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The rapidly changing intricacy of malware, specifically in the case of highly secured air-
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gapped networks, necessitates proactive and resilient detection mechanisms that are

highly capable of detecting sophisticated, modern, and obfuscated malware. Instant
work focuses on a model for malware detection that is vibrant and resilient and uses deep
learning models to look at Windows API call patterns that come from executable files. The
original dataset from Kaggle had a big class imbalance (malicious: 42,797; benign: 1,079), but
the SMOTE approach helped balance the training data. In this regard, a comparison of
seven deep learning models, including Simple ANN, MLP, DropConnect Improved ANN,
Residual ANN, DenseNet ANN, RBF Network, and hybrid CNN-LSTM, has been
conducted over both 50 and 150 training epochs on various metrics such as recall, accuracy,
Fl-score, precision, and ROC-AUC. As a result, the CNN-LSTM model, enhanced by an
attention mechanism, exhibited superior efficacy in differentiating between benign and
malicious samples. In this context, the accuracy improvement is minimal at +0.08%, but the
most substantial increase in Class 0 recall is +4.1%, and the F1-score shows an enhancement
of +2.7%. The most significant contribution of this study is the attention-augmented
architecture that apparently diminishes interpretability and enhances focus on significant
behavioral attributes.
Keywords: Deep Learning, Malware Detection, API Call Patterns, Attention Mechanism,
CNN-LSTM, SMOTE, Cybersecurity
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Introduction:

As we see changes caused by the digital revolution, cyber-attacks have increased,
with malware being among the biggest threats. Different types of malware can spread in
systems & networks and are classified as viruses, worms, Trojan horses, ransomware,
spyware, adware, rootkits, key-loggers and botnets. While malware grows more sophisticated
and prevalent, intricate methods of detecting and analyzing the same have emerged. Malware
analysis is the process of analyzing malicious software to gain knowledge about its
functionality, origin, behavior, and effect. The primary objective is to identify, neutralize, and
avold future attacks through effective countermeasures. Various categories of techniques
utilized in malware analysis include static analysis, dynamic analysis, and hybrid analysis.

Static analysis analyzes malware code or binary without running it, but is useless
against obfuscated or packed malware. Dynamic analysis monitors malware activity in a
controlled environment, but involves execution and is resource-consuming. To get the best
information, auditors conduct hybrid analysis by using both static and dynamic auditing
methods, but this approach needs more effort and resources. Some methods we use for
malware detection are by signature, heuristics, behavior, machine learning, and hybrid
analysis. When the malicious code’s byte pattern does not match a known signature,
signature-based detection fails. Such detection methods go beyond specific threat signatures
and inspect a process’s structure and logic. Behavior-based detection monitors a program as
it is running, but it is costly to implement and carries serious security risks. When training
machine learning, you use both malicious and clean files; however, many diverse files are
needed for it to be beneficial. Being able to detect threats in multiple ways, hybrid malware
detection guarantees results, but adds more costs.

Methods for locating malware, including signatures, behavior, heuristics, and
examination of code, are studied in the research. Although signatures work quickly for
detected malware, they must be updated often and still fail to protect against anything new.
Using heuristic testing, malware is found by examining typical and suspicious code, although
it also causes many more false alarms since its rules are not as accurate as they should be. As
you click on commands, these watches will change their behavior, though if sandboxing isn’t
used, their actions might be risky because they use many resources. To detect malware using
machine learning, we rely on models that have received a lot of information and use many
computer resources. To improve detection, hybrid detection relies on analyzing code at
runtime, scanning it with computer programs, and using machine learning, yet it is both
complex and demanding on computer resources.

The research will design and assess an Ml.-based system for high-level malware
detection, with an emphasis on a sample of benign and malicious files, dataset sanitization,
and design of the ML-based system, along with comparison of its performance through
statistical metrics. The work contributes to proactive threat discovery and provides a
comparison of different ML methods for upcoming security systems. The dataset considered
for this research is available in the public domain, but its high computational demand
restricts its applicability.

The rest of the paper is organized in a way that Section II reviews the work done
previously on malware detection techniques. Section III describes the research methodology.
Section IV presents the experimental setup and results, and its associated steps. Section V
concludes the paper.

Related Work:

Researchers have proposed a wide range of techniques for malware detection,
transitioning from traditional approaches to more sophisticated machine learning (ML) and
deep learning (DL) strategies. Various techniques proposed by previous researchers have
been elaborated as under:

October 2025 | Vol 7 | Issue 4 Page | 2528



International Journal of Innovations in Science & Technology

Wei et al. [1] proposed an LSTM-attention-based model using API call sequences to
detect APT malware, achieving 99.2% accuracy. The study also used transfer learning to
overcome the challenge of limited APT samples.Tahir [2] emphasized the limitations of
traditional detection techniques such as signature and heuristic-based methods, advocating
for hybrid approaches and intelligent methods like ML to combat evolving malware. Gibert
et al. [3] presented a comprehensive review of ML applications in malware classification,
highlighting feature selection challenges and the potential of DL and multimodal approaches
to enhance detection accuracy. Alsmadi and Alqudah [4] traced the evolution of malware
detection from classic signature-based methods to ML-based techniques, stressing the value
of Al in identifying zero-day threats.

El Merabet and Hajraoui [5] categorized ML algorithms for static, dynamic, and

hybrid detection and emphasized the importance of adaptive and intelligent models to
counter obfuscated threats. Li et al. [0] surveyed feature selection methods, classifying them
into filter, wrapper, and embedded categories. They stressed aligning selection techniques
with data characteristics to optimize performance. Aslan and Samet [7] discussed both
traditional and emerging detection strategies, including deep learning, mobile, IoT, and
cloud-based methods, while outlining the limitations in creating general detection systems.
Dong Shu and Nie [8] combined CNN and DNN architectures for Android malware
detection, demonstrating superior accuracy in classifying malicious applications.
Yao et al. [9] employed Bi-LSTM and API call sequences to achieve 93.68% detection
accuracy on a large mobile malware dataset. Chen and Cao [10] introduced VMCTE, which
converts malware binaries into grayscale images and uses fine-tuned CNN models (e.g.,
ResNet50) with ensemble classifiers to achieve high performance on the Malimg dataset.

Yadav et al. [11] utilized EfficientNet-B4 CNNs and ensemble models for Android
malware detection, achieving 95.7% binary classification accuracy.Azad et al. [12] developed
DEEPSEL, a deep learning system that uses particle swarm optimization and behavioral
features to detect Android malware, reporting an 83.6% accuracy rate. Kinkead et al. [13]
improved the explainability of CNNs using opcode sequences and LIME-based
interpretations, successfully highlighting critical malware features. Euh et al. [14] proposed
feature dimensionality reduction using WEM images and low-dimensional attributes,
demonstrating that ensemble methods like XGBoost yielded the highest accuracy and AUC.
Bilot et al. [15] presented a review on malware detection using graph neural networks
(GNNss), showcasing their ability to model complex malware behavior and resist adversarial
attacks.

Gaber, Ahmed, and Janicke [16] conducted a systematic literature review on Al-
based malware detection, emphasizing the role of high-quality datasets and the limitations
imposed by evasive malware. Bensaoud, Kalita, and Bensaoud [17] evaluated DL-based
detection across multiple operating systems and discussed the importance of interpretable
models and adversarial defense strategies. Qureshi et al. [18] reviewed DL applications in
IoT malware detection and forensics, noting critical gaps in real-time detection capabilities
and anti-forensic resilience. Maniritho, Mahmood, and Chowdhury [19] examined DL
techniques for desktop and mobile platforms, focusing on feature extraction, optimization
methods, and future improvements in detection efficiency. Yunmar et al. [20] advocated for
hybrid static-dynamic analysis using system call sequences and ML models to improve
Android malware detection. Kim et al. [21] developed a compact data design strategy for ML
training, reducing data usage by 57% while maintaining 99% accuracy.

Methodology:

The section describes how researchers adopted a systematic process to detect
malware through API call sequence datasets. The approach involves data preprocessing,
handling imbalanced datasets, model construction, and evaluation using standard
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performance metrics. The dataset consists of malware and benign samples. After
preprocessing data for integrity and eliminating unnecessary identifiers, the dataset was
divided into training and test sets based on stratified sampling. Since there existed a class
imbalance, the SMOTE was used on the training set to create synthetic samples of benign
images and acquire class balance. Seven deep learning algorithms were trained based on
binary cross-entropy loss and the Adam optimizer, with training for 50 and 150 epochs.
Performance was evaluated with measures like accuracy, precision, recall, F1-score, ROC-
AUC, and confusion matrix-based findings, noting both malware and benign classification
accuracy.

Malware and benign samples obtained through API call sequences are included in
the dynamic behavior-based malware collection collected from Quo Vadis Malware Dataset
(Kaggle), featuring 306 API calls. In malware analysis, API call sequences are well known for
their capacity to capture actual executable file behavior patterns. Dynamic API-based
features are more difficult to work with and more accurately represent the purpose and
functioning of the code than static features like byte-level signatures, which can be disguised.
They are therefore perfect for proactive malware threat identification. Through API
invocations, each record in the dataset depicts the behavior of a program during runtime.

An 80/20 split setved to divide the dataset into training and evaluation groups in the
deep learning process. The training of models used an 80% portion of the available dataset,
while testing occurred through the evaluation of the 20% subset. The 20% of data reserved
in the Testing Set enables evaluation of model generalization for unseen data. Random
sampling occurred through eh split process to establish subsets capable of maintaining equal
classes in both partitions. A representative combination of benign and malicious samples
exists throughout all subsets due to this approach [22].

The experimental results obtained from training and evaluating the selected machine
learning models on the malware dataset are presented in this section. The best-performing
approach was identified based on a comprehensive comparison of the evaluation metrics
across all models. Based on the evaluation metrics, the CNN-LSTM model demonstrated the
most promising results for malware classification on this dataset. It consistently achieved
high scores across accuracy, precision, recall, and Fl-score, indicating a strong ability to
correctly classify both benign and malicious samples. The combination of CNN for feature
extraction and LSTM for sequence learning likely contributed to its superior performance.
The following models were evaluated:

Simple ANN Model

MLP Model

Enhanced Drop Connect ANN Model
Residual ANN Model

DenseNet ANN Model

RBF Network Model

CNN-LSTM model

The performance report for the CNN-LSTM model shows high performance in
classifying malware (class 1) with a high precision of 0.9918, recall of 0.9970, and F1-score of
0.9944. Performance on benign samples (class 0) is lower, with a recall of 0.6890 and an F1-
score of 0.7647, indicating that the model wrongly classifies some benign samples as
malware (88 false positives). The overall accuracy is 98.91%, and the weighted average
metrics indicate class imbalance, biased towards the majority malware class. The confusion
matrix establishes that although the model captures most malware correctly, it compromises
some benign classification correctness, which can be justifiable in security-critical
applications where false negative minimization (i.e., missed malware detection) is a concern.
Figure 1 shows the CNN_LSTM model classification and confusion matrix against 50
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epochs. Moreover, training and validation loss and accuracy of the CNN-LSTM model

Classification Report for Cnn-Lstm model:

precision recall +l-score  support

Figure 1. Classification report and confusion
matrix of CNN LSTM Model: 50 epochs

against 50 epochs are also delineated in Figure 2.

Cnn-Lstm_model - Training and Validation Loss Cnn-Lstm_model - Training and Validation Accuracy
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Figure 2. Training, validation loss &

accuracy of CNN LSTM model: 50 epochs

Similarly, classification and confusion matrix in conjunction with training and
validation loss and accuracy of each model when checked against 50 epochs are delineated in

Figure 3 — Figure 14.
Classification Report for DenseNet ANN Model:
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Confusion Matrix for DenseNet ANN_Model:
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Figure 3. Classification report and confusion
matrix of DenseNet ANN: 50 epochs
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Figure 5. Classification report and confusion
matrix Enhanced_DropConnect ANN: 50 epochs
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Figure 7. Classification report and confusion
matrix of Residual ANN: 50 epochs
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Figure 4. Trléijning, validation loss & accuracy
of DenseNet ANN: 50 epochs
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Figure 6. Training, validation loss & accuracy
of Enhanced_DropConnect ANN: 50 epochs
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Figure 8. Training, validation loss & accuracy
of Residual ANN: 50 epochs
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Classification Report for MLP_Model:
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Figure 9. Classification report and confusion
matrix of MLP: 50 epochs
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Figure 11. Classification report and confusion
matrix of RBF Network: 50 epochs

Classification Report for Simple ANN Model:
precision recall fl-score support
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Figure 13. Classification report and confusion
matrix of Simple ANN: 50 epochs
Results and Analysis:
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Figure 10. Training, validation loss &
accuracy of MLP: 50 epochs
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Figure 12. Training, validation loss &
accuracy of RBF Network: 50 epochs
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Figure 14. Training, validation loss &
accuracy of Simple ANN: 50 epochs

From the tested models’ confusion matrices and classification reports against 50
epochs, it can be seen that all models are very good at identifying malware (class 1), but vary
a lot in their performance in identifying benign samples (class 0) correctly. The CNN-LSTM
model takes the lead with high balanced performance and overall accuracy (98.91%) with an
Fl-score of 0.7647 for benign samples and 0.9944 for malware. Conversely, Simple ANN
and MLP models exhibit very high malware detection (recall 0.999), with low benign class
recall (0.3887 and 0.3110, respectively), leading to higher false positives. DropConnect ANN
with increased connectivity has failed on class 0 with zero precision, recall, and F1-score,
detecting all samples as malware, which is probably due to severe class imbalance handling

failure.

Residual ANN and RBF Network marginally enhance benign detection compared to
MLP, whereas DenseNet ANN provides a better-balanced performance among the ANN-
based models with 0.6334 F1-score for benign class and 0.9921 for malware. These findings
indicate that deeper learning architectures with higher representational capacity, e.g., CNN-
LSTM and DenseNet, are better at distinguishing both classes, especially in processing the
minority benign class more robustly. Statistical comparison of these models against 50

epochs is shown in Figure 15:
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Figure 15. Models Performance: 50 epochs

The classification reports and confusion matrices against 150 epochs provide detailed
insights into the performance of each deep learning model applied for malware detection.
The Simple ANN model achieved a high accuracy of 98.4%, with excellent performance on
the malware class (1), showing a precision of 0.9863 and a recall of 0.9975. However, its
performance on the benign class (0) was weaker, with a recall of only 0.4770, indicating
many benign samples were misclassified. The MLLP model performed similarly, with a slightly
lower benign recall (0.3993) but improved precision (0.9339). The Enhanced DropConnect
ANN improved the balance, with higher precision and recall for the benign class (0.8812 and
0.4982, respectively), while still achieving near-perfect malware detection. The Residual
ANN model showed poor overall performance, with a misleadingly high precision (0.9969)
on class 1 but a drastically low recall (0.3609), leading to an overall accuracy drop to 37.6%.

In contrast, DenseNet ANN and RBF Network models showed mote balanced
improvements, especially in detecting benign instances (recalls of 0.5724 and 0.4488,
respectively), while maintaining strong malware classification metrics. Finally, the CNN-
LSTM hybrid model delivered the best overall results, achieving the highest accuracy of
99.05% and the best balance between both classes, with a benign class recall of 0.7527 and
malware recall of 0.9968, showing the least number of misclassifications across the board.
These results demonstrate that while most models are highly effective at detecting malware
(class 1), only the CNN-LSTM model offered a robust balance by minimizing false positives
and false negatives simultaneously. The summary of the performance against each model is
described in Figure 16:

Mode
Cnn-Lstm model

2 Enhanced DropConnect ANN Model
DenseNet ANN_Model

]

8

- 8

Simple ANN_Model . 6 @
@

]

8

MLP_Model
RBF_Network Model @.
Residual ANN Model @.

Figure 16. Model's Performance: 150 epochs

8 . 12

Conclusion:

Among the seven models evaluated for malware detection using API call sequences,
the CNN-LSTM model achieved the highest accuracy (98.91%) and f1-score (0.9944), with
the lowest false positive and false negative rates among all models. While simpler models
such as Simple ANN and RBF performed well, they exhibited relatively higher false positive
rates. The Enhanced DropConnect ANN failed to detect any benign samples, highlighting
the impact of model architecture and training sensitivity on class imbalance. This reinforces
the importance of robust architectures like CNN-LSTM for complex, sequential feature
spaces such as API calls in dynamic malware analysis.
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