of Sentinel-1 SAR, NOAA 
CPC precipitation, and ESA WorldCover data in Google Earth Engine for flood mapping 

and land cover impact assessment. 
The area of each class was calculated using Equation 1. The total area (𝐴𝑐) of each class 

𝑐(flooded extent, flooded agriculture, or flooded built-up land) was calculated by summing the product 

of a binary mask and the pixel area across the Ravi Basin. In this mask, 𝑀𝑐(𝑖)equals 1 if pixel 𝑖 belongs 

to class 𝑐, and 0 otherwise. Each pixel has a defined area 𝑃𝑖 In m², which is later converted to km², and 

the summation is performed over all 𝑛 pixels of the basin. The results were visualized in the GEE 
interface using custom palettes, and a user interface panel was added for interactive display of flood 
statistics and legend information. Finally, all intermediate and final outputs were exported from GEE 
for further analysis. Continuous rasters (e.g., pre- and post-flood backscatter and multi-band 
composites) were exported as 32-bit float images, whereas classified outputs were exported as 8-bit 
integer images to facilitate efficient storage and analysis.  

𝐴𝑐 = ∑ (𝑀𝑐(𝑖) × 𝑃𝑖)
𝑛

𝑖=1
                               (1) 

Precipitation Data: 
To complement the flood mapping and validate the hydrometeorological drivers of the 

September 2025 flood, daily precipitation data were obtained from the NOAA CPC Global Unified 
Gauge-Based Precipitation dataset (mm/day) at 0.5° (~50 km) spatial resolution, available in Google 
Earth Engine. The dataset was filtered for February to September 2025, and precipitation statistics 
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(mean and standard deviation) were computed for each day using regional reduction over the study 
area geometry. A time series chart was produced for the entire basin, displaying temporal variations in 
rainfall intensity from February to September 10. Spatial precipitation patterns were derived by 
generating mean and standard deviation maps for August and September. These outputs provided a 
basin-wide perspective of rainfall variability and served as crucial supporting evidence to explain the 
severity and distribution of flooding observed in the Ravi Basin. 

Results: 
Flooded Region: 

Figure 3 illustrates the spatial distribution of flood inundation within the Ravi Basin during 
the September 2025 event, as derived from Sentinel-1 SAR data. The composite map highlights 
inundated zones (in red), permanent waterbodies (in blue), and populated areas (in yellow), overlaid on 
the basin boundary. A series of inset maps (Figure 3B to F) provided detailed visualizations of flood 
impacts across critical locations. Panel B depicted the severe flooding in Dera Baba Nanak and 
Kartarpur, where floodwaters had encroached upon settlement areas and agricultural fields, 
submerging large territories of land. Similarly, panel F captures the western margins of Lahore city, 
where residential zones such as Theme Park and Park View experienced direct inundation, highlighting 
the exposure of even well-developed suburban sectors. Panel D emphasizes the widespread inundation 
south of Narowal, where built-up areas were directly intersected by floodwaters. Panels C and E further 
reveal flood penetration in the middle and lower Ravi floodplains, particularly near Pattoki and 
Gujranwala’s adjoining settlements, confirming the river’s floodplain vulnerability. 

 
Figure 4. Sentinel-1 SAR composite showing flood-affected areas along the Ravi River, with 

inundated zones highlighted against surrounding land cover. 
Figure 4 highlights the Chawinda–Zafarwal corridor, north of Narowal, which experienced 

some of the most extensive flooding during the event due to seasonal rivers. The figure highlights 
extensive inundation across croplands, with scattered villages and urban communities directly 
surrounded or submerged by floodwaters. Cyan markers represent settlements impacted, making it 
evident that flooding was not isolated to sparsely inhabited areas but extended into regions of dense 
habitation. The integration of OpenStreetMap data confirmed that approximately 260 settlements were 
affected basin-wide, ranging from small rural villages to larger towns. This number reflects the scale of 
socio-economic disruption, as most of these settlements rely heavily on agriculture and local trade that 
were compromised by prolonged inundation. 

In terms of areal statistics, the results revealed that the total inundated area was 1,885.12 km², 
which represents 4.92% of the total basin area (38,305.89 km²). Agricultural land emerged as the most 
severely impacted category, with croplands in both upper and lower basin regions inundated, leading 
to direct livelihood losses for farming communities. Although built-up land covered a smaller 
proportion of the basin, it still experienced significant damage to bridges and roads, particularly around 
Narowal, Lahore’s suburbs, and the urban fringes of Gujranwala District. The combined evidence 
from maps and settlement overlays confirms that flooding extended well beyond the main Ravi channel 
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into secondary distributaries and floodplain depressions, causing waterlogging, crop damage, and 
settlement disruption. 

 
Figure 5. Flood inundation map of the Ravi River Basin during September 2025. Panels (B 

to F) show detailed views of major impacted zones. 

 
Figure 6. Flood inundation map of Chawinda and Zafarwal region within the Ravi Basin. 

Affected Area: 
Figure 5 illustrates the distribution of landcover classes within the Ravi Basin, highlighting 

their relation with the inundated areas during the September 2025 flood. The ESA WorldCover dataset 
was used to map key categories, including cropland, tree cover, shrubland, grassland, herbaceous 
wetlands, built-up areas, and sparse vegetation. Overlays of flood extent on land cover revealed that 
the impacts were uneven across classes, with certain land uses being disproportionately affected. 
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Quantitative analysis indicates that agriculture was the most severely affected class, with 
approximately 1,609.72 km² submerged out of a total agricultural area of 27,935.75 km² in the basin 
(Table 2). This demonstrates the severe agricultural losses, particularly across fertile floodplains in the 
middle and lower Ravi. Cropland near Jaranwala (Figure 5C) and Kamalia (Figure 5E) was among the 
worst affected, with extensive patches of standing crops inundated. Tree cover and grasslands were 
also notably affected, with about 51.42 km² of forested area and 90.21 km² of grassland inundated 
(Table 2). Tree cover losses are prominent near riparian corridors, while grasslands along the lower 
Ravi floodplains were inundated extensively. The impact on shrubland (22.34 km²) and sparse 
vegetation (62.87 km²) indicates that natural landscapes and semi-arid fringes of the basin were also 
exposed to waterlogging, though at a smaller scale compared to agricultural lands. Built-up areas 
experienced an inundation of 0.73 km² out of a total 2,501.77 km², though a small fraction at the basin 
level, but it has excessively high socio-economic consequences. Settlements like Narowal (Figure 5D), 
Dera Baba Nanak (Figure 5B), and towns of Lahore (Figure 5F) were directly affected, with household 
clusters submerged. Even small extents of flooding in built-up land correspond to significant 
population displacement and infrastructure damage. Herbaceous wetlands, though limited in total area 
within the basin, were also partially flooded (0.01 km² of 0.03 km²). While small in scale, this highlights 
that natural wetland ecosystems were not immune to the flooding dynamics. 

 
Figure 7. Land cover map of the Ravi Basin (A) with panels showing key areas (B to F). 
Table 2. Flooded area and total land cover distribution within the Ravi Basin during the 

2025 flood event. 

Class Flooded 
Area (km²) 

Total Landcover 
Area (km²) 

Affected 
(%) 

Tree cover 51.42 7,776.39 0.66% 

Shrubland 22.34 278.18 8.03% 

Grassland 90.21 4,114.52 2.19% 

Cropland 1,609.72 27,935.75 5.76% 

Built-up 0.73 2,501.77 0.03% 

Sparse vegetation 62.87 1,643.10 3.83% 

Herbaceous wetland 0.01 0.03 33.33% 
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Overall, the findings confirm that the September 2025 flood was predominantly an agricultural 
disaster, with secondary impacts on natural vegetation and localized yet high-risk effects on settlements. 
Precipitation Patterns 

To investigate the meteorological drivers of the September 2025 flood, basin precipitation 
patterns were analyzed using NOAA CPC data. Figure 6 shows the spatial distribution of average 
precipitation and standard deviation (SD) across the Ravi Basin for the August and 10th September 
period. The average precipitation map reveals a strong spatial gradient, with the highest rainfall 
accumulations (up to 250 mm) concentrated in the northeastern basin, particularly over Sialkot and 
Narowal districts. This region, which forms the headwaters of several tributaries draining into the Ravi, 
recorded the most intense precipitation, consistent with reports of heavy monsoon rainfall during this 
period. In contrast, the southwestern basin received comparatively lower totals (28–80 mm). The 
precipitation variability showed 500 mm SD over the mean precipitation in the Sialkot Narowal 
corridor (Figure 6). Indicating recurrent and intense rainfall events within a short time frame. Such 
variability indicates extreme downpours mixed with moderate events, driving rapid runoff and 
intensifying downstream floods. The 2025 daily precipitation time series (Figure 7) further supports 
these observed patterns. The upper panel (blue bars) shows daily mean precipitation values, while the 
lower panel (red bars) highlights SD over mean precipitation events. A distinct surge in rainfall is visible 
from mid-August to early September, with peak daily totals exceeding 800 mm during late August. This 
timing coincided with the onset of widespread flooding in the basin. The temporal clustering of heavy 
rainfall, combined with its spatial concentration in the northeastern catchment, acted as the 
hydrological trigger for flood propagation downstream into the populated and agricultural areas of 
Lahore, Narowal, Gujranwala, and surrounding towns. Together, the spatial and temporal analyses 
establish that the September 2025 flood was primarily monsoon-driven, with the Sialkot–Narowal 
headwater zone acting as the epicenter of extreme precipitation. 

 
Figure 8. 1st August to 10th September average and standard deviation of precipitation 

across the Ravi Basin. 

 
Figure 9. Daily precipitation patterns over the Ravi Basin showing temporal variability in 

2025. 
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Discussion: 
The September 2025 Punjab floods represent one of the most severe hydrological disasters in 

recent decades, both in terms of spatial extent and socio-economic consequences. Satellite-based 
analysis confirmed a total inundated area of 1,885.12 km², equivalent to 4.92% of the Ravi Basin, with 
approximately 260 settlements directly impacted. This remote sensing-derived evidence aligns closely 
with media reports highlighting the widespread inundation of villages and farmland [42][43]. According 
to DAWN News, more than 2.5 million people were displaced in Punjab, while approximately 100 
lives were lost during the peak of the flood event [28]. The area’s most severely affected included the 
eastern Punjab floodplains, with rivers Ravi, Sutlej, and Chenab overflowing simultaneously [27]. 
Reports have shown extensive submergence across districts such as Narowal and Gujranwala, while 
towns including Jalalpur Pirwala, Liaquatpur, and Lahore (Park View) were highlighted among those 
inundated [44][45]. This corresponds with our mapping outputs, which showed floodwater spreading 
beyond the main channel into agricultural corridors and urban fringes. The main cause was a 
combination of heavy monsoon rains and cross-border dam releases from India, which exacerbated 
already swollen rivers [44]. Precipitation analysis confirmed extreme rainfall clustering in the Sialkot 
and Narowal region, the same zone identified by media reports as the epicenter of rainfall-induced 
flooding (Figure 6). The combination of upstream inflows and local downpours accelerated flood 
propagation downstream into highly populated regions. The scale and severity of the event prompted 
several outlets to describe the floods as among the worst in decades for Punjab. It has been the 2nd 
time since 1988 that the flooding water reached up to bridges and some towns of Lahore [46]. 
Historical parallels can be drawn with the 2010 flood, which inundated one-fifth of Pakistan, and the 
2014 Jhelum and Chenab floods, which had a similar tributary-driven characteristics [47][48]. However, 
what distinguishes 2025 is the simultaneous flooding of three major tributaries (Ravi, Sutlej, and 
Chenab), alongside the greater exposure of urban developments that were not majorly affected in 
earlier floods. Reports from neighboring basins highlighted widespread submergence of villages and 
cropland along the Sutlej and Chenab as well. Impacts were reported in the Sutlej Basin, where 
extensive submergence was observed in Bahawalnagar and Vehari districts, damaging cropland and 
displacing thousands of people [44][43]. Similarly, the Chenab Basin experienced major flooding across 
Multan, Jhang, and Jalalpur Pirwala, with reports noting the evacuation of over 25,000 people in 
Jalalpur Pirwala alone (NASA Earth Observatory, 2025; Reuters, 2025). While Ravi flooding was 
concentrated in Narowal and Gujranwala districts, the Sutlej and Chenab inundations spread further 
south into heavily cultivated floodplains. The September 2025 Punjab floods are expected to leave 
lasting consequences on Pakistan’s economy and food systems well beyond the immediate disaster 
period. Punjab, known as the country’s agricultural heartland, contributes a major share of national 
wheat, rice, and maize production. The flood inundation analysis confirmed that more than 1,600 km² 
of cropland was submerged, a finding consistent with media reports of extensive damage to standing 
rice and maize crops. With the flood striking just before the kharif harvest, large-scale crop losses are 
anticipated to reduce both household incomes and national grain stocks [46]. This shortfall could push 
food prices upward, intensifying inflationary pressures already present in the national economy. The 
livestock sector has also been disrupted, reporting loss of cattle and poultry in submerged villages, 
further affecting rural livelihood. Damage to transportation networks, markets, and irrigation 
infrastructure may also reduce agricultural output in subsequent seasons, compounding the initial 
losses. The humanitarian and economic consequences were immense. Relief operations faced 
significant challenges, including delayed evacuations, submerged road networks, and even boat capsizes 
during rescue missions [41]. On the policy side, the International Monetary Fund (IMF) announced 
that Pakistan’s emergency flood spending and fiscal response will undergo review, highlighting the 
broader economic strain induced by the disaster [49]. 

Conclusion: 
The September 2025 floods in Punjab represent a defining example of how monsoon 

variability and transboundary water dynamics combine to create large-scale disasters. Using Sentinel-1 
SAR, this study mapped an inundated area of 1,885.12 km², equal to 4.92% of the Ravi Basin. The 
impacts were concentrated in croplands and settlements, with 1,609.72 km² of agriculture submerged 
and 260 settlements directly affected. Settlements such as Dera Baba Nanak, Kartarpur, and Lake City 
in Lahore demonstrate the expanding exposure of both rural and urban communities. Precipitation 



                                 International Journal of Innovations in Science & Technology 

October 2025|Vol 7 | Issue 4                                                          Page |2347 

analysis confirmed the Sialkot and Narowal belt as the rainfall epicenter, with daily peaks exceeding 
800 mm. These findings align with news reports documenting over 2.5 million displaced persons and 
heavy crop and infrastructure losses. Beyond immediate impacts, the flood is expected to have a lasting 
impact on the Punjab economy and food security. Rice, maize, and livestock will reduce both 
household resilience and national grain stocks, while infrastructure damage may constrain production 
in subsequent seasons. The simultaneous flooding of three tributaries, Ravi, Sutlej, and Chenab, marks 
a significant shift from historic Indus-dominated floods. The study emphasizes the urgency of 
integrating SAR-based monitoring with precipitation forecasting, settlement mapping, and land-use 
planning. Ultimately, the 2025 Punjab flood serves as both a scientific case study and a warning of the 
vulnerabilities that lie ahead in a rapidly changing hydrological regime. 
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