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he rapidly changing intricacy of malware, specifically in the case of highly secured air-
gapped networks, necessitates proactive and resilient detection mechanisms that are 
highly capable of detecting sophisticated, modern, and obfuscated malware. Instant 

work focuses on a model for malware detection that is vibrant and resilient and uses deep 
learning models to look at Windows API call patterns that come from executable files. The 
original dataset from Kaggle had a big class imbalance (malicious: 42,797; benign: 1,079), but 
the SMOTE approach helped balance the training data. In this regard, a comparison of 
seven deep learning models, including Simple ANN, MLP, DropConnect Improved ANN, 
Residual ANN, DenseNet ANN, RBF Network, and hybrid CNN-LSTM, has been 
conducted over both 50 and 150 training epochs on various metrics such as recall, accuracy, 
F1-score, precision, and ROC-AUC. As a result, the CNN-LSTM model, enhanced by an 
attention mechanism, exhibited superior efficacy in differentiating between benign and 
malicious samples. In this context, the accuracy improvement is minimal at +0.08%, but the 
most substantial increase in Class 0 recall is +4.1%, and the F1-score shows an enhancement 
of +2.7%. The most significant contribution of this study is the attention-augmented 
architecture that apparently diminishes interpretability and enhances focus on significant 
behavioral attributes. 
Keywords: Deep Learning, Malware Detection, API Call Patterns, Attention Mechanism, 
CNN-LSTM, SMOTE, Cybersecurity 
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Introduction: 
As we see changes caused by the digital revolution, cyber-attacks have increased, 

with malware being among the biggest threats. Different types of malware can spread in 
systems & networks and are classified as viruses, worms, Trojan horses, ransomware, 
spyware, adware, rootkits, key-loggers and botnets. While malware grows more sophisticated 
and prevalent, intricate methods of detecting and analyzing the same have emerged. Malware 
analysis is the process of analyzing malicious software to gain knowledge about its 
functionality, origin, behavior, and effect. The primary objective is to identify, neutralize, and 
avoid future attacks through effective countermeasures. Various categories of techniques 
utilized in malware analysis include static analysis, dynamic analysis, and hybrid analysis. 

Static analysis analyzes malware code or binary without running it, but is useless 
against obfuscated or packed malware. Dynamic analysis monitors malware activity in a 
controlled environment, but involves execution and is resource-consuming. To get the best 
information, auditors conduct hybrid analysis by using both static and dynamic auditing 
methods, but this approach needs more effort and resources. Some methods we use for 
malware detection are by signature, heuristics, behavior, machine learning, and hybrid 
analysis. When the malicious code’s byte pattern does not match a known signature, 
signature-based detection fails. Such detection methods go beyond specific threat signatures 
and inspect a process’s structure and logic. Behavior-based detection monitors a program as 
it is running, but it is costly to implement and carries serious security risks. When training 
machine learning, you use both malicious and clean files; however, many diverse files are 
needed for it to be beneficial. Being able to detect threats in multiple ways, hybrid malware 
detection guarantees results, but adds more costs. 

Methods for locating malware, including signatures, behavior, heuristics, and 
examination of code, are studied in the research. Although signatures work quickly for 
detected malware, they must be updated often and still fail to protect against anything new. 
Using heuristic testing, malware is found by examining typical and suspicious code, although 
it also causes many more false alarms since its rules are not as accurate as they should be. As 
you click on commands, these watches will change their behavior, though if sandboxing isn’t 
used, their actions might be risky because they use many resources. To detect malware using 
machine learning, we rely on models that have received a lot of information and use many 
computer resources. To improve detection, hybrid detection relies on analyzing code at 
runtime, scanning it with computer programs, and using machine learning, yet it is both 
complex and demanding on computer resources. 

The research will design and assess an ML-based system for high-level malware 
detection, with an emphasis on a sample of benign and malicious files, dataset sanitization, 
and design of the ML-based system, along with comparison of its performance through 
statistical metrics. The work contributes to proactive threat discovery and provides a 
comparison of different ML methods for upcoming security systems. The dataset considered 
for this research is available in the public domain, but its high computational demand 
restricts its applicability. 

The rest of the paper is organized in a way that Section II reviews the work done 
previously on malware detection techniques. Section III describes the research methodology. 
Section IV presents the experimental setup and results, and its associated steps. Section V 
concludes the paper. 
Related Work: 

Researchers have proposed a wide range of techniques for malware detection, 
transitioning from traditional approaches to more sophisticated machine learning (ML) and 
deep learning (DL) strategies. Various techniques proposed by previous researchers have 
been elaborated as under: 
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Wei et al. [1] proposed an LSTM-attention-based model using API call sequences to 
detect APT malware, achieving 99.2% accuracy. The study also used transfer learning to 
overcome the challenge of limited APT samples.Tahir [2] emphasized the limitations of 
traditional detection techniques such as signature and heuristic-based methods, advocating 
for hybrid approaches and intelligent methods like ML to combat evolving malware. Gibert 
et al. [3] presented a comprehensive review of ML applications in malware classification, 
highlighting feature selection challenges and the potential of DL and multimodal approaches 
to enhance detection accuracy. Alsmadi and Alqudah [4] traced the evolution of malware 
detection from classic signature-based methods to ML-based techniques, stressing the value 
of AI in identifying zero-day threats.  

El Merabet and Hajraoui [5] categorized ML algorithms for static, dynamic, and 
hybrid detection and emphasized the importance of adaptive and intelligent models to 
counter obfuscated threats. Li et al. [6] surveyed feature selection methods, classifying them 
into filter, wrapper, and embedded categories. They stressed aligning selection techniques 
with data characteristics to optimize performance. Aslan and Samet [7] discussed both 
traditional and emerging detection strategies, including deep learning, mobile, IoT, and 
cloud-based methods, while outlining the limitations in creating general detection systems. 
Dong Shu and Nie [8] combined CNN and DNN architectures for Android malware 
detection, demonstrating superior accuracy in classifying malicious applications.  
Yao et al. [9] employed Bi-LSTM and API call sequences to achieve 93.68% detection 
accuracy on a large mobile malware dataset. Chen and Cao [10] introduced VMCTE, which 
converts malware binaries into grayscale images and uses fine-tuned CNN models (e.g., 
ResNet50) with ensemble classifiers to achieve high performance on the Malimg dataset.  

Yadav et al. [11] utilized EfficientNet-B4 CNNs and ensemble models for Android 
malware detection, achieving 95.7% binary classification accuracy.Azad et al. [12] developed 
DEEPSEL, a deep learning system that uses particle swarm optimization and behavioral 
features to detect Android malware, reporting an 83.6% accuracy rate. Kinkead et al. [13] 
improved the explainability of CNNs using opcode sequences and LIME-based 
interpretations, successfully highlighting critical malware features. Euh et al. [14] proposed 
feature dimensionality reduction using WEM images and low-dimensional attributes, 
demonstrating that ensemble methods like XGBoost yielded the highest accuracy and AUC. 
Bilot et al. [15] presented a review on malware detection using graph neural networks 
(GNNs), showcasing their ability to model complex malware behavior and resist adversarial 
attacks.  

Gaber, Ahmed, and Janicke [16] conducted a systematic literature review on AI-
based malware detection, emphasizing the role of high-quality datasets and the limitations 
imposed by evasive malware. Bensaoud, Kalita, and Bensaoud [17] evaluated DL-based 
detection across multiple operating systems and discussed the importance of interpretable 
models and adversarial defense strategies. Qureshi et al. [18] reviewed DL applications in 
IoT malware detection and forensics, noting critical gaps in real-time detection capabilities 
and anti-forensic resilience. Maniriho, Mahmood, and Chowdhury [19] examined DL 
techniques for desktop and mobile platforms, focusing on feature extraction, optimization 
methods, and future improvements in detection efficiency. Yunmar et al. [20] advocated for 
hybrid static-dynamic analysis using system call sequences and ML models to improve 
Android malware detection. Kim et al. [21] developed a compact data design strategy for ML 
training, reducing data usage by 57% while maintaining 99% accuracy. 
Methodology: 

The section describes how researchers adopted a systematic process to detect 
malware through API call sequence datasets. The approach involves data preprocessing, 
handling imbalanced datasets, model construction, and evaluation using standard 
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performance metrics. The dataset consists of malware and benign samples. After 
preprocessing data for integrity and eliminating unnecessary identifiers, the dataset was 
divided into training and test sets based on stratified sampling. Since there existed a class 
imbalance, the SMOTE was used on the training set to create synthetic samples of benign 
images and acquire class balance. Seven deep learning algorithms were trained based on 
binary cross-entropy loss and the Adam optimizer, with training for 50 and 150 epochs. 
Performance was evaluated with measures like accuracy, precision, recall, F1-score, ROC-
AUC, and confusion matrix-based findings, noting both malware and benign classification 
accuracy. 

Malware and benign samples obtained through API call sequences are included in 
the dynamic behavior-based malware collection collected from Quo Vadis Malware Dataset 
(Kaggle), featuring 306 API calls. In malware analysis, API call sequences are well known for 
their capacity to capture actual executable file behavior patterns. Dynamic API-based 
features are more difficult to work with and more accurately represent the purpose and 
functioning of the code than static features like byte-level signatures, which can be disguised. 
They are therefore perfect for proactive malware threat identification. Through API 
invocations, each record in the dataset depicts the behavior of a program during runtime. 

An 80/20 split served to divide the dataset into training and evaluation groups in the 
deep learning process. The training of models used an 80% portion of the available dataset, 
while testing occurred through the evaluation of the 20% subset. The 20% of data reserved 
in the Testing Set enables evaluation of model generalization for unseen data. Random 
sampling occurred through eh split process to establish subsets capable of maintaining equal 
classes in both partitions. A representative combination of benign and malicious samples 
exists throughout all subsets due to this approach [22]. 

The experimental results obtained from training and evaluating the selected machine 
learning models on the malware dataset are presented in this section. The best-performing 
approach was identified based on a comprehensive comparison of the evaluation metrics 
across all models. Based on the evaluation metrics, the CNN-LSTM model demonstrated the 
most promising results for malware classification on this dataset. It consistently achieved 
high scores across accuracy, precision, recall, and F1-score, indicating a strong ability to 
correctly classify both benign and malicious samples. The combination of CNN for feature 
extraction and LSTM for sequence learning likely contributed to its superior performance. 
The following models were evaluated: 
Simple ANN Model 
MLP Model 
Enhanced Drop Connect ANN Model 
Residual ANN Model 
DenseNet ANN Model 
RBF Network Model 
CNN-LSTM model  

The performance report for the CNN-LSTM model shows high performance in 
classifying malware (class 1) with a high precision of 0.9918, recall of 0.9970, and F1-score of 
0.9944. Performance on benign samples (class 0) is lower, with a recall of 0.6890 and an F1-
score of 0.7647, indicating that the model wrongly classifies some benign samples as 
malware (88 false positives). The overall accuracy is 98.91%, and the weighted average 
metrics indicate class imbalance, biased towards the majority malware class. The confusion 
matrix establishes that although the model captures most malware correctly, it compromises 
some benign classification correctness, which can be justifiable in security-critical 
applications where false negative minimization (i.e., missed malware detection) is a concern. 
Figure 1 shows the CNN_LSTM model classification and confusion matrix against 50 
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epochs. Moreover, training and validation loss and accuracy of the CNN-LSTM model 
against 50 epochs are also delineated in Figure 2.  

  
Figure 1. Classification report and confusion 

matrix of CNN LSTM Model: 50 epochs 
Figure 2. Training, validation loss & 

accuracy of CNN LSTM model: 50 epochs 
Similarly, classification and confusion matrix in conjunction with training and 

validation loss and accuracy of each model when checked against 50 epochs are delineated in 
Figure 3 – Figure 14. 

  
Figure 3. Classification report and confusion 

matrix of DenseNet ANN: 50 epochs 
Figure 4. Training, validation loss & accuracy 

of DenseNet ANN: 50 epochs 

  
Figure 5. Classification report and confusion 

matrix Enhanced_DropConnect ANN: 50 epochs 
Figure 6. Training, validation loss & accuracy 
of Enhanced_DropConnect ANN: 50 epochs 

  
Figure 7. Classification report and confusion 

matrix of Residual ANN: 50 epochs 
Figure 8. Training, validation loss & accuracy 

of Residual ANN: 50 epochs 
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Figure 9. Classification report and confusion 

matrix of MLP: 50 epochs 

Figure 10. Training, validation loss & 
accuracy of MLP: 50 epochs 

  
Figure 11. Classification report and confusion 

matrix of RBF Network: 50 epochs 
Figure 12. Training, validation loss & 
accuracy of RBF Network: 50 epochs 

  
Figure 13. Classification report and confusion 

matrix of Simple ANN: 50 epochs 
Figure 14. Training, validation loss & 
accuracy of Simple ANN: 50 epochs 

Results and Analysis: 
From the tested models’ confusion matrices and classification reports against 50 

epochs, it can be seen that all models are very good at identifying malware (class 1), but vary 
a lot in their performance in identifying benign samples (class 0) correctly. The CNN-LSTM 
model takes the lead with high balanced performance and overall accuracy (98.91%) with an 
F1-score of 0.7647 for benign samples and 0.9944 for malware. Conversely, Simple ANN 
and MLP models exhibit very high malware detection (recall 0.999), with low benign class 
recall (0.3887 and 0.3110, respectively), leading to higher false positives. DropConnect ANN 
with increased connectivity has failed on class 0 with zero precision, recall, and F1-score, 
detecting all samples as malware, which is probably due to severe class imbalance handling 
failure.  

Residual ANN and RBF Network marginally enhance benign detection compared to 
MLP, whereas DenseNet ANN provides a better-balanced performance among the ANN-
based models with 0.6334 F1-score for benign class and 0.9921 for malware. These findings 
indicate that deeper learning architectures with higher representational capacity, e.g., CNN-
LSTM and DenseNet, are better at distinguishing both classes, especially in processing the 
minority benign class more robustly. Statistical comparison of these models against 50 
epochs is shown in Figure 15: 
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Figure 15. Models Performance: 50 epochs 

The classification reports and confusion matrices against 150 epochs provide detailed 
insights into the performance of each deep learning model applied for malware detection. 
The Simple ANN model achieved a high accuracy of 98.4%, with excellent performance on 
the malware class (1), showing a precision of 0.9863 and a recall of 0.9975. However, its 
performance on the benign class (0) was weaker, with a recall of only 0.4770, indicating 
many benign samples were misclassified. The MLP model performed similarly, with a slightly 
lower benign recall (0.3993) but improved precision (0.9339). The Enhanced DropConnect 
ANN improved the balance, with higher precision and recall for the benign class (0.8812 and 
0.4982, respectively), while still achieving near-perfect malware detection. The Residual 
ANN model showed poor overall performance, with a misleadingly high precision (0.9969) 
on class 1 but a drastically low recall (0.3609), leading to an overall accuracy drop to 37.6%.  

In contrast, DenseNet ANN and RBF Network models showed more balanced 
improvements, especially in detecting benign instances (recalls of 0.5724 and 0.4488, 
respectively), while maintaining strong malware classification metrics. Finally, the CNN-
LSTM hybrid model delivered the best overall results, achieving the highest accuracy of 
99.05% and the best balance between both classes, with a benign class recall of 0.7527 and 
malware recall of 0.9968, showing the least number of misclassifications across the board. 
These results demonstrate that while most models are highly effective at detecting malware 
(class 1), only the CNN-LSTM model offered a robust balance by minimizing false positives 
and false negatives simultaneously. The summary of the performance against each model is 
described in Figure 16: 

 
Figure 16. Model's Performance: 150 epochs 

Conclusion: 
Among the seven models evaluated for malware detection using API call sequences, 

the CNN-LSTM model achieved the highest accuracy (98.91%) and f1-score (0.9944), with 
the lowest false positive and false negative rates among all models. While simpler models 
such as Simple ANN and RBF performed well, they exhibited relatively higher false positive 
rates. The Enhanced DropConnect ANN failed to detect any benign samples, highlighting 
the impact of model architecture and training sensitivity on class imbalance. This reinforces 
the importance of robust architectures like CNN-LSTM for complex, sequential feature 
spaces such as API calls in dynamic malware analysis. 
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