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computational complexity in emotion recognition systems. To address this, we propose

a novel framework that integrates optimal channel selection with efficient feature
extraction. Our method begins by converting preprocessed EEG signals into two-dimensional
spectrograms using a Continuous Wavelet Transform (CWT). These spectrograms are then
processed by a Google Net model for deep feature extraction. A key contribution is the
Differential Entropy-based Channel Selection (DECS) technique, which identifies and retains
the most informative channels. To manage dimensionality, the extracted features are encoded
using the Bag-of-Deep-Features (BoDF) method, which employs k-means clustering to create
a visual vocabulary and represents features as histograms. Finally, these histogram features are
classified using a Support Vector Machine (SVM). Evaluated on the SJTU SEED and DEAP
datasets, the proposed model achieves state-of-the-art classification accuracies of 95.1% and
81.1%, respectively, demonstrating its effectiveness and efficiency.
Keywords: Bag-of-Deep Features; Continuous Wavelet Transform; Differential Entropy-
based channel selection; Support Vector Machine.

The non-stationary nature of Electroencephalogram (EEG) signals often leads to high
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Introduction:

Biomedical engineers have long employed Brain-Computer Interfaces (BCIs) to
control devices using brain signals[1]. To recognize and classify human emotions,
Electroencephalographic (EEG) signals generated by the brain are captured using electrodes
placed on the scalp[2]. Although extensive research has been conducted on recognizing and
classifying human emotions, machines still find the process difficult to accomplish. The
demand for human emotion assessment is at an all-time high due to the advancements in
machine learning tools[3] [4].

Perceptual experience and apprehensiveness are of prime importance when it comes
to the emotional states of humans. The major fields of affective computing, Emotion
detection, play a fundamental role when it comes to providing emotional care to people.
Human emotions can be detected through several approaches, such as analyzing visual cues,
speech variations, and video data. However, these systems are often complex and costly to
implement. Detection and classification of emotions via EEG signals is a particularly
challenging task because of insufficient time boundaries. The subjects might depict differing
emotional reactions because emotional states have no definite margins[5]. While emotions
have traditionally been detected through speech, images, and videos, Brain-Computer
Interface (BCI) technology now offers a more direct gateway. BCIs track brain signals to help
us understand emotional responses. However, a significant challenge remains that we are still
largely unable to fully decode this complex neural information[6] [7]. The bio-signals acquired
from these techniques can help uncover insights into the psychological and emotional state of
the user[8]. The signal acquisition process is done through the 10-20 International System of
electrode placement[9] [10].

In previous work, researchers have typically either reduced the computational
overhead by limiting the number of features or improved decision precision by utilizing all
features separately. When applied independently, these techniques either lower the overall
computational overhead or enhance decision accuracy. The challenge emerges in real-time
applications, where limited time is available to detect emotions from EEG signals and high
decision precision is required. To address this, the proposed algorithm aims to extract quality
features while simultaneously reducing computational overhead. The proposed work is not as
good as needed for real-time, but a sufficient improvement from the previous work.

The remainder of this paper is organized as follows: Section II reviews the related
literature, while Section I1I describes the datasets employed in this study. Section IV outlines
the methodology, detailing the stages of TFR, FE, DECS, BoDF, and classification. Section
V presents the results of the proposed algorithm along with a comparative analysis against
previous work. Finally, Section VI concludes the paper.

Existing methods address channel selection and feature reduction in isolation, often
relying on shallow statistical measures or simplistic aggregation. This creates a clear research
gap: the lack of an integrated framework that leverages the power of deep learning to
simultaneously identify emotionally salient brain channels and compactly represent their high-
dimensional features.

To bridge this gap, this paper proposes a novel methodology that synergistically
combines a Differential Entropy-based Channel Selection (DECS) technique with a Bag-of-
Deep-Features (BoDF) model. The novelty of our work is threefold:

We introduce DECS, which uses differential entropy robust measures of signal complexity—
derived from deep feature maps to systematically identify and select the most discriminative
EEG channels for emotion recognition, thereby reducing computational overhead and
enhancing model focus.

We adapt the BoDF model, inspired by computer vision, to effectively reduce the
dimensionality of deep features. By creating a 'visual vocabulary' of feature clusters, BoDF
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transforms the high-dimensional feature set into a compact histogram representation,
mitigating the curse of dimensionality without significant information loss.

The primary novelty lies in the integrated use of DECS and BoDF. DECS ensures that only
the most relevant channels are processed, and BoDF provides an efficient, fixed-length
representation of their complex features. This combined approach is specifically designed to
enhance both the accuracy and efficiency of EEG-based emotion classification.

The proposed model, when evaluated on the SJTU SEED and DEAP datasets,
achieves state-of-the-art performance, demonstrating the effectiveness of this integrated
approach.

Related Work:

This section reviews previously reported studies on human emotion recognition.
In[11], the authors discuss methods for acquiring EEG signal data, along with its
preprocessing and enhancement. They evaluate various feature extraction techniques and
classification algorithms, with classification accuracy serving as the primary performance
metric.

In [12], an EEG-based multi-modal model for the purpose of emotion recognition
employs a multi-layered deep neural network for performing classification. Raw EEG signals
are transformed into 2-D spectrograms that retain spatial and temporal information. Feature
extraction from these spectrograms is then performed for each channel using a pre-trained
AlexNet model. In[13], a study with ten participants analyzes seven emotions. The signals are
filtered using a Savitzky-Golay (SG) filter to identify the channels that deliver maximum
accuracy. Employing the Differential Entropy-based Channel Selection algorithm (DECS)
increases the classification accuracy for Linear Discriminant Analysis (LDA) to 86.85%, up
from 80%. In[14], the authors propose a technique that converts 32-lead EEG signals into 2-
D images using the Azimuthal Equidistant Projection (AEP) method. These images are then
processed using Convolutional Neural Networks (CNNs) and Deep Neural Networks
(DNNs), achieving an accuracy of up to 96.09%. In[15], the authors propose an emotion
detection system based on an advanced convolutional neural network, implemented on a very
large-scale integration (VLSI) hardware design. The designed model was validated from a set
of 32 subjects that were taken from the DEAP dataset, and the average classification accuracy
of 83.88% was attained. The[10] offered an emotion recognition that extracts features by
application of Compressed Sensing (CS), Local Binary Patterns (LBP), and Wavelet
Transformation (WT). Furthermore, Support Vector Machine (SVM) and Fuzzy Cognitive
Maps (FCM) are unified to formulate an algorithm that provides an accuracy of up to 75.64%
from the feature patterns. In [17], the authors discuss the techniques that are used for emotion
recognition, also survey, and examine several parameters that include accuracy, specificity, and
sensitivity. The proposed technique achieves 89% accuracy in emotion recognition and
classification.

In[18], the authors introduce a learning algorithm designed to identify the most distinct
EEG channels suitable for recognizing internal emotions. The approach employs kernel-based
representations, which are computationally derived from EEG signals. The algorithm is used
to reduce the data with an improvement in computational efficacy and classification accuracy
carried out alongside. In[4], the authors proposed a model for emotion assessment in which
the perceptual experience and apprehensiveness of the subject played an important role. They
used the MFM and CapsNet classifiers on the DEAP dataset, achieving an accuracy of 68.2%.
Several interfacing techniques have been reported for extracting EEG signals from the brain
to facilitate emotion detection. However, there remains considerable scope for improvement,
particularly in enhancing accuracy and interpretability while extracting spatial features. The
normalization of common spatial patterns (CSP) is among the most consistent methods[19],
as it ensures a reduction in noise along with accompanying artifacts that are known to exist in
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EEG signals of the unprocessed kind. In [20], the authors combined Virtual Reality (VR) and
the Internet of Things (IoT) to enable real-time control over both the virtual and physical
environments of a user. They utilized the CSP features in virtual reality for the process of
motor rehabilitation. In[21], the authors have suggested a framework that applies the Fisher
ratio criterion and estimates the optimal weights of filters using the available data in an
automatic fashion. When evaluated experimentally, the performance of the proposed model
based on dynamic features is comparable with that obtained upon using CSP and AR features.

Efforts to achieve robust emotion recognition from EEG signals have traditionally
relied on signal processing techniques that assume stationarity, such as the Fourier Transform
and Discrete Wavelet Transform (DWT)[22] [23]. However, the inherently subjective and
complex nature of emotional states presents a significant obstacle to developing a universal
analytical framework. EEG data is inherently non-stationary and non-linear, with statistical
properties that vary over time, making the accurate characterization of transient emotional
cues more challenging. This complexity underscores the critical importance of channel and
feature selection, as the inclusion of irrelevant or redundant data can severely compromise
detection accuracy. Furthermore, the high dimensionality of multi-channel EEG recordings
often leads to substantial computational costs, especially when dealing with large-scale datasets
required for training sophisticated models. To address this, prior research has explored signal
decomposition methods such as Empirical Mode Decomposition (EMD) and Wavelet Packet
Decomposition (WPD)[24] [25] [26]. These techniques aim to break down the raw signal into
a series of constituent components, facilitating the handling of vast data volumes by extracting
a more manageable set of informative features.

Parallel research in speech emotion recognition (SER) has also seen notable
advancements, driven by the shared objective of improving human-computer interaction
(HCI). One such study presents an Artificial Intelligence-assisted Deep Stride Convolutional
Neural Network (DSCNN) as a novel architecture[27]. This model leverages a 'plains nets'
strategy within the DSCNN to identify distinctive patterns directly from speech spectrograms.
When tested on the IEMOCAP and RAVDESS datasets with a SoftMax classifier, this
approach achieved performance improvements of 7.85% and 4.5%, respectively, while also
reducing the model size by 34.5 MB. Such cross-modal innovations highlight the potential of
advanced neural architectures for complex pattern recognition in affective computing.

Feature selection is a fundamental process for obtaining valuable features, as it helps
reduce the dimensionality of the feature set. This technique helps identify the most relevant
features in the classification domain. Broadly, feature scoring methods are categorized into
four classes: statistical-based, information-theoretic, sparse learning-based, and agreement-
based approaches|[28]. Although there is are variety of procedures for scoring features that
are proposed by many scholars in [29] [27]. Non-negative Laplacian is one of the estimation
techniques to identify the contribution of a feature in feature selection using unsupervised
learning[30]. Principal Component Analysis (PCA) is a technique used by several scholars in
the field of emotion detection using EEG signals to reduce the size of features by picking
procedures depending on their exclusive value. Ignoring features with uncorrelated quantities
is a conventional clipping procedure. For optimization of statistical features, a dynamic search
strategy is proposed in[31]. The Receiver Operating Characteristics (ROC) is used for feature
selection to find valuable features. This technique helps to decrease the size of features while
providing high accuracy for classification in the case of an electrocardiography (ECG) signal.

The authors in[25] employed a multi-scale PCA along with WPD for fragmentation
and extermination of noise from the signal. A classification accuracy of 92.8% was obtained
while classifying EEG signals for motor rehabilitation. In[32], the authors propose a flexible
analytical wavelet-based decomposition (FAWT) method applied to the SEED dataset. Using
an SVM classifier, they achieve a classification accuracy of 83.3%. FAWT is also a channel-
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specific process. A limitation of this approach is that some features may appear irrelevant
individually but can provide valuable information when considered in combination with
others. Another demerit is the ability to choose functions that are individually related, which
might cause duplication. The authors in [33] proposed a feature selection algorithm based on
decomposition, which was evaluated on DEAP and MAHNOB datasets. The literature
demonstrates various sophisticated approaches to optimizing feature selection and
classification for EEG-based emotion recognition. For instance, one methodology integrated
a Probabilistic Neural Network (PNN) classifier with a feature selection mechanism driven by
Differential Evolution (DE). This hybrid model was reported to achieve classification
accuracies of 77.8% on the MAHNOB dataset and 79.3% on the DEAP dataset, showcasing
its effectiveness.

Further investigations have focused on the informational content of specific EEG
rhythms. A notable study[28] quantified the differential entropy features from standard
frequency bands, identifying beta and gamma rhythms as the most discriminative for
emotional valence and arousal. To capture the complex dynamics of these signals, the authors
extract a comprehensive set of 18 linear and non-linear features from the time-frequency
domain. These features were then processed using a Spatial-Temporal Recurrent Neural
Network (STRNN), an architecture specifically designed to model the inherent dependencies
across both space (channels) and time. To address the challenge of generalizability, the study
in[29] systematically examines key factors influencing cross-target emotion recognition, such
as the dynamic properties of EEG signals and inconsistencies among datasets with varying
channel montages. To enhance model efficiency and performance, the authors introduced a
Recursive Feature Elimination (RFE) technique, which iteratively prunes the least important
features. This method yielded an average accuracy of 60.5% on the DEAP dataset and a
notably higher 90.33% on the SEED dataset, underscoring the impact of dataset
characteristics on final performance.

Conventional methodologies for EEG-based emotion recognition have historically
presented a trade-off between performance and practicality. One common strategy utilizes the
full array of EEG channels, a method that typically yields high classification accuracy but at
the cost of significant computational burden. The alternative approach involves pre-emptively
reducing the number of channels to enhance processing speed; however, this often leads to a
substantial decline in predictive performance due to the loss of critical neurophysiological
information.

This study introduces a novel framework designed to transcend this traditional
compromise. The proposed model integrates two key components to achieve both high
accuracy and computational efficiency simultaneously. First, a Differential Entropy-based
Channel Selection (DECS) algorithm identifies and preserves the most informative EEG
channels, discarding redundant ones. Subsequently, a Bag-of-Deep-Features (BoDF) method
is applied to further condense the feature space. This two-stage process ensures that the model
operates on a compact, high-fidelity representation of the original EEG signal, enabling robust
emotion classification without prohibitive computational demands.

Material and Methods:

Dataset 1 (SEED). The experimental data for this study are obtained from the publicly
available SJTU Emotion EEG Dataset (SEED), developed by Professor Bao-Liang Lu and
his team at the Brain-Like Computing and Machine Intelligence (BCMI) Laboratory [27]. This
dataset was specifically designed to elicit and record neural correlations of distinct emotional
states.

During the data acquisition phase, fifteen subjects (seven male and eight female)
participated in experiments where they viewed a series of fifteen carefully selected Chinese
film clips. As illustrated in Figure 1, these clips were intended to provoke one of three target
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emotional responses: positive, negative, or neutral. Stimulus selection followed strict criteria
to ensure data quality and ecological validity: the experiment duration was controlled to
prevent participant fatigue, video clips were non-verbal or easily understandable to minimize
cognitive bias, and each was designed to elicit a single, dominant emotional state. The
experimental protocol was structured into discrete trials. Each trial began with a 5-second
preparatory cue, followed by the 4-minute emotional stimulus. Subsequently, participants were
given a 45-second period for subjective emotional self-assessment, concluding with a 15-
second rest interval. To prevent emotional carry-over effects, clips targeting the same category
were not presented consecutively. Furthermore, participant feedback was systematically
collected through post-experiment questionnaires to validate the emotional induction [27].

Dataset 2 (DEAP). The Database for Emotional Analysis using Physiological Signals
(DEAP) dataset was collected by young researchers at Queen Mary University. An analysis of
effective human states is presented in the dataset. The stimuli from 32 participants (and frontal
face videos from 22 participants) were collected by exposing them to 40 selected videos, each
one minute in length. Familiarity, dominance, like or dislike, valence, and arousal were the
parameters on which the participants ranked each video. Affective Tags from last. FM website,
video highlight detection, and an online assessment tool were incorporated for the selection
of the generated stimuli. The video selection process began with 120 YouTube videos, of
which half were selected manually and the remainder semi-automatically.

Emotions —_-_- BN may — Ly — L

7N\

/

I Subject 1 | | Subject 2 ‘ | Subject 3 ‘***‘I Subject 15 | Subject 1 Subject 2 Subject 3 Subject 15
T=

[ Experiment 1 | I Experiment 2 | \ Experiment 3 |

—— Trail 1 Trail 2 Trail 3 Trail 40

‘ Trail 1 | | Trail 2 ‘ | Trail 3 | | Trail 4 ‘ I Trail 5 |

Channel 1 Channel 2 Channel 3 Channel 62

[cmar ] e | [} [coman

Feature Vector =62 x5 x 3 x 15 x 3 x 1000 Feature Vector =32 x 40 x 32 x 4 x 1000
= 41850 x 1000 =163,840 x 1000

SEED Dataset DEAP Dataset

Figure 1. Raw Feature Dimension of SEED and DEAP Datasets.

These 120 videos were ranked subjectively, and the top 40 videos were selected to be
presented to 32 subjects. The subjects were 50% female and 50% male; the average age was
26.9, ranging from 19 to 37 years. After exposure to each video, the participants were asked
to fill out a questionnaire for self-assessment of their arousal, liking, and dominance on a scale
of 1 to 9 (1 represents a low state while 9 represents a high state). Valence, arousal, and liking
provide information about sad/happy, calm/excited, dislike/like. The EEG signal generated
by stimuli was collected over the 10-20 international system. The signals were collected by
utilizing a 32-channel array at 512 cycles/second. The outliers were removed using pre-
processing and down-sampled to 128Hz.

Methodology:

In this section, we described the methods that were employed to implement the
proposed model. The following Figure 2 shows the architecture of our framework. The
frames were discussed step by step in the following sections. In the Preprocessing step, one-
dimensional EEG signals are represented as a two-dimensional spectrogram of time and
frequency, known as Time-frequency representation (TFR). DNN is used to extract features.
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To reduce the feature dimension and select the high-quality features. The DECS (Channel

Selection) technique is proposed aloni with BoDF (Feature Selection).

True
Label

Figure 2. The proposed framework for the classification of Emotions from EEG signals of
the SEED and DEAP datasets.

The proposed framework for emotion classification initiates by transforming the
preprocessed EEG signals into a two-dimensional time-frequency representation using the
Continuous Wavelet Transform (CWT). This process yields a spectrogram for each signal,
which effectively captures its non-stationary characteristics. These spectrograms are
subsequently fed into the Googl.eNet architecture, pre-trained on image recognition tasks, to
extract a comprehensive set of high-level, deep features for all subjects.

To refine this feature set, the Differential Entropy-based Channel Selection (DECS)
algorithm is applied. This step functions as an intelligent filter, identifying and retaining only
those EEG channels that contribute the most discriminative information for emotion
recognition, thereby enhancing the signal-to-noise ratio of the data. Following channel
selection, the Bag-of-Deep-Features (BoDF) model was employed for further dimensionality
reduction. This involves using k-means clustering to generate a compact "visual vocabulary”
from the deep features, where each cluster centroid represents a fundamental pattern.

Finally, this learned vocabulary is used to encode the feature set into a standardized
histogram representation. These histograms are then presented to multi-class classifiers for
the final emotion assessment. The model is evaluated on its ability to discriminate between the
three emotional states—neutral, positive, and negative—present in the SEED dataset, with
performance being benchmarked across various kernel functions within the classifiers.

Time Frequency Representation. The time-frequency representation of the signals was
done by utilizing the preprocessed EEG signals. Poor and low accuracy results were obtained
from the traditional emotion recognition model, which takes out features straight from the
preprocessed EEG signals. In our work, to visualize the EEG signal and extract the desired
features, the one-dimensional EEG signal was represented as a two-dimensional time-
frequency representation (TFR) using the Continuous Wavelet Transform (CWT). The reason
for using CWT over other techniques was to acquire full knowledge of signal frequency in the
temporal and spatial domains.

Continuous Wavelet Transformation. The preprocessed EEG signals were mapped
into a joint time-frequency domain using the Continuous Wavelet Transform (CWT) to
construct a Time-Frequency Representation (TFR)[31]. The CWT decomposes a signal by
convolving it with a set of wavelets that were scaled and shifted versions of a fundamental
mother wavelet.

Let x() represent the continuous-time EEG signal. The CWT is defined as a two-
dimensional function, T_x (o,v), which quantifies the correlation between x(£) and a wavelet
basis function. P ,,(§)

T.(0,v) = f f (s () dE #(1)

In this formulation:
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0 € R*+ is the dilation parameter, inversely proportional to frequency.
v € Ris the translation parameter, indicating temporal location.
The family of wavelets P ,, () is generated from the mother wavelet Y (¢) through:

1 (E — 1/) #(2)

You(§) ==V |—
Vo o
This factor 1/ Vo ensures energy preservation across different scales.
For the transformation to be invertible, the mother wavelet must satisfy the
admissibility condition, which requires it to have zero mean and finite energy. The
corresponding stability constant,Ky, is given by:

UADIE
szf() o < o#(3)

Where ¢ (w) is the Fourier transform of ¢ (¢). This condition guarantees that the
original signal can be reconstructed from its CWT coefficients.

In practice, a filter-bank approach was used to compute the CWT for each EEG
channel, generating a distinct TFR. A visual analysis confirms discernible differences in the
TEFR patterns across different experimental classes. These TFR images are subsequently
converted to grayscale scalograms and resampled to a uniform size of 227X227 pixels. A
convolutional neural network is then trained on this dataset, leveraging a 20-fold cross-
validation protocol to optimize performance before proceeding with feature extraction.
Feature Extraction:

In our working model, the process of feature extraction was done by the DNN termed
as GoogleNet. GoogleNet is a multi-layer DNN comprised of 22 layers[34] as shown in
Figure 3. GooglLeNet utilizes 5 million parameters than its forerunner, AlexNet, which had 60
million parameters. So, it can deliver even under the primary confinements of memory and
computational cost[35]. Googl.eNet won the ILSVRC 2014, and it used 12 fewer layers than
the winning network from two years ago[34]. It is a personification of Inception architecture
submitted at ILSCRC 2014 competition as it comprises recurring Inception layers in its model.
The 2-D spectrogram images were fed to the 22 layers, which applied the process of
convolution and max pooling.

Output

I convolution + ReLU

B max Polling

D Inception

[] Fully Connected + ReLU

GoogleNet

Figure 3. The Googl.eNet Architecture.

The architectural backbone of this work is derived from the Inception model. In this
network, all convolutional layers employ the Rectified Linear Unit (ReLLU) as their activation
function. The model was designed to process input images of size 224X224 pixels within the
RGB color space, which have been preprocessed by centering their mean to zero.

A key efficient feature of the Inception architecture is its use of dimensionality
reduction. This is achieved through specialized layers that utilize 1X1 convolutional filters,
often designated as '3X3 reduce' and '5X5 reduce' layers. These layers are strategically placed
prior to the more computationally intensive 3X3 and 5X5 convolutions, serving to project the
input into a lower-dimensional
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EEG Channel Selection using Differential Entropy. The process of channel selection
is of crucial importance when it comes to omitting irrelevant and redundant features while
maintaining the quality of the selected features. By employing an effective method to extract
quality features, the total amount of the features is significantly reduced without degrading the
standard of classification. In this paper, a decision-making algorithm was proposed to evaluate
the relevance of feature subsets. It enabled efficient representation of ambiguous data at the
boundaries of these subsets, such as in rough sets or fuzzy-rough sets. The recommended
algorithm uses differential entropy to obtain novel features by evaluating the feature subsets.
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Figure 4. The process of formation of Bag-of-Deep Features (proposed work).

Effective channel selection is a critical step in building a robust BCI system, as it aims
to eliminate non-informative and redundant data streams while preserving the core
discriminatory information. A well-designed selection strategy can drastically reduce the
computational burden and model complexity without compromising, and sometimes even
enhancing, classification performance. This paper introduces a feature evaluation algorithm
grounded in information-theoretic principles, which quantifies the informational sufficiency
of a candidate feature subset. This method is particularly adept at handling the inherent
uncertainty and imprecision found in the decision boundaries of neurophysiological data, a
challenge often addressed by techniques like rough sets.

The proposed framework is versatile, capable of processing both categorical and
continuous-valued data[36]. At its core, we leveraged the concept of conditional entropy to
accurately measure the discrepancy between the knowledge represented by a subset of
channels and that of the complete set. This measure provides a powerful and efficient means
to assess a feature subset's quality, yielding several desirable theoretical properties.

Consider a decision system represented by the tuple (U, FUD), where U is the universe
of instances, I is the full set of features (EEG channels), and D is the decision attribute (e.g.,
emotion class). For any feature subset SEF, we define its informational divergence D(S |
U,F as

X
-1 [x]F N [x]S
D(S | U,F) IUI;]logz o R

Here, [x]S denotes the equivalence class of instance x induced by the feature subset S,
i.e., the set of all instances in U indistinguishable from x based on the features in S. Since § is
a subset of F, it follows that [x]F € [x]S , guaranteeing the non-negativity of the measure.
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An alternative, equivalent formulation of the divergence is:

D(S | UF) = Zz I[ Sl

This measure exhibits key monoton1c1ty and equivalence properties. For nested
subsets S1 € §2 CF, the following holds:

D(S2 | U F)<D(S1| UF)#(6)

Furthermore, if the partitions induced by S1 and S2 are identical (ie., /S1 = U/S2),
then their divergent values are equal:

D(S2 | U,F)=D(S1 | UF),if U/S1=U/S2#(7)
Interpretation and Significance:

The divergence D(S|U, F) serves as a direct metric for the representational power lost
by using the subset S instead of the full feature set F. A higher value indicates a greater loss of
information and a larger discrepancy between the granularity of S and F. Crucially, when
D(SIU, F)=0, it implies U/S=U/F. This means the subset S induces the same partition over
the data as the full set I, proving that S is informationally equivalent to I and is therefore a
minimal and sufficient feature set for the task[30].

Bag-of-Deep Features (BoDF). In computer vision, this procedure was used to reduce
the dimensionality of feature sets for classification[37]. Specifically, it was applied to limit the
number of features to a desired value. This method helps in reducing the feature size and the
time required to train the dataset, in contrast to processing a massive number of features,
which results in low accuracy classification and excessive training time. In our proposed
method, all channels were used for emotion identification, resulting in high-dimensional
features that demanded significant computational resources for dataset training. In the
previous studies, only 8 to 12 channels were utilized, which resulted in a reduction in accuracy
and the number of channels employed for classification[38].

123272322227
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Figure 5. The overall flow diagram of the proposed model.
In this model, we utilized the SEED dataset, which has a dimension of 41850Xx1000
number of features when reduced to 17550X1000 from 26 channels out of 62, which are fed
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to BoDF, as shown in Figure 5. The BoDF model comprises two stages by which features are
taken out from Google-Net and are reduced by utilizing k-means clustering. K-means
clustering accumulates similar features into one vector. So, in the first stage, the features are
lowered by using mean clustering. In the second stage, further reduction is done by computing
the histogram features. This process chooses a specific number of features that are closer to
the centroid, while the other is neglected.

K-means Clustering. The BoDF stage, in which selected channels are grouped using
the DECS technique for each class. Grouping is employed to accumulate similar features in
the same class. This algorithm works efficiently when dealing with large datasets, whilst other
methods face the over-fitting problem[39]. This technique also helps in grouping unnecessary
features by comparing the distances. At the start, the value of the number of clusters 'k™' that
will be used in the gathering of the provided features is selected at random. We experimented
with the value of k; the features were organized into clusters correctly at the value of k = 8.
The value was increased up to 14, but values higher than 14 and lower than 8 had a large sum
of squared error, so they were omitted. So, the features of the SEED dataset are organized
into eight groups compared to each other.

The displacement for each number was measured by utilizing Fuclidean distance. The
feature is classified with that cluster, which provides the minimum range. The average of the
quantities in that cluster is needed to get the average value for each given cluster. The collected
mean values are then re-evaluated until the meaning of each cluster centroid converges. For
the SEED dataset, the attributes of 17550X1000 are clustered in a 24X1000 feature vectot.
The 24%1000 for each class function vector is called the visual vocabulary. The decision
process of cluster number k is an important task because it directly affects the results obtained.
The hit-and-trial method algorithm is applied to obtain the optimal value. In this method, the
difference was measured between the sum of quadratic error results at different values of k.
Histogram Features. The second phase of the pipeline focuses on transforming the localized
channel features into a global image representation using a codebook-based approach, often
conceptualized as building a "visual vocabulary."

In this model, each feature vector from a channel was treated as a local "descriptor.”
A codebook (or visual vocabulary) was previously generated, typically via clustering, where
each cluster centre represents a ""codeword." The core of this phase is to generate a histogram
that aggregates these local descriptors. This histogram essentially counts the frequency with
which descriptors from a given input sample are assigned to each codeword in the vocabulary.
The computational process involves a comparison operation. For the SEED dataset, the
feature matrix from a single sample, with dimensions of 225 X 24, is compared against a
codebook derived from 26 representative channels. This comparison, typically performed
using a distance metric such as Euclidean distance, assigns each of the 225 feature vectors to
its closest codeword in the vocabulary. The final representation is a fixed-length histogram
feature vector, H, where each bin H_i contains the count of feature vectors assigned to the i-
th codeword. For the SEED dataset, this results in a histogram of size 225 X 24, where the
bin values (the frequency counts) are observed to fall within a range of 0 to 30.

To optimize the representation for the three-class problem, a selective pooling strategy
is employed. Instead of using the entire histogram, the ten most discriminative codewords
(histogram bins) are identified for each class, leading to the selection of a compact feature
subset of size 10X3=30. This process achieves a significant reduction in feature dimensionality
while preserving the most salient frequency patterns for classification.

Classification Framework and Model Selection:

For feature extraction, the Googl.eNet (Inception) architecture was leveraged. The
model was truncated at the "loss3-classifier" fully connected layer, discarding the final two
layers responsible for the original 1000-class classification. This adaptation allows the network
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to serve as a powerful feature extractor for the three-class problem inherent to the SEED
dataset (Happy, Sad, Neutral). The high-dimensional features produced by this modified
GoogleNet, subsequently refined by the DECS-BoDF feature selection technique, were fed
into two distinct classifiers: Support Vector Machine (SVM) and k-Nearest Neighbours (k-
NN). This dual-classifier approach was employed to ensure robust and generalizable
performance across different classification paradigms.

Support Vector Machine (SVM) Implementation:

The SVM classifier operates by constructing an optimal hyperplane that maximizes the
separation margin between different classes in a high-dimensional feature space. During
training, the algorithm learns these decision boundaries, effectively creating a clear delineation
between the three emotional states. A key strength of SVM is its ability to handle non-linear
classification tasks using kernel functions. These functions implicitly map the original features
into a higher-dimensional space where the classes become linearly separable. In this study, we
evaluated several kernel types, including linear, polynomial, and Gaussian Radial Basis
Function (RBF), to identify the most effective mapping for the emotional EEG data.
k-Nearest Neighbours (k-NN) Implementation:

As a complementary approach, the k-NN classifier was implemented. This instance-
based, or lazy-learning, algorithm classifies a test sample based on the majority vote of its 'k’
closest neighbours in the feature space. The proximity between data points is quantified using
a distance metric. For our model, the Euclidean distance was employed, which for two feature
vectors p and q, each of dimensionality NN, is calculated as:

N
dp.q)= | ) (i—qi)? #(8)
i=1

Where N=45 for the feature vectors derived from the SEED dataset. The parameter
'k', representing the number of neighbors considered, was tuned to optimize classification
performance.
To ensure a statistically rigorous evaluation of both classifiers, a 20-fold cross-validation
protocol was strictly followed. This process involves repeatedly partitioning the data into
training and testing sets, providing a reliable estimate of model generalizability and mitigating
the risk of overfitting. The complete procedural workflow of the proposed model is
summarized in Algorithm 1.
Algorithm 1: Feature and Channel Selection Algorithm
Inputs:
A set of pre-processed, multi-channel EEG trials: X=\ {X_1,X_2,...,X_N\},
where N is the total number of trials.
A corresponding set of emotion labels: Y=\{y_1,y_2,...,y_N \}.
Pre-trained GoogleNet model.
Number of optimal channels to select, K.
Size of the visual vocabulary, V.
SVM kernel type and hyperparameters.
Outputs:
A trained Support Vector Machine (SVM) classifier model, [SVM] _model.
Classification Accuracy on the test set.
Procedure:
Step 1: Time-Frequency Representation via Continuous Wavelet Transform (CWT)
for each trial X; € X do
for each EEG channel ¢ in trial X; do
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Let s; . (t) Be the raw temporal signal from channel ¢ of trial X;.

Apply the Continuous Wavelet Transform (CWT) to S; o(t) to generate a 2D spectrogram
image [; .

end

end

Step 2: Deep Feature Extraction using Googl.eNet

for each trial X; € X do

for each channel spectrogram I; . in trial X; do

Pre-process I; . (resize to 224 X 224 pixels, normalize pixel values).

Feed [; . Into the pre-trained Googl.eNet.

Extract the feature activation vector. f; . from a pre-final layer (‘pool5 — 7 X 71" layer).
end

end

Step 3: Differential Entropy-based Channel Selection (DECS)

Let 8¢ be the set of all feature vectors f; . From all trials for a specific channel c.

For each channel ¢ do

Calculate the channel selection score Score(c). This can be implemented in one of two
ways:

Option A (From Raw EEG):

Compute the average Differential Entropy:

N
1 1
Score(c) = —z —IOg(27Te- Uiz,c)
N o 2

where O-i?c is the variance of the raw signal s; . (t).
Option B (From Deep Features):

Compute the average magnitude of the deep features: Score(c) = IS_ll Drese |Ifl]2-
(o}

end for

Rank all channels based on Score(c) In descending order.

Select the top K channels to form the optimal channel set. Coptimar-
Step 4: Bag-of-Deep Features (BoDF) Vocabulary Construction
Construct a global feature pool using only the selected optimal channels:

Fpool = {fi,c | Vi,Vc € Coptimal}

Apply k-means clustering to F,,to learn the visual vocabulary: {v1,v2,...,vV} =k —
means( Fpoo1, V)
where vj is the j — th cluster centroid (codeword).
Step 5: Trial-Level Histogram Encoding
for each trial X; € X do
Initialize a histogram vector. h; = [k}, hZ, h3..., hY] with zeros.
for each feature vector fi,c from the selected channels ¢ € Cyptima in trial Xj do
Find the index j* Of the nearest codeword:
Jr=argminjen, wy Il fic — i I,
Increment the corresponding histogram bin: hij = hij T+ 1
end for
Normalize the histogram h; by the total number of feature vectors in the trial Xj to form

the final trial representation.
end for
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Step 6: Model Training and Evaluation
Split the dataset of histogram representations {h;} and labels ¥ into the training set (H¢pgin
» Yerain) and testing set (Hyest, Yeest)-
Train an SVM classifier on the training set:

SVMpoger = SVM. train(H ain, Y train)
Predict labels for the test set:

Ypred = SVMpoger- predict(Hest)

Calculate the classification accuracy:

Number of Correct Predictions
Accuracy = Y] X 100%
test

return SV M, 0461, ACCuracy
Result and Discussion:

This section presents the results of the proposed model. During model design, we
evaluated five deep neural networks—GoogleNet, AlexNet, ResNet-50, ResNet-101, and
Inception-ResNetV2—to identify the network that delivers optimal performance on the
SEED dataset. The histogram features were classified using SVM, k-NN, Tree, and Ensemble
classifiers by all kernels. The kernels that are shown in Table 1 are the ones that provide
optimal accuracy results.

Figure 6 shows the improvement in accuracy by using the BoDF technique in the
algorithm. This algorithm has been applied to both datasets (SEED and DEAP). The BoDF
technique reduces the dimension of the extracted feature significantly, which in turn increases
the accuracy of the algorithm. The results obtained using the DECS technique are omitted
from the figures, as they only slightly improve algorithm accuracy. The primary purpose of
employing DECS, as explained in the Introduction, is to reduce computational overhead.

SEED Results Comparison using BoDF DEAP Results Comparison using BoDF

100 . 85 82.5

— 95 > [es7] 45 92 _ 79.8 802

= £ 80

= 90 86.4 =~ 74.4

g a5 82.3 § 75 .

< g0 58 £ 10 i3
75
70 s 61.2 61
65 60
60 .

With BoDF Without BoDF
Reduced Feature Vs Non-reduced Features
mSVM  mk-NN ENSEMBLE m TREE

With BoDF Without BoDF
Reduced Feature Vs Non-reduced Features
HSVM mk-NN ENSEMBLE m TREE

Figure 6. The improvement in accuracy by using the BoDF technique for SEED and
DEAP datasets.

A comparison was made between the previous studies and these results to benchmark
them. The classification techniques, along with the classifiers that were used to classify the
feature vectors, are also mentioned in Table 2. The datasets on which the models wetre
designed and the number of channels that were used are also highlighted. In Table 2, the
feature vectors acquired from GooglLeNet were 41850 X 1000 lessened to a dimension of 225
X 24 vectors for the SEED dataset.

In our research work, we used the state-of-the-art DNNs, namely Googl.eNet,
AlexNet, ResNet-50, ResNet-101, InceptionResNetV2, to extract the feature vectors. We also
experimented with the number of clusters being made by varying the value of k. While
selecting the value for the number of clusters 'k', we omitted the smaller ones because the sum
of squared errors was more significant at these values and picked the larger ones, like k =
8,10,12,14, which had a low sum of squared errors.

K-NN Classifier:
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For the SEAD dataset, the k-NN gave low classification results when combined with
ResNet-101, with the highest only up to 92.8% with k = 8, as shown in Figure 7 (LEFT).
Similarly, InceptionResNetV2 provided only up to 92.8% with the number of clusters k = 14,
and the accuracy decreases with a decrease in the number of clusters.

The k-NN classifier can provide an accuracy of 93.7% using Googl.eNet, while the
cluster value is at k=8, and provided relatively low accuracy as the cluster was increased. When
combined with AlexNet, an accuracy of 94.6% is obtained when k=12, and the other values
of k gave lower results. The k-NN classifier also provided the same results when integrated
with ResNet-50 at k=14 and relatively low classification results at lower values of k.

In the case of the DEAP dataset, the highest accuracy achieved is 74.4% using Resnet-
50 and AlexNet with k=12 and k=14. The accuracies obtained from different neural networks
are shown in Figure 7 (RIGHT).

KNN Class‘\fier KNN Classifier
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Figure 7. The results obtained from the k-NN Classifier on the SEED dataset (LEFT) and
DEAP dataset (RIGHT).
Ensemble Classifier:

For the SEED dataset, the Ensemble classifier achieved an accuracy of 94.6% with
Googl.eNet at a cluster value of k = 8, while higher numbers of clusters resulted in lower
classification performance. AlexNet, ResNet-50, ResNet-101, InceptionresnetV2 gave an
accuracy of 94.2% with k=8, 93.7% with k=12, 93.3% with k=12 respectively. The results are
shown in Figure 8 (LEFT).

For the DEAP dataset, a maximum accuracy of 79.8% is achieved with Googl.eNet
(k = 8). For a detailed comparison of accuracy across different neural networks, refer to Figure
8 (right).
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Figure 8. The results obtained from the Ensemble Classifier on the SEED dataset (LEFT)

and DEAP dataset (RIGHT).
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Tree Classifier:

For SEAD, the Tree classifier provided an accuracy highest up to 94.2% with the
DNN, namely GoogleNet with clustering at k = 12, as shown in Figure 9 (LEFT), and
InceptionResNetV2 with cluster value at k = 10. The other DNN can't provide high
classification results even with changing the value of the number of clusters.

For DEAP, the tree classifier provides the accuracies in the range between 80.2%
(GoogleNet & InceptionsernetV2) and 76.2% (Resnet-50), see Figure 9 (RIGHT).

Tree Classifier
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Figure 9. The results obtained from Tree Classifier on the SEED dataset (LEFT) and
DEAP dataset (RIGHT).
SVM Classifier:

In the case of SEAD, the highest percentage was obtained with the SVM classifier,
which gave an accuracy of 95.1% while applying GoogleNet for feature extraction with the
value of k = 8. Meanwhile, none of the other DNNs achieved high-quality classification, even
when the number of clusters k was varied, as shown in Figure 10 (left). An accuracy of 93.7%
was obtained with AlexNet at the cluster value of k=14. The other DNNs like ResNet-50,
ResNet-101, and InceptionResNetV2, could provide quality classification only up to 92.8%
with k=8 and 12, 92.4% with k=12 and 14, 92.8% with k=8 and 12, respectively.

The optimal classification results were obtained from GoogleNet with the SVM
classifier at a clustering value of k=8. The accuracy achieved in classifying emotions reached
95.1%, representing the highest performance obtained across all combinations of classifiers,
cluster numbers, and DNNSs.

In the case of DEAP, the maximum achieved accuracy is 82.5% using Googl.eNet
(k=8). The accuracy obtained from the SVM classifier (using GoogleNet) is the highest

accuracy compared to other classifiers and neural networks, for a detailed comparison, see
Figure 10 (RIGHT).
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Figure 10. The results obtained from the SVM Classifier on the SEED dataset (LEFT) and

DEAP dataset (RIGHT).
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Table 1. Analysis of accuracy following channel reduction of various DNNs.

Neural SEAD, DEAP | Classifiers Kernal used SEAD, DEAP
Networks Channels Accuracies (%)
GoogleNet 26,12 SVM Cubic 95.1, 82.5
kNN Fine 93.7,73.5
Tree Medium 94.2, 80.2
Ensemble Subspace KNN 94.6, 79.8
AlexNet 28,13 SVM Fine Gaussian 93.7, 81.1
kNN Weighted 94.6, 74.4
Tree Medium/Fine 92.4,78.4
Ensemble Subspace KNN 94.2,79.4
Resnet-50 40,19 SVM Fine Gaussian 92.8, 80.2
kNN Weighted 94.6, 74.4
Tree Medium/Fine 93.7,79.7
Ensemble Subspace KNN 93.7,78.9
Resnet-101 29,14 SVM Fine Gaussian 92.4,79.8
kNN Weighted 92.8,72.6
Tree Medium/Fine 92.8, 78.8
Ensemble Bagged Trees 93.3,78.5
InceptionresnetV2 32,16 SVM Cubic 92.8, 80.2
kNN Weighted/Fine 92.8, 72.6
Tree Medium/Fine 94.2,80.2
Ensemble Subspace KNN 94.2,79.4

Table 2. Comparison of our proposed work with other studies.

Ref. | Technique | Dataset | Selected | Classification | Classification
Channels model accuracy (%)
[4] MFM DEAP 18 CapsNet 68.2
[32] MFECC BEED 12 SVM 83.5
Random 72.07
Forest
DEAP 6 Random 72.07
Forest
[22] | MEMD DEAP 12 ANN 75
KNN 67
[28] STRNN SEED 62 CNN 89.5
[29] RFE SEED 18 SVM 90.4
DEAP 12 SVM 60.5
[33] DE DEAP 32 PNN 79.3
[12] BoDF SEED 62 SVM 93.8
KNN 91.4
DEAP 32 SVM 77.4
KNN 73.6
Our DECS- SEED 26 SVM 95.1
Wotk | BoDF
KNN 94.6
Tree 94.2
Ensemble 94.6
DEAP 12 SVM 82.5
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KNN 73.5
Tree 78
Ensemble 79.8
SVM 95.1

Discussion:

Based on the presented results, a comparative analysis was conducted to evaluate the
performance of the proposed DECS-BoDF method against recent state-of-the-art techniques
in emotion recognition from EEG signals.

Our method demonstrates superior performance on the SEED dataset, achieving a
peak accuracy of 95.1% with an SVM classifier. This outperforms all other cited studies,
including the previous best of 93.8% by[12] using a Bag-of-DF (BoDF) model and 90.4%
by[29] using Recursive Feature Elimination (RFE). Notably, our approach not only achieves
a higher peak accuracy but also shows remarkable consistency across multiple classifiers (SVM,
KNN, Tree, Ensemble), all yielding accuracies above 94%. This suggests that the DECS-
BoDF features are highly robust and not dependent on a single classification algorithm.

The results on the more challenging DEAP dataset further validate the effectiveness
of our method. Our model achieves a top accuracy of 82.5% with SVM, which is competitive
with and, in most cases, superior to the existing literature. For instance, it substantially
outperforms the 60.5% accuracy reported by[29] and the 77.4% by [12]. It is comparable to
the 79.3% achieved by[33] using Differential Entropy (DE) and a Probabilistic Neural
Network (PNN). The strong performance on DEAP is significant as it indicates that our
feature extraction method (DECS-BoDF) generalizes well across different datasets, which is
a key challenge in the field.

A critical advantage of our work is the achievement of high accuracy with a reduced
number of EEG channels. On the DEAP dataset, we achieved 82.5% accuracy using only 12
channels, compared to [12] and [33], which used 32 channels to achieve 77.4% and 79.3%,
respectively. This indicates that our channel selection strategy (likely implied by DECS) is
highly effective at identifying the most informative brain regions for emotion recognition,
which is a major step towards developing more practical and wearable BCI systems. Unlike
many studies that report results for a single optimized classifier, our work demonstrates the
robustness of the DECS-BoDF features across a diverse set of classifiers (SVM, KNN, Tree,
Ensemble). The consistently high performance on the SEED dataset and competitive
performance on DEAP regardless of the classifier used strongly suggest that the strength lies
in the quality of the features themselves, rather than in a specific model's ability to fine-tune
them.

Conclusion:

This work proposes a novel architecture that employs Differential Entropy-Based
Channel Selection and Bag-of-Deep Feature technique to achieve appreciably higher
classification accuracy for the SJTU SEED and DEAP datasets by reducing the computational
cost of the model. The constituent techniques lead to a significant reduction in the number of
feature vectors obtained initially via Googl.eNet, followed by SVM-based classification. Upon
clustering the feature vectors into eight distinct groups, an accuracy of 95.1% is reported using
the proposed method. Employing the proposed method also lowers the required number of
EEG channels from 62 to 26, rendering the entire classification process less computationally
intensive. The reduction in the number of features and, consequently, the number of channels
paves the way for lowered computational cost and memory storage requirement for processing
and storage of EEG signals with no substantial degradation in classification accuracy. The
model can be extended in the future to allow for further reduction of required channels, paving
the way for real-time emotion classification.
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