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he non-stationary nature of Electroencephalogram (EEG) signals often leads to high 
computational complexity in emotion recognition systems. To address this, we propose 
a novel framework that integrates optimal channel selection with efficient feature 

extraction. Our method begins by converting preprocessed EEG signals into two-dimensional 
spectrograms using a Continuous Wavelet Transform (CWT). These spectrograms are then 
processed by a Google Net model for deep feature extraction. A key contribution is the 
Differential Entropy-based Channel Selection (DECS) technique, which identifies and retains 
the most informative channels. To manage dimensionality, the extracted features are encoded 
using the Bag-of-Deep-Features (BoDF) method, which employs k-means clustering to create 
a visual vocabulary and represents features as histograms. Finally, these histogram features are 
classified using a Support Vector Machine (SVM). Evaluated on the SJTU SEED and DEAP 
datasets, the proposed model achieves state-of-the-art classification accuracies of 95.1% and 
81.1%, respectively, demonstrating its effectiveness and efficiency. 
Keywords: Bag-of-Deep Features; Continuous Wavelet Transform; Differential Entropy-
based channel selection; Support Vector Machine.   
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Introduction: 
Biomedical engineers have long employed Brain-Computer Interfaces (BCIs) to 

control devices using brain signals[1]. To recognize and classify human emotions, 
Electroencephalographic (EEG) signals generated by the brain are captured using electrodes 
placed on the scalp[2].  Although extensive research has been conducted on recognizing and 
classifying human emotions, machines still find the process difficult to accomplish.  The 
demand for human emotion assessment is at an all-time high due to the advancements in 
machine learning tools[3] [4]. 

Perceptual experience and apprehensiveness are of prime importance when it comes 
to the emotional states of humans. The major fields of affective computing, Emotion 
detection, play a fundamental role when it comes to providing emotional care to people. 
Human emotions can be detected through several approaches, such as analyzing visual cues, 
speech variations, and video data. However, these systems are often complex and costly to 
implement.  Detection and classification of emotions via EEG signals is a particularly 
challenging task because of insufficient time boundaries. The subjects might depict differing 
emotional reactions because emotional states have no definite margins[5]. While emotions 
have traditionally been detected through speech, images, and videos, Brain-Computer 
Interface (BCI) technology now offers a more direct gateway. BCIs track brain signals to help 
us understand emotional responses. However, a significant challenge remains that we are still 
largely unable to fully decode this complex neural information[6] [7]. The bio-signals acquired 
from these techniques can help uncover insights into the psychological and emotional state of 
the user[8]. The signal acquisition process is done through the 10-20 International System of 
electrode placement[9] [10].  

In previous work, researchers have typically either reduced the computational 
overhead by limiting the number of features or improved decision precision by utilizing all 
features separately. When applied independently, these techniques either lower the overall 
computational overhead or enhance decision accuracy. The challenge emerges in real-time 
applications, where limited time is available to detect emotions from EEG signals and high 
decision precision is required. To address this, the proposed algorithm aims to extract quality 
features while simultaneously reducing computational overhead.  The proposed work is not as 
good as needed for real-time, but a sufficient improvement from the previous work. 

The remainder of this paper is organized as follows: Section II reviews the related 
literature, while Section III describes the datasets employed in this study.  Section IV outlines 
the methodology, detailing the stages of TFR, FE, DECS, BoDF, and classification. Section 
V presents the results of the proposed algorithm along with a comparative analysis against 
previous work. Finally, Section VI concludes the paper. 

Existing methods address channel selection and feature reduction in isolation, often 
relying on shallow statistical measures or simplistic aggregation. This creates a clear research 
gap: the lack of an integrated framework that leverages the power of deep learning to 
simultaneously identify emotionally salient brain channels and compactly represent their high-
dimensional features. 

To bridge this gap, this paper proposes a novel methodology that synergistically 
combines a Differential Entropy-based Channel Selection (DECS) technique with a Bag-of-
Deep-Features (BoDF) model. The novelty of our work is threefold: 
We introduce DECS, which uses differential entropy robust measures of signal complexity—
derived from deep feature maps to systematically identify and select the most discriminative 
EEG channels for emotion recognition, thereby reducing computational overhead and 
enhancing model focus. 
We adapt the BoDF model, inspired by computer vision, to effectively reduce the 
dimensionality of deep features. By creating a 'visual vocabulary' of feature clusters, BoDF 
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transforms the high-dimensional feature set into a compact histogram representation, 
mitigating the curse of dimensionality without significant information loss. 
The primary novelty lies in the integrated use of DECS and BoDF. DECS ensures that only 
the most relevant channels are processed, and BoDF provides an efficient, fixed-length 
representation of their complex features. This combined approach is specifically designed to 
enhance both the accuracy and efficiency of EEG-based emotion classification. 

The proposed model, when evaluated on the SJTU SEED and DEAP datasets, 
achieves state-of-the-art performance, demonstrating the effectiveness of this integrated 
approach. 
Related Work: 

This section reviews previously reported studies on human emotion recognition. 
In[11], the authors discuss methods for acquiring EEG signal data, along with its 
preprocessing and enhancement. They evaluate various feature extraction techniques and 
classification algorithms, with classification accuracy serving as the primary performance 
metric.  

In [12], an EEG-based multi-modal model for the purpose of emotion recognition 
employs a multi-layered deep neural network for performing classification. Raw EEG signals 
are transformed into 2-D spectrograms that retain spatial and temporal information. Feature 
extraction from these spectrograms is then performed for each channel using a pre-trained 
AlexNet model. In[13], a study with ten participants analyzes seven emotions. The signals are 
filtered using a Savitzky-Golay (SG) filter to identify the channels that deliver maximum 
accuracy. Employing the Differential Entropy-based Channel Selection algorithm (DECS) 
increases the classification accuracy for Linear Discriminant Analysis (LDA) to 86.85%, up 
from 80%. In[14], the authors propose a technique that converts 32-lead EEG signals into 2-
D images using the Azimuthal Equidistant Projection (AEP) method. These images are then 
processed using Convolutional Neural Networks (CNNs) and Deep Neural Networks 
(DNNs), achieving an accuracy of up to 96.09%. In[15], the authors propose an emotion 
detection system based on an advanced convolutional neural network, implemented on a very 
large-scale integration (VLSI) hardware design. The designed model was validated from a set 
of 32 subjects that were taken from the DEAP dataset, and the average classification accuracy 
of 83.88% was attained. The[16] offered an emotion recognition that extracts features by 
application of Compressed Sensing (CS), Local Binary Patterns (LBP), and Wavelet 
Transformation (WT). Furthermore, Support Vector Machine (SVM) and Fuzzy Cognitive 
Maps (FCM) are unified to formulate an algorithm that provides an accuracy of up to 75.64% 
from the feature patterns. In [17], the authors discuss the techniques that are used for emotion 
recognition, also survey, and examine several parameters that include accuracy, specificity, and 
sensitivity. The proposed technique achieves 89% accuracy in emotion recognition and 
classification.  

In[18], the authors introduce a learning algorithm designed to identify the most distinct 
EEG channels suitable for recognizing internal emotions. The approach employs kernel-based 
representations, which are computationally derived from EEG signals. The algorithm is used 
to reduce the data with an improvement in computational efficacy and classification accuracy 
carried out alongside. In[4], the authors proposed a model for emotion assessment in which 
the perceptual experience and apprehensiveness of the subject played an important role. They 
used the MFM and CapsNet classifiers on the DEAP dataset, achieving an accuracy of 68.2%.  
Several interfacing techniques have been reported for extracting EEG signals from the brain 
to facilitate emotion detection. However, there remains considerable scope for improvement, 
particularly in enhancing accuracy and interpretability while extracting spatial features. The 
normalization of common spatial patterns (CSP) is among the most consistent methods[19], 
as it ensures a reduction in noise along with accompanying artifacts that are known to exist in 
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EEG signals of the unprocessed kind. In [20], the authors combined Virtual Reality (VR) and 
the Internet of Things (IoT) to enable real-time control over both the virtual and physical 
environments of a user. They utilized the CSP features in virtual reality for the process of 
motor rehabilitation. In[21], the authors have suggested a framework that applies the Fisher 
ratio criterion and estimates the optimal weights of filters using the available data in an 
automatic fashion. When evaluated experimentally, the performance of the proposed model 
based on dynamic features is comparable with that obtained upon using CSP and AR features.  

Efforts to achieve robust emotion recognition from EEG signals have traditionally 
relied on signal processing techniques that assume stationarity, such as the Fourier Transform 
and Discrete Wavelet Transform (DWT)[22] [23].  However, the inherently subjective and 
complex nature of emotional states presents a significant obstacle to developing a universal 
analytical framework. EEG data is inherently non-stationary and non-linear, with statistical 
properties that vary over time, making the accurate characterization of transient emotional 
cues more challenging. This complexity underscores the critical importance of channel and 
feature selection, as the inclusion of irrelevant or redundant data can severely compromise 
detection accuracy. Furthermore, the high dimensionality of multi-channel EEG recordings 
often leads to substantial computational costs, especially when dealing with large-scale datasets 
required for training sophisticated models. To address this, prior research has explored signal 
decomposition methods such as Empirical Mode Decomposition (EMD) and Wavelet Packet 
Decomposition (WPD)[24] [25] [26]. These techniques aim to break down the raw signal into 
a series of constituent components, facilitating the handling of vast data volumes by extracting 
a more manageable set of informative features. 

Parallel research in speech emotion recognition (SER) has also seen notable 
advancements, driven by the shared objective of improving human-computer interaction 
(HCI). One such study presents an Artificial Intelligence-assisted Deep Stride Convolutional 
Neural Network (DSCNN) as a novel architecture[27]. This model leverages a 'plains nets' 
strategy within the DSCNN to identify distinctive patterns directly from speech spectrograms. 
When tested on the IEMOCAP and RAVDESS datasets with a SoftMax classifier, this 
approach achieved performance improvements of 7.85% and 4.5%, respectively, while also 
reducing the model size by 34.5 MB.  Such cross-modal innovations highlight the potential of 
advanced neural architectures for complex pattern recognition in affective computing. 

Feature selection is a fundamental process for obtaining valuable features, as it helps 
reduce the dimensionality of the feature set. This technique helps identify the most relevant 
features in the classification domain. Broadly, feature scoring methods are categorized into 
four classes: statistical-based, information-theoretic, sparse learning-based, and agreement-
based approaches[28].  Although there is are variety of procedures for scoring features that 
are proposed by many scholars in [29] [27]. Non-negative Laplacian is one of the estimation 
techniques to identify the contribution of a feature in feature selection using unsupervised 
learning[30]. Principal Component Analysis (PCA) is a technique used by several scholars in 
the field of emotion detection using EEG signals to reduce the size of features by picking 
procedures depending on their exclusive value. Ignoring features with uncorrelated quantities 
is a conventional clipping procedure. For optimization of statistical features, a dynamic search 
strategy is proposed in[31]. The Receiver Operating Characteristics (ROC) is used for feature 
selection to find valuable features. This technique helps to decrease the size of features while 
providing high accuracy for classification in the case of an electrocardiography (ECG) signal. 

The authors in[25] employed a multi-scale PCA along with WPD for fragmentation 
and extermination of noise from the signal. A classification accuracy of 92.8% was obtained 
while classifying EEG signals for motor rehabilitation. In[32], the authors propose a flexible 
analytical wavelet-based decomposition (FAWT) method applied to the SEED dataset. Using 
an SVM classifier, they achieve a classification accuracy of 83.3%. FAWT is also a channel-
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specific process. A limitation of this approach is that some features may appear irrelevant 
individually but can provide valuable information when considered in combination with 
others.  Another demerit is the ability to choose functions that are individually related, which 
might cause duplication. The authors in [33] proposed a feature selection algorithm based on 
decomposition, which was evaluated on DEAP and MAHNOB datasets. The literature 
demonstrates various sophisticated approaches to optimizing feature selection and 
classification for EEG-based emotion recognition. For instance, one methodology integrated 
a Probabilistic Neural Network (PNN) classifier with a feature selection mechanism driven by 
Differential Evolution (DE). This hybrid model was reported to achieve classification 
accuracies of 77.8% on the MAHNOB dataset and 79.3% on the DEAP dataset, showcasing 
its effectiveness. 

Further investigations have focused on the informational content of specific EEG 
rhythms. A notable study[28] quantified the differential entropy features from standard 
frequency bands, identifying beta and gamma rhythms as the most discriminative for 
emotional valence and arousal. To capture the complex dynamics of these signals, the authors 
extract a comprehensive set of 18 linear and non-linear features from the time-frequency 
domain. These features were then processed using a Spatial-Temporal Recurrent Neural 
Network (STRNN), an architecture specifically designed to model the inherent dependencies 
across both space (channels) and time. To address the challenge of generalizability, the study 
in[29] systematically examines key factors influencing cross-target emotion recognition, such 
as the dynamic properties of EEG signals and inconsistencies among datasets with varying 
channel montages.  To enhance model efficiency and performance, the authors introduced a 
Recursive Feature Elimination (RFE) technique, which iteratively prunes the least important 
features. This method yielded an average accuracy of 60.5% on the DEAP dataset and a 
notably higher 90.33% on the SEED dataset, underscoring the impact of dataset 
characteristics on final performance. 

Conventional methodologies for EEG-based emotion recognition have historically 
presented a trade-off between performance and practicality. One common strategy utilizes the 
full array of EEG channels, a method that typically yields high classification accuracy but at 
the cost of significant computational burden. The alternative approach involves pre-emptively 
reducing the number of channels to enhance processing speed; however, this often leads to a 
substantial decline in predictive performance due to the loss of critical neurophysiological 
information. 

This study introduces a novel framework designed to transcend this traditional 
compromise. The proposed model integrates two key components to achieve both high 
accuracy and computational efficiency simultaneously. First, a Differential Entropy-based 
Channel Selection (DECS) algorithm identifies and preserves the most informative EEG 
channels, discarding redundant ones. Subsequently, a Bag-of-Deep-Features (BoDF) method 
is applied to further condense the feature space. This two-stage process ensures that the model 
operates on a compact, high-fidelity representation of the original EEG signal, enabling robust 
emotion classification without prohibitive computational demands. 
Material and Methods: 

Dataset 1 (SEED). The experimental data for this study are obtained from the publicly 
available SJTU Emotion EEG Dataset (SEED), developed by Professor Bao-Liang Lu and 
his team at the Brain-Like Computing and Machine Intelligence (BCMI) Laboratory [27]. This 
dataset was specifically designed to elicit and record neural correlations of distinct emotional 
states. 

During the data acquisition phase, fifteen subjects (seven male and eight female) 
participated in experiments where they viewed a series of fifteen carefully selected Chinese 
film clips. As illustrated in Figure 1, these clips were intended to provoke one of three target 
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emotional responses: positive, negative, or neutral. Stimulus selection followed strict criteria 
to ensure data quality and ecological validity: the experiment duration was controlled to 
prevent participant fatigue, video clips were non-verbal or easily understandable to minimize 
cognitive bias, and each was designed to elicit a single, dominant emotional state. The 
experimental protocol was structured into discrete trials. Each trial began with a 5-second 
preparatory cue, followed by the 4-minute emotional stimulus. Subsequently, participants were 
given a 45-second period for subjective emotional self-assessment, concluding with a 15-
second rest interval. To prevent emotional carry-over effects, clips targeting the same category 
were not presented consecutively. Furthermore, participant feedback was systematically 
collected through post-experiment questionnaires to validate the emotional induction [27]. 

Dataset 2 (DEAP). The Database for Emotional Analysis using Physiological Signals 
(DEAP) dataset was collected by young researchers at Queen Mary University. An analysis of 
effective human states is presented in the dataset. The stimuli from 32 participants (and frontal 
face videos from 22 participants) were collected by exposing them to 40 selected videos, each 
one minute in length. Familiarity, dominance, like or dislike, valence, and arousal were the 
parameters on which the participants ranked each video. Affective Tags from last.FM website, 
video highlight detection, and an online assessment tool were incorporated for the selection 
of the generated stimuli. The video selection process began with 120 YouTube videos, of 
which half were selected manually and the remainder semi-automatically.  

 
Figure 1. Raw Feature Dimension of SEED and DEAP Datasets. 

These 120 videos were ranked subjectively, and the top 40 videos were selected to be 
presented to 32 subjects. The subjects were 50% female and 50% male; the average age was 
26.9, ranging from 19 to 37 years. After exposure to each video, the participants were asked 
to fill out a questionnaire for self-assessment of their arousal, liking, and dominance on a scale 
of 1 to 9 (1 represents a low state while 9 represents a high state). Valence, arousal, and liking 
provide information about sad/happy, calm/excited, dislike/like. The EEG signal generated 
by stimuli was collected over the 10-20 international system. The signals were collected by 
utilizing a 32-channel array at 512 cycles/second. The outliers were removed using pre-
processing and down-sampled to 128Hz. 
Methodology: 

 In this section, we described the methods that were employed to implement the 
proposed model.  The following Figure 2 shows the architecture of our framework. The 
frames were discussed step by step in the following sections. In the Preprocessing step, one-
dimensional EEG signals are represented as a two-dimensional spectrogram of time and 
frequency, known as Time-frequency representation (TFR). DNN is used to extract features. 
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To reduce the feature dimension and select the high-quality features. The DECS (Channel 
Selection) technique is proposed along with BoDF (Feature Selection). 

 
Figure 2. The proposed framework for the classification of Emotions from EEG signals of 

the SEED and DEAP datasets. 
The proposed framework for emotion classification initiates by transforming the 

preprocessed EEG signals into a two-dimensional time-frequency representation using the 
Continuous Wavelet Transform (CWT). This process yields a spectrogram for each signal, 
which effectively captures its non-stationary characteristics. These spectrograms are 
subsequently fed into the GoogLeNet architecture, pre-trained on image recognition tasks, to 
extract a comprehensive set of high-level, deep features for all subjects. 

To refine this feature set, the Differential Entropy-based Channel Selection (DECS) 
algorithm is applied. This step functions as an intelligent filter, identifying and retaining only 
those EEG channels that contribute the most discriminative information for emotion 
recognition, thereby enhancing the signal-to-noise ratio of the data. Following channel 
selection, the Bag-of-Deep-Features (BoDF) model was employed for further dimensionality 
reduction. This involves using k-means clustering to generate a compact "visual vocabulary" 
from the deep features, where each cluster centroid represents a fundamental pattern. 

Finally, this learned vocabulary is used to encode the feature set into a standardized 
histogram representation. These histograms are then presented to multi-class classifiers for 
the final emotion assessment. The model is evaluated on its ability to discriminate between the 
three emotional states—neutral, positive, and negative—present in the SEED dataset, with 
performance being benchmarked across various kernel functions within the classifiers. 

Time Frequency Representation. The time-frequency representation of the signals was 
done by utilizing the preprocessed EEG signals. Poor and low accuracy results were obtained 
from the traditional emotion recognition model, which takes out features straight from the 
preprocessed EEG signals. In our work, to visualize the EEG signal and extract the desired 
features, the one-dimensional EEG signal was represented as a two-dimensional time-
frequency representation (TFR) using the Continuous Wavelet Transform (CWT). The reason 
for using CWT over other techniques was to acquire full knowledge of signal frequency in the 
temporal and spatial domains. 

Continuous Wavelet Transformation. The preprocessed EEG signals were mapped 
into a joint time-frequency domain using the Continuous Wavelet Transform (CWT) to 
construct a Time-Frequency Representation (TFR)[31]. The CWT decomposes a signal by 
convolving it with a set of wavelets that were scaled and shifted versions of a fundamental 
mother wavelet. 

Let x(ξ) represent the continuous-time EEG signal. The CWT is defined as a two-
dimensional function, T_x (σ,ν), which quantifies the correlation between x(ξ) and a wavelet 

basis function. 𝜓𝜎,𝜈(𝜉) 

𝑇𝑥(𝜎, 𝜈) = ∫ ∫ 𝑥(𝜉)𝜓𝜎,𝜈
∗ (𝜉) 𝑑𝜉

∞

−∞

 #(1) 

In this formulation: 
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𝜎 ∈  ℝ++ is the dilation parameter, inversely proportional to frequency. 

𝜈 ∈  ℝ is the translation parameter, indicating temporal location. 

The family of wavelets 𝜓𝜎,𝜈(𝜉) is generated from the mother wavelet 𝜓(𝜉) through: 

𝜓𝜎,𝜈(𝜉) =
1

√𝜎
 𝜓 (

𝜉 − 𝜈

𝜎
) #(2) 

This factor 1/√𝜎 ensures energy preservation across different scales. 
For the transformation to be invertible, the mother wavelet must satisfy the 

admissibility condition, which requires it to have zero mean and finite energy. The 

corresponding stability constant,𝐾𝜓 is given by: 

𝐾𝜓 = ∫
|𝜓^(𝜔)|2

𝜔

∞

0

𝑑𝜔 < ∞#(3) 

Where ψ^ (ω) is the Fourier transform of ψ (ξ). This condition guarantees that the 
original signal can be reconstructed from its CWT coefficients. 

In practice, a filter-bank approach was used to compute the CWT for each EEG 
channel, generating a distinct TFR. A visual analysis confirms discernible differences in the 
TFR patterns across different experimental classes. These TFR images are subsequently 
converted to grayscale scalograms and resampled to a uniform size of 227×227 pixels. A 
convolutional neural network is then trained on this dataset, leveraging a 20-fold cross-
validation protocol to optimize performance before proceeding with feature extraction. 
Feature Extraction:  

In our working model, the process of feature extraction was done by the DNN termed 
as GoogLeNet. GoogLeNet is a multi-layer DNN comprised of 22 layers[34] as shown in 
Figure 3. GoogLeNet utilizes 5 million parameters than its forerunner, AlexNet, which had 60 
million parameters. So, it can deliver even under the primary confinements of memory and 
computational cost[35]. GoogLeNet won the ILSVRC 2014, and it used 12 fewer layers than 
the winning network from two years ago[34]. It is a personification of Inception architecture 
submitted at ILSCRC 2014 competition as it comprises recurring Inception layers in its model. 
The 2-D spectrogram images were fed to the 22 layers, which applied the process of 
convolution and max pooling. 

 
Figure 3. The GoogLeNet Architecture. 

The architectural backbone of this work is derived from the Inception model. In this 
network, all convolutional layers employ the Rectified Linear Unit (ReLU) as their activation 
function. The model was designed to process input images of size 224×224 pixels within the 
RGB color space, which have been preprocessed by centering their mean to zero. 

A key efficient feature of the Inception architecture is its use of dimensionality 
reduction. This is achieved through specialized layers that utilize 1×1 convolutional filters, 
often designated as '3×3 reduce' and '5×5 reduce' layers. These layers are strategically placed 
prior to the more computationally intensive 3×3 and 5×5 convolutions, serving to project the 
input into a lower-dimensional 
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EEG Channel Selection using Differential Entropy. The process of channel selection 
is of crucial importance when it comes to omitting irrelevant and redundant features while 
maintaining the quality of the selected features. By employing an effective method to extract 
quality features, the total amount of the features is significantly reduced without degrading the 
standard of classification. In this paper, a decision-making algorithm was proposed to evaluate 
the relevance of feature subsets. It enabled efficient representation of ambiguous data at the 
boundaries of these subsets, such as in rough sets or fuzzy-rough sets. The recommended 
algorithm uses differential entropy to obtain novel features by evaluating the feature subsets. 

 
Figure 4. The process of formation of Bag-of-Deep Features (proposed work). 
Effective channel selection is a critical step in building a robust BCI system, as it aims 

to eliminate non-informative and redundant data streams while preserving the core 
discriminatory information. A well-designed selection strategy can drastically reduce the 
computational burden and model complexity without compromising, and sometimes even 
enhancing, classification performance. This paper introduces a feature evaluation algorithm 
grounded in information-theoretic principles, which quantifies the informational sufficiency 
of a candidate feature subset. This method is particularly adept at handling the inherent 
uncertainty and imprecision found in the decision boundaries of neurophysiological data, a 
challenge often addressed by techniques like rough sets. 

The proposed framework is versatile, capable of processing both categorical and 
continuous-valued data[36]. At its core, we leveraged the concept of conditional entropy to 
accurately measure the discrepancy between the knowledge represented by a subset of 
channels and that of the complete set. This measure provides a powerful and efficient means 
to assess a feature subset's quality, yielding several desirable theoretical properties. 

Consider a decision system represented by the tuple (U, F∪D), where U is the universe 
of instances, F is the full set of features (EEG channels), and D is the decision attribute (e.g., 

emotion class). For any feature subset S⊆F, we define its informational divergence  𝐷(𝑆 ∣
𝑈, 𝐹 as 

𝐷( 𝑆  ∣  𝑈, 𝐹 ) =
−1

|𝑈|
∑ 𝑙𝑜𝑔2 (

[𝑥]𝐹 ⋂ [𝑥]𝑆

[𝑥]𝑆
)

𝑥

𝑥∈𝑈

#(4) 

Here, [𝑥]𝑆 denotes the equivalence class of instance x induced by the feature subset 𝑆, 

i.e., the set of all instances in 𝑈 indistinguishable from 𝑥 based on the features in 𝑆. Since 𝑆 is 

a subset of 𝐹, it follows that [𝑥]𝐹 ⊆ [𝑥]𝑆 , guaranteeing the non-negativity of the measure. 
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An alternative, equivalent formulation of the divergence is: 

𝐷( 𝑆  ∣  𝑈, 𝐹 ) = −
1

𝑈
∑ 𝑙𝑜𝑔2  

|[𝑥]𝐹|

|[𝑥]𝑆|

𝑥

𝑥∈𝑈

#(5) 

This measure exhibits key monotonicity and equivalence properties. For nested 

subsets  𝑆1 ⊂ 𝑆2 ⊂F, the following holds: 

𝐷( 𝑆2  ∣  𝑈, 𝐹 ) ≤ 𝐷( 𝑆1  ∣  𝑈, 𝐹 )#(6) 

Furthermore, if the partitions induced by 𝑆1 and 𝑆2 are identical (i.e., /𝑆1 = 𝑈/𝑆2), 
then their divergent values are equal: 

𝐷( 𝑆2  ∣  𝑈, 𝐹 ) = 𝐷( 𝑆1  ∣  𝑈, 𝐹 ), 𝑖𝑓 𝑈/𝑆1 = 𝑈/𝑆2#(7) 
Interpretation and Significance: 

The divergence D(S∣U, F) serves as a direct metric for the representational power lost 
by using the subset S instead of the full feature set F. A higher value indicates a greater loss of 
information and a larger discrepancy between the granularity of S and F. Crucially, when  

D(S∣U, F)=0, it implies U/S=U/F. This means the subset S induces the same partition over 
the data as the full set F, proving that S is informationally equivalent to F and is therefore a 
minimal and sufficient feature set for the task[36]. 

Bag-of-Deep Features (BoDF). In computer vision, this procedure was used to reduce 
the dimensionality of feature sets for classification[37]. Specifically, it was applied to limit the 
number of features to a desired value.  This method helps in reducing the feature size and the 
time required to train the dataset, in contrast to processing a massive number of features, 
which results in low accuracy classification and excessive training time. In our proposed 
method, all channels were used for emotion identification, resulting in high-dimensional 
features that demanded significant computational resources for dataset training. In the 
previous studies, only 8 to 12 channels were utilized, which resulted in a reduction in accuracy 
and the number of channels employed for classification[38]. 

 
Figure 5. The overall flow diagram of the proposed model. 

In this model, we utilized the SEED dataset, which has a dimension of 41850×1000 
number of features when reduced to 17550×1000 from 26 channels out of 62, which are fed 
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to BoDF, as shown in Figure 5. The BoDF model comprises two stages by which features are 
taken out from Google-Net and are reduced by utilizing k-means clustering. K-means 
clustering accumulates similar features into one vector. So, in the first stage, the features are 
lowered by using mean clustering. In the second stage, further reduction is done by computing 
the histogram features. This process chooses a specific number of features that are closer to 
the centroid, while the other is neglected. 

K-means Clustering. The BoDF stage, in which selected channels are grouped using 
the DECS technique for each class. Grouping is employed to accumulate similar features in 
the same class. This algorithm works efficiently when dealing with large datasets, whilst other 
methods face the over-fitting problem[39]. This technique also helps in grouping unnecessary 
features by comparing the distances. At the start, the value of the number of clusters 'k^' that 
will be used in the gathering of the provided features is selected at random. We experimented 
with the value of k; the features were organized into clusters correctly at the value of k = 8. 
The value was increased up to 14, but values higher than 14 and lower than 8 had a large sum 
of squared error, so they were omitted. So, the features of the SEED dataset are organized 
into eight groups compared to each other. 

The displacement for each number was measured by utilizing Euclidean distance. The 
feature is classified with that cluster, which provides the minimum range. The average of the 
quantities in that cluster is needed to get the average value for each given cluster. The collected 
mean values are then re-evaluated until the meaning of each cluster centroid converges. For 
the SEED dataset, the attributes of 17550×1000 are clustered in a 24×1000 feature vector. 
The 24×1000 for each class function vector is called the visual vocabulary. The decision 
process of cluster number k is an important task because it directly affects the results obtained. 
The hit-and-trial method algorithm is applied to obtain the optimal value. In this method, the 
difference was measured between the sum of quadratic error results at different values of k. 
Histogram Features. The second phase of the pipeline focuses on transforming the localized 
channel features into a global image representation using a codebook-based approach, often 
conceptualized as building a "visual vocabulary." 

In this model, each feature vector from a channel was treated as a local "descriptor." 
A codebook (or visual vocabulary) was previously generated, typically via clustering, where 
each cluster centre represents a "codeword." The core of this phase is to generate a histogram 
that aggregates these local descriptors. This histogram essentially counts the frequency with 
which descriptors from a given input sample are assigned to each codeword in the vocabulary. 
The computational process involves a comparison operation. For the SEED dataset, the 
feature matrix from a single sample, with dimensions of 225 × 24, is compared against a 
codebook derived from 26 representative channels. This comparison, typically performed 
using a distance metric such as Euclidean distance, assigns each of the 225 feature vectors to 
its closest codeword in the vocabulary. The final representation is a fixed-length histogram 
feature vector, H, where each bin H_i contains the count of feature vectors assigned to the i-
th codeword. For the SEED dataset, this results in a histogram of size 225 × 24, where the 
bin values (the frequency counts) are observed to fall within a range of 0 to 30. 

To optimize the representation for the three-class problem, a selective pooling strategy 
is employed. Instead of using the entire histogram, the ten most discriminative codewords 
(histogram bins) are identified for each class, leading to the selection of a compact feature 
subset of size 10×3=30. This process achieves a significant reduction in feature dimensionality 
while preserving the most salient frequency patterns for classification. 
Classification Framework and Model Selection: 

For feature extraction, the GoogLeNet (Inception) architecture was leveraged. The 
model was truncated at the "loss3-classifier" fully connected layer, discarding the final two 
layers responsible for the original 1000-class classification. This adaptation allows the network 
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to serve as a powerful feature extractor for the three-class problem inherent to the SEED 
dataset (Happy, Sad, Neutral). The high-dimensional features produced by this modified 
GoogLeNet, subsequently refined by the DECS-BoDF feature selection technique, were fed 
into two distinct classifiers: Support Vector Machine (SVM) and k-Nearest Neighbours (k-
NN). This dual-classifier approach was employed to ensure robust and generalizable 
performance across different classification paradigms. 
Support Vector Machine (SVM) Implementation: 

The SVM classifier operates by constructing an optimal hyperplane that maximizes the 
separation margin between different classes in a high-dimensional feature space. During 
training, the algorithm learns these decision boundaries, effectively creating a clear delineation 
between the three emotional states. A key strength of SVM is its ability to handle non-linear 
classification tasks using kernel functions. These functions implicitly map the original features 
into a higher-dimensional space where the classes become linearly separable. In this study, we 
evaluated several kernel types, including linear, polynomial, and Gaussian Radial Basis 
Function (RBF), to identify the most effective mapping for the emotional EEG data. 
k-Nearest Neighbours (k-NN) Implementation: 

As a complementary approach, the k-NN classifier was implemented. This instance-
based, or lazy-learning, algorithm classifies a test sample based on the majority vote of its 'k' 
closest neighbours in the feature space. The proximity between data points is quantified using 
a distance metric. For our model, the Euclidean distance was employed, which for two feature 
vectors p and q, each of dimensionality NN, is calculated as: 

𝑑(𝒑, 𝒒) = √ ∑ (𝑝𝑖 − 𝑞𝑖)2 

𝑁

𝑖 = 1 

#(8) 

Where N=45 for the feature vectors derived from the SEED dataset. The parameter 
'k', representing the number of neighbors considered, was tuned to optimize classification 
performance. 
To ensure a statistically rigorous evaluation of both classifiers, a 20-fold cross-validation 
protocol was strictly followed. This process involves repeatedly partitioning the data into 
training and testing sets, providing a reliable estimate of model generalizability and mitigating 
the risk of overfitting. The complete procedural workflow of the proposed model is 
summarized in Algorithm 1. 
Algorithm 1: Feature and Channel Selection Algorithm 
Inputs: 
A set of pre-processed, multi-channel EEG trials: X=\ {X_1, X_2,…, X_N \},  
where N is the total number of trials. 
A corresponding set of emotion labels: Y=\{y_1,y_2,…,y_N \}. 
Pre-trained GoogLeNet model. 
Number of optimal channels to select, K. 
Size of the visual vocabulary, V. 
SVM kernel type and hyperparameters. 
Outputs: 

A trained Support Vector Machine (SVM) classifier model, 〖SVM〗_model. 

Classification Accuracy on the test set. 
Procedure: 
Step 1: Time-Frequency Representation via Continuous Wavelet Transform (CWT) 

for each trial  𝑋𝑖 ∈ 𝑿 do 

for each EEG channel 𝑐 in trial 𝑋𝑖 do 
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Let 𝑠𝑖,𝑐(𝑡) Be the raw temporal signal from channel 𝑐 of trial 𝑋𝑖. 

Apply the Continuous Wavelet Transform (CWT) to 𝑠𝑖,𝑐(𝑡) to generate a 2D spectrogram 

image 𝐼𝑖,𝑐. 

end 
end 
Step 2: Deep Feature Extraction using GoogLeNet 

for each trial 𝑋𝑖 ∈ 𝑿 do 

for each channel spectrogram 𝐼𝑖,𝑐 in trial 𝑋𝑖 do 

Pre-process 𝐼𝑖,𝑐 (resize to 224 × 224 pixels, normalize pixel values). 

Feed 𝐼𝑖,𝑐 Into the pre-trained GoogLeNet. 

Extract the feature activation vector. 𝒇𝑖,𝑐 from a pre-final layer ('𝑝𝑜𝑜𝑙5 − 7 × 7𝑠1' layer). 

end 
end 
Step 3: Differential Entropy-based Channel Selection (DECS) 

Let 𝑺c be the set of all feature vectors 𝒇𝑖,𝑐 From all trials for a specific channel 𝑐. 

For each channel 𝑐 do 

Calculate the channel selection score 𝑆𝑐𝑜𝑟𝑒(𝑐). This can be implemented in one of two 
ways: 
Option A (From Raw EEG): 
Compute the average Differential Entropy:   

Score(𝑐) =
1

𝑁
∑

1

2

𝑁

𝑖=1

log(2𝜋𝑒. 𝜎𝑖,𝑐
2 ) 

where 𝜎i,c
2  is the variance of the raw signal 𝑠𝑖,𝑐(𝑡). 

Option B (From Deep Features): 

Compute the average magnitude of the deep features:  𝑆𝑐𝑜𝑟𝑒(𝑐) =  
1

|Sc|
 ∑ ||f||2f∈Sc

. 

end for 

Rank all channels based on 𝑆𝑐𝑜𝑟𝑒(𝑐) In descending order. 

Select the top 𝐾 channels to form the optimal channel set. 𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙. 

Step 4: Bag-of-Deep Features (BoDF) Vocabulary Construction 
Construct a global feature pool using only the selected optimal channels: 

𝐅pool = {𝐟𝐢,𝐜 ∣ ∀𝑖, ∀𝑐 ∈ 𝒞optimal} 

Apply k-means clustering to  𝐅poolto learn the visual vocabulary: {𝒗1, 𝒗2, . . . , 𝒗𝑉} = 𝑘 −

𝑚𝑒𝑎𝑛𝑠( 𝑭pool, 𝑉) 

where 𝒗j is the 𝑗 − 𝑡ℎ cluster centroid (codeword). 

Step 5: Trial-Level Histogram Encoding 

for each trial 𝑋i ∈ 𝑿 do 

Initialize a histogram vector.  𝒉i = [ℎi
1, ℎi

2, ℎi
3. . . , ℎi

v] with zeros. 

for each feature vector  𝒇𝑖, 𝑐 from the selected channels  𝑐 ∈ 𝒞optimal in trial 𝑋i do 

Find the index  𝑗∗ Of the nearest codeword: 

𝑗∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗∈{1,...,𝑉} ∣∣ 𝒇𝑖,𝑐 − 𝒗𝑗 ∣∣2 

Increment the corresponding histogram bin:  ℎi
𝑗∗

= ℎi
𝑗∗

+ 1. 

end for 

Normalize the histogram 𝒉i by the total number of feature vectors in the trial 𝑋i  to form 
the final trial representation. 
end for 
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Step 6: Model Training and Evaluation 

Split the dataset of histogram representations {𝒉i} and labels 𝒀 into the training set   (𝑯𝑡𝑟𝑎𝑖𝑛

, Y𝑡𝑟𝑎𝑖𝑛) and testing set  (𝑯𝑡est, Y𝑡est). 
Train an SVM classifier on the training set: 

𝑆𝑉𝑀𝑚𝑜𝑑𝑒𝑙 = 𝑆𝑉𝑀. 𝑡𝑟𝑎𝑖𝑛(𝑯train, 𝒀train) 
 Predict labels for the test set: 

𝒀𝑝𝑟𝑒𝑑 = 𝑆𝑉𝑀𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑯test) 

 Calculate the classification accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

∣ 𝑌𝑡𝑒𝑠𝑡 ∣
× 100% 

return 𝑆𝑉𝑀𝑚𝑜𝑑𝑒𝑙, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
Result and Discussion: 

This section presents the results of the proposed model. During model design, we 
evaluated five deep neural networks—GoogLeNet, AlexNet, ResNet-50, ResNet-101, and 
Inception-ResNetV2—to identify the network that delivers optimal performance on the 
SEED dataset. The histogram features were classified using SVM, k-NN, Tree, and Ensemble 
classifiers by all kernels. The kernels that are shown in Table 1 are the ones that provide 
optimal accuracy results. 

Figure 6 shows the improvement in accuracy by using the BoDF technique in the 
algorithm. This algorithm has been applied to both datasets (SEED and DEAP). The BoDF 
technique reduces the dimension of the extracted feature significantly, which in turn increases 
the accuracy of the algorithm. The results obtained using the DECS technique are omitted 
from the figures, as they only slightly improve algorithm accuracy. The primary purpose of 
employing DECS, as explained in the Introduction, is to reduce computational overhead.  

 
Figure 6. The improvement in accuracy by using the BoDF technique for SEED and 

DEAP datasets. 
A comparison was made between the previous studies and these results to benchmark 

them. The classification techniques, along with the classifiers that were used to classify the 
feature vectors, are also mentioned in Table 2. The datasets on which the models were 
designed and the number of channels that were used are also highlighted. In Table 2, the 
feature vectors acquired from GoogLeNet were 41850 × 1000 lessened to a dimension of 225 
× 24 vectors for the SEED dataset. 

In our research work, we used the state-of-the-art DNNs, namely GoogLeNet, 
AlexNet, ResNet-50, ResNet-101, InceptionResNetV2, to extract the feature vectors. We also 
experimented with the number of clusters being made by varying the value of k. While 
selecting the value for the number of clusters 'k', we omitted the smaller ones because the sum 
of squared errors was more significant at these values and picked the larger ones, like k = 
8,10,12,14, which had a low sum of squared errors.  
K-NN Classifier: 
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For the SEAD dataset, the k-NN gave low classification results when combined with 
ResNet-101, with the highest only up to 92.8% with k = 8, as shown in Figure 7 (LEFT). 
Similarly, InceptionResNetV2 provided only up to 92.8% with the number of clusters k = 14, 
and the accuracy decreases with a decrease in the number of clusters. 

The k-NN classifier can provide an accuracy of 93.7% using GoogLeNet, while the 
cluster value is at k=8, and provided relatively low accuracy as the cluster was increased. When 
combined with AlexNet, an accuracy of 94.6% is obtained when k=12, and the other values 
of k gave lower results. The k-NN classifier also provided the same results when integrated 
with ResNet-50 at k=14 and relatively low classification results at lower values of k. 

In the case of the DEAP dataset, the highest accuracy achieved is 74.4% using Resnet-
50 and AlexNet with k=12 and k=14. The accuracies obtained from different neural networks 
are shown in Figure 7 (RIGHT). 

 
Figure 7. The results obtained from the k-NN Classifier on the SEED dataset (LEFT) and 

DEAP dataset (RIGHT). 
Ensemble Classifier: 

For the SEED dataset, the Ensemble classifier achieved an accuracy of 94.6% with 
GoogLeNet at a cluster value of k = 8, while higher numbers of clusters resulted in lower 
classification performance. AlexNet, ResNet-50, ResNet-101, InceptionresnetV2 gave an 
accuracy of 94.2% with k=8, 93.7% with k=12, 93.3% with k=12 respectively. The results are 
shown in Figure 8 (LEFT). 

For the DEAP dataset, a maximum accuracy of 79.8% is achieved with GoogLeNet 
(k = 8). For a detailed comparison of accuracy across different neural networks, refer to Figure 
8 (right).  

 
Figure 8. The results obtained from the Ensemble Classifier on the SEED dataset (LEFT) 

and DEAP dataset (RIGHT). 
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Tree Classifier: 
For SEAD, the Tree classifier provided an accuracy highest up to 94.2% with the 

DNN, namely GoogleNet with clustering at k = 12, as shown in Figure 9 (LEFT), and 
InceptionResNetV2 with cluster value at k = 10. The other DNN can't provide high 
classification results even with changing the value of the number of clusters. 

For DEAP, the tree classifier provides the accuracies in the range between 80.2% 
(GoogLeNet & InceptionsernetV2) and 76.2% (Resnet-50), see Figure 9 (RIGHT). 

 
Figure 9. The results obtained from Tree Classifier on the SEED dataset (LEFT) and 

DEAP dataset (RIGHT). 
SVM Classifier:  

In the case of SEAD, the highest percentage was obtained with the SVM classifier, 
which gave an accuracy of 95.1% while applying GoogleNet for feature extraction with the 
value of k = 8. Meanwhile, none of the other DNNs achieved high-quality classification, even 
when the number of clusters k was varied, as shown in Figure 10 (left). An accuracy of 93.7% 
was obtained with AlexNet at the cluster value of k=14. The other DNNs like ResNet-50, 
ResNet-101, and InceptionResNetV2, could provide quality classification only up to 92.8% 
with k=8 and 12, 92.4% with k=12 and 14, 92.8% with k=8 and 12, respectively. 

The optimal classification results were obtained from GoogleNet with the SVM 
classifier at a clustering value of k=8. The accuracy achieved in classifying emotions reached 
95.1%, representing the highest performance obtained across all combinations of classifiers, 
cluster numbers, and DNNs.  

In the case of DEAP, the maximum achieved accuracy is 82.5% using GoogLeNet 
(k=8). The accuracy obtained from the SVM classifier (using GoogLeNet) is the highest 
accuracy compared to other classifiers and neural networks, for a detailed comparison, see 
Figure 10 (RIGHT). 

 
Figure 10. The results obtained from the SVM Classifier on the SEED dataset (LEFT) and 

DEAP dataset (RIGHT). 
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Table 1. Analysis of accuracy following channel reduction of various DNNs. 

Neural 
Networks 

SEAD, DEAP 
Channels 

Classifiers Kernal used SEAD, DEAP 
Accuracies (%) 

GoogleNet 26, 12 SVM Cubic 95.1, 82.5 

  kNN Fine 93.7, 73.5 

  Tree Medium 94.2, 80.2 

  Ensemble Subspace KNN 94.6, 79.8 

AlexNet 28, 13 SVM Fine Gaussian 93.7, 81.1 

  kNN Weighted 94.6, 74.4 

  Tree Medium/Fine 92.4, 78.4 

  Ensemble Subspace KNN 94.2, 79.4 

Resnet-50 40, 19 SVM Fine Gaussian 92.8, 80.2 

  kNN Weighted 94.6, 74.4 

  Tree Medium/Fine 93.7, 79.7 

  Ensemble Subspace KNN 93.7, 78.9 

Resnet-101 29, 14 SVM Fine Gaussian 92.4, 79.8 

  kNN Weighted 92.8, 72.6 

  Tree Medium/Fine 92.8, 78.8 

  Ensemble Bagged Trees 93.3, 78.5 

InceptionresnetV2 32, 16 SVM Cubic 92.8, 80.2 

  kNN Weighted/Fine 92.8, 72.6 

  Tree Medium/Fine 94.2, 80.2 

  Ensemble Subspace KNN 94.2, 79.4 

Table 2. Comparison of our proposed work with other studies. 

Ref. Technique Dataset Selected 
Channels 

Classification 
model 

Classification 
accuracy (%) 

[4] MFM DEAP 18 CapsNet 68.2 

[32] MFCC BEED 12 SVM 83.5 

    Random 
Forest 

72.07 

  DEAP 6 Random 
Forest 

72.07 

[22] MEMD DEAP 12 ANN 75 

    KNN 67 

[28] STRNN SEED 62 CNN 89.5 

[29] RFE SEED 18 SVM 90.4 

  DEAP 12 SVM 60.5 

[33] DE DEAP 32 PNN 79.3 

[12] BoDF SEED 62 SVM 93.8 

    KNN 91.4 

  DEAP 32 SVM 77.4 

    KNN 73.6 

Our 
Work 

DECS-
BoDF 

SEED 26 SVM 95.1 

    KNN 94.6 

    Tree 94.2 

    Ensemble 94.6 

  DEAP 12 SVM 82.5 
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    KNN 73.5 

    Tree 78 

    Ensemble 79.8 

    SVM 95.1 

Discussion: 
Based on the presented results, a comparative analysis was conducted to evaluate the 

performance of the proposed DECS-BoDF method against recent state-of-the-art techniques 
in emotion recognition from EEG signals. 

Our method demonstrates superior performance on the SEED dataset, achieving a 
peak accuracy of 95.1% with an SVM classifier. This outperforms all other cited studies, 
including the previous best of 93.8% by[12] using a Bag-of-DF (BoDF) model and 90.4% 
by[29] using Recursive Feature Elimination (RFE). Notably, our approach not only achieves 
a higher peak accuracy but also shows remarkable consistency across multiple classifiers (SVM, 
KNN, Tree, Ensemble), all yielding accuracies above 94%. This suggests that the DECS-
BoDF features are highly robust and not dependent on a single classification algorithm. 

The results on the more challenging DEAP dataset further validate the effectiveness 
of our method. Our model achieves a top accuracy of 82.5% with SVM, which is competitive 
with and, in most cases, superior to the existing literature. For instance, it substantially 
outperforms the 60.5% accuracy reported by[29] and the 77.4% by [12]. It is comparable to 
the 79.3% achieved by[33]  using Differential Entropy (DE) and a Probabilistic Neural 
Network (PNN). The strong performance on DEAP is significant as it indicates that our 
feature extraction method (DECS-BoDF) generalizes well across different datasets, which is 
a key challenge in the field. 

A critical advantage of our work is the achievement of high accuracy with a reduced 
number of EEG channels. On the DEAP dataset, we achieved 82.5% accuracy using only 12 
channels, compared to [12] and [33], which used 32 channels to achieve 77.4% and 79.3%, 
respectively. This indicates that our channel selection strategy (likely implied by DECS) is 
highly effective at identifying the most informative brain regions for emotion recognition, 
which is a major step towards developing more practical and wearable BCI systems. Unlike 
many studies that report results for a single optimized classifier, our work demonstrates the 
robustness of the DECS-BoDF features across a diverse set of classifiers (SVM, KNN, Tree, 
Ensemble). The consistently high performance on the SEED dataset and competitive 
performance on DEAP regardless of the classifier used strongly suggest that the strength lies 
in the quality of the features themselves, rather than in a specific model's ability to fine-tune 
them. 
Conclusion: 

This work proposes a novel architecture that employs Differential Entropy-Based 
Channel Selection and Bag-of-Deep Feature technique to achieve appreciably higher 
classification accuracy for the SJTU SEED and DEAP datasets by reducing the computational 
cost of the model. The constituent techniques lead to a significant reduction in the number of 
feature vectors obtained initially via GoogLeNet, followed by SVM-based classification. Upon 
clustering the feature vectors into eight distinct groups, an accuracy of 95.1% is reported using 
the proposed method. Employing the proposed method also lowers the required number of 
EEG channels from 62 to 26, rendering the entire classification process less computationally 
intensive. The reduction in the number of features and, consequently, the number of channels 
paves the way for lowered computational cost and memory storage requirement for processing 
and storage of EEG signals with no substantial degradation in classification accuracy. The 
model can be extended in the future to allow for further reduction of required channels, paving 
the way for real-time emotion classification. 
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