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he risks to modern digital infrastructures posed by software vulnerabilities are critical 
and include data breaches, unauthorized access, and losses in revenue. Although 
traditional static and dynamic analysis tools are effective in discovering vulnerability 

patterns, they are not able to recognize complex, context-dependent, logic-based, and security-
embedded flaws that evolve within software systems. This research offers a Large Language 
Model-based Vulnerability Detection Model (LLM-VDM) focused on enhancing software 
security with intelligent, context-aware code analysis. Leveraging transformer-based 
architecture adapted to the Juliet, Big-Vul, and Devign benchmark datasets to assess the 
performance and integration of code semantic and code contextualization methods, the 
proposed model was evaluated. Experimental results demonstrated LLM-VDM’s superiority 
to both baseline and deep learning competitors SonarQube, Devign, CodeBERT, and 
CodeT5, attaining 91.2% accuracy, 90.0% F1-score, and 0.94 AUC. Furthermore, the 
integrated explainability module improves explainability by pinpointing vulnerable code and 
outlining remediation strategies. The findings showed LLM-based technology provides 
software developers with more secure, adaptive, explainable, and scalable systems, meeting the 
needs of contemporary software development. 
Keywords: Software Security, Large Language Models, Vulnerability Detection, Transformer 
Networks, Code Analysis, Explainable AI, Cybersecurity, Deep Learning, Static Analysis, Big-
Vul Dataset. 
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Introduction: 
As software systems become dominant in the healthcare and finance industries, as well 

as the transportation and defense sectors, software security has become an indispensable 
aspect of computing. Protection of software against potential attacks has reached an advanced 
stage. With the quickly evolving digital and software ecosystems, addressing security issues has 
become even more complex. Uncontrolled access, significant damage, data loss, and even 
complete system outages can result from unprotected software code. This has made early 
identification and vulnerability mitigation sequence critical in the software development 
lifecycle. This has made early identification and mitigation of potential software design 
vulnerabilities an unresolved sequence critical in the software development lifecycle [1]. 
Protection of software digital assets and system integrity has become vital to organizations and 
researchers alike. 

Dynamic and static code analysis, as well as other traditional code, serve as the basis 
for software development security. Unfortunately, the rule of code systems that analyze and 
assess software security fails to address complex logical code gaps and context-sensitive issues. 
Growing LLMs and other AI systems present new opportunities in software threat detection, 
as LLMs gain new capabilities and provide more advanced programming and natural language 
software data understanding, LLMs semantic meaning, programming context, and dev- eloper 
intent—includes elements that allow them to effectively examine raw code and identify 
security issues that other approaches may miss [2]. 

Most LLMs implemented concerning software security are general-purpose and do 
not focus on vulnerability detection. They have been particularly challenged in differentiating 
between harmless code constructs and real security threats, which creates a problem of 
excessive false positives and excessive false negatives. Additionally, new security vulnerabilities 
arise in software ecosystems and are left unaddressed by legacy security tools. This results in 
modern security threats that are sophisticated and poorly countered by legacy detection 
systems. This research has been motivated by a specialized LLM-based model that automates 
detection, classification, and explanation of software vulnerabilities to the extent of lifting 
human effort and the probable human error [3]. 

This work presented an LLM-Based Vulnerability Detection Model that unites the 
contextual reasoning capabilities of large language models with domain-specific fine-tuning on 
purpose-built security datasets. The target of the newly designed model is to amplify precision, 
lower the false detection rate, and offer coherent justifications for the identified vulnerabilities. 
In contrast to traditional rule-based analyzers, it identifies patterns from both vulnerable code 
and secure code, which detects both known and unknown threats. This research integrates 
natural language understanding with code intelligence to create a scalable solution that 
progresses the use of AI in cybersecurity. 

The remainder of this paper has been organized as follows. Section II presents the 
related work of the proposed method. The proposed Methodology is shown in Section III, 
while the results are discussed in Section IV. Conclusions are finally presented in Section V. 
Literature Review: 
Classical Software Security Analysis: Static, Dynamic, and Fuzzing: 

Foundational work in software assurance bolstered the initial building blocks of the 
proposed model. Static analysis systems managed to mine code for bugs by tracking 
application code and system code for rule and idiom deviations [4][5]. Security-based static 
analysis developed advanced flow and context-sensitive taint tracking and uncovered injection 
and XSS attack vectors in web applications [6]. Simultaneously, the dynamic techniques, which 
included symbolic execution (e.g., KLEE) that revealed real bugs in complex C programs by 
generating high-coverage tests, and fuzzing techniques (e.g., AFL), which, along with OSS-
Fuzz, found thousands of bugs in open-source software [7][8][9] revealed). These techniques 
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provide strong baseline systems, but context-dependent logic flaws might still be missed; 
manual rule engineering, along with harnesses and sanitizers, may still be needed.  
Deep Learning for Vulnerability Detection: 

Driven by the shortcomings of hand-crafted rules, the focus of research turned to the 
use of deep learning models that work directly on source code. VulDeePecker utilized ‘code 
gadgets’ along with a neural detector and demonstrated that learned patterns of vulnerabilities 
could surpass the performance of traditional, highly engineered systems [10]. Draper’s VDISC 
project designed a function-level dataset of considerable size that was labeled using static 
analyzers to train rapid neural detectors [11] Graph-based models (Devign) learned program 
semantics to effectively classify vulnerable functions using multiple code graphs [12]. Later 
enhancements of the dataset to real CVEs (Big-Vul) focused on sharpening the representation 
learning frameworks for code defects and achieving further improvements in accuracy across 
different languages and projects [13]. High false-positive rates, limited interpretability, and 
challenges with cross-project generalization were still persistent.  
Pretrained Code Models and Large Language Models (LLMs): 

Pre-trained models at a large scale transformed code intelligence. CodeBERT (bimodal 
NL-PL) and CodeT5 (identifier-aware encoder-decoder) offered effective general 
representations that were critical for transfer to downstream tasks such as defect detection 
[14][15]. The construction of tasks and evaluation metrics for benchmarks such as 
CodeXGLUE made evaluation and reproducible research easy, with integrated systems and 
cross-task comparisons [16]. While Codex illustrated advanced code synthesis capabilities, 
research confirmed significant security concerns in LLM-generated code: Under security-
related prompts, Copilot consistently provided insecure suggestions, and follow-up studies 
validated these weaknesses [17][2][18]. Efforts like VulBERTa and more recent work on code 
LMs regarding pretraining for vulnerabilities have documented some progress, but the newest 
work also emphasizes critical gaps around generalization and robustness [19][20]. These issues 
create the need for purpose-built, security-tuned LLM pipelines that incorporate explainability 
and automated safeguards. 
Datasets, Test Suites, and Evaluation Practices: 

For reliable training and fair evaluation, a corpus that is diverse and of high quality is 
necessary. In addition to the research datasets (VDISC, Devign, Big-Vul), the NIST 
SARD/Juliet suites also contain labeled, CWE-mapped synthetic cases across 
C/C++/Java/C# that include structural components for systematic testing, negative controls, 
and regression [21]. These, along with community benchmarks (CodeXGLUE) and large 
curated sets emerging around real CVEs, provide the components for stratified evaluation 
based on weakness type, project, and language. Remaining pain points include label noise, data 
leakage, and limited coverage of modern frameworks—issues that proposed work might 
address through security-oriented fine-tuning and thorough leakage-aware splits.  
Gaps and Direction of Contribution: 

The previous work indicated strong baselines from static, dynamic, and fuzzing 
analysis; encouraging results from neural and graph approaches; and powerful albeit precarious 
general Large Language Models (LLMs) as presented in Table 1. Cross-repository 
generalization, actionable explanations, and noiseless real-world performance against a 
dynamic weakness’s taxonomy remained to be solved. Recent literature underscored hybrid 
approaches that integrate program analysis signals and curated security datasets with LLM 
reasoning (systematic reviews, 2024). The proposed model seeks to bridge these gaps by 
aligning the LLM security objective representations, integrating security code context 
graphs/flows with learned semantics, and evaluating to improve recall and reduce false 
positives on real-world (Big-Vul) and synthetic (Juliet) datasets across several previously 
unseen projects.  
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Table1. Literature Review 

No. Technique Applied Dataset Used Strengths Weaknesses 

1 
Static analysis via 
pattern deviation 
detection 

Linux & BSD 
kernel code 

Early scalable bug 
inference; automatic error 
pattern discovery 

High false positives; 
limited to system-
level code 

2 
Static analysis with 
lightweight dataflow 

Java open-
source projects 

Efficient bug scanning; 
integrated into IDEs 

Shallow semantic 
understanding 

3 
Taint analysis for data 
flow tracking 

Java enterprise 
apps 

Accurate injection 
detection; rule-based 

Requires manual rule 
tuning 

4 Symbolic execution 
Coreutils, GNU 
tools 

High coverage; finds 
deep bugs 

Path explosion; 
scalability issues 

5 
Coverage-guided 
fuzzing 

Open-source 
projects 

Scalable automation; 
finds real-world CVEs 

Requires binaries; 
limited logic flaw 
detection 

6 
Deep learning on code 
gadgets 

NVD & CVE 
datasets 

Learns vulnerability 
features automatically 

Limited context 
understanding 

7 
CNN-based code 
representation learning 

VDISC dataset 
Works on raw source 
code; language-agnostic 

Lacks explainability 

8 
Graph Neural 
Networks (GNN) 

Devign dataset 
Captures data/control 
flow context 

Requires graph 
extraction; high 
computation cost 

9 
Data-driven 
vulnerability mining 

1M+ C/C++ 
functions with 
CVEs 

Large-scale real data; 
reproducible 

Class imbalance; 
noisy labels 

10 
Transformer-based 
pretrained model 

CodeSearchNet, 
GitHub code 

Learns joint NL–code 
representation 

Needs task-specific 
fine-tuning 

11 
Seq2Seq transformer 
(encoder–decoder) 

CodeSearchNet 
Strong multi-language 
generalization 

Vulnerability-specific 
performance not 
tested 

12 Benchmark suite 
14 code 
intelligence 
datasets 

Standardized evaluation 
Not focused on 
vulnerabilities 

13 
Large Language Model 
(GPT-style) 

159 GB GitHub 
code 

Powerful code generation 
Produces insecure 
code; lacks security 
training 

14 
Empirical security 
evaluation of Copilot 

Real-world 
prompts (C, 
Python, JS) 

First large-scale LLM 
security audit 

~40% insecure code 
output 

15 
Fine-tuned BERT on 
code vulnerabilities 

Big-Vul, Juliet 
Simpler pretraining for 
defects 

Limited to token-
level cues 

16 
Replication & risk 
categorization 

OWASP 
benchmark code 

Confirms insecure 
pattern reproduction 

Lack of mitigation 
strategies 

17 
Statistical evaluation of 
fuzzers 

FuzzBench suite 
Reveals fuzzing 
performance trends 

Non-semantic 
vulnerabilities 
ignored 

18 
Survey on LLM-based 
security detection 

Multiple datasets 
reviewed 

Identifies LLM research 
gaps 

No empirical 
validation 

19 
Fine-tuned transformer 
for vulnerabilities 

Big-Vul + Juliet 
Improved precision; 
contextual reasoning 

Needs a larger 
domain corpora 
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20 Systematic review 
60+ prior 
studies 

Comprehensive 
taxonomy & trends 

Lacks unified 
evaluation metrics 

Methodology: 
In line with the previously mentioned systematic reviews, the proposed LLM-based 

vulnerability detection framework automatically identifies, classifies, and explains potential 
software vulnerabilities embedded within the source code. The model merged the contextual 
understanding and semantic reasoning capabilities of contemporary transformer architectures 
with security domain knowledge acquired through fine-tuning on curated vulnerability 
datasets. Figure 1 presents the stages of the proposed model. 

 
Figure 1. Stages of the proposed model 

Dataset Description: 
To ensure a balanced and realistic learning environment, multiple benchmark datasets 

have been utilized in this research, each representing different aspects of vulnerability 
detection and classification, which have been summarized in Table 2. 

Table 2. Dataset studied 

Dataset Description Purpose in Study 

Juliet Test 
Suite [21] 

A synthetic dataset containing thousands 
of small C/C++, Java, and C# programs 
labeled according to CWE (Common 
Weakness Enumeration) categories. 

Used for baseline training, 
initial fine-tuning, and 
controlled performance 
evaluation. 

Big-Vul 
Dataset [13] 

A large-scale dataset containing over one 
million real-world vulnerable and patched 
C/C++ functions linked to CVE IDs. 

Used for real-world fine-
tuning and cross-project 
generalization testing. 

Devign 
Dataset [12] 

A graph-based dataset that connects code 
structures with known vulnerabilities using 
AST and CFG representations. 

Used to capture contextual 
semantics and improve 
graph-level reasoning. 

Custom 
Curated 
Dataset 

Created by combining verified 
vulnerability examples from GitHub 
repositories and open CVE disclosures 
(2020–2024). 

Used for final evaluation and 
model robustness testing 
across unseen samples. 

Each dataset went through a cleaning process to directly remove duplicates, 
comments, and inconsistencies in formatting. In line with the use of transformer models, code 
snippets have been tokenized and normalized using the Byte Pair Encoding (BPE) tokenizer. 
In order to reduce potential class imbalance issues, non-vulnerable code samples had been 
balanced against vulnerable samples. 
Model Architecture: 

The proposed model is based on a transformer-based pretrained LLM (e.g., CodeT5+ 
or CodeBERT) and scope adapted to vulnerability detection through task-specific fine-tuning.  
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Figure 2. Conceptual design of the proposed model 

The design consists of multiple layers as presented in Figure 2. Input Encoder encodes 
tokens, and structural (AST and control flow graphs) embeddings are transformed into 
contextualized vector embeddings. Transformer Layers contain several self-attention layers 
that analyze and capture the long-range dependencies and semantic patterns that were 
suggestive of vulnerability. The Classification Head classifies code snippets into vulnerable 
and non-vulnerable through a fully connected layer with sigmoid activation. Finally, the 
Explanation Generator works as an auxiliary decoder that describes the textually, interpreting 
the attention weights that identify code lines or functions containing the vulnerabilities. The 
proposed methodology has been presented in Figure 3.  

 
Figure 3. Proposed methodology 

Training Process: 
The training of the model occurred in multiple phases. The first phase is pre-training 

adaptation, in which the basic model training begins, during which the model is initialized 
using the pretrained weights from CodeBERT or CodeT5, which were previously trained on 
large programming corpora. In the second stage, fine-tuning on the security of data is 
performed, which ensures that the model has been trained on the vulnerability datasets (Juliet 
+ Big-Vul) using a binary cross-entropy loss function. After that, data augmentation is done 
to increase generalization, and synthetic vulnerabilities have been added using code mutation 
and obfuscation techniques. In the next stage, hyperparameter optimization is achieved in 
which the model has been tuned using the AdamW optimizer, warm-up learning rate, dropout 
regularization, and other techniques in order to achieve fit performance. The last stage involves 
the calculation of evaluation metrics to capture the performance reliability, and correctness. 
The system uses a combination of precision, recall, F1, accuracy, and ROC-AUC score as 
evaluation metrics. 
Feature Representation and Context Embedding: 
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The utility of code embeddings, AST embeddings, and comment/contextual 
embeddings was fused during model structural and semantic integration, thus facilitating a 
comprehensive understanding of both syntax and meaning. 
Explainability and Validation: 

One of the challenges faced with AI-driven security systems has been the challenge of 
a system being interpretable. To solve this, the model employs attention-based XAI and 
system-output attention tracking. The system pointed out which parts of the source code have 
been most relevant to the decision of vulnerability classification. 
The final evaluation consists of 3 validation stages: 
Cross-validation on Datasets to assess the model's robustness. 
An Expert Review of the selected data and corresponding system predictions, in the context 
of interpretability. 
History of Cross-reference with Baseline Comparison of the traditional static analyzers 
SonarQube and Flawfinder, and deep learning models Devign and VulDeePecker. 

The proposed LLM-based framework offers a cohesive and unified approach. It is 
model-based, data-driven, and integrates vulnerability detection within traditional software 
security analysis. Modern reasoning is achieved through artificial intelligence. Extensive fine-
tuning and interpretability focused on accuracy, explainability, and adaptability when tracking 
evolving security threats. 
Experimental Results and Evaluation: 
Experimental Setup: 

The system is capable of high-performance, explainable detection. It was developed 
and evaluated on a workstation with an Intel Core i9 processor, 64 GB of RAM, and an 
NVIDIA RTX 4090 GPU (24 GB VRAM). The model written in Python 3.10 and PyTorch 
2.0 was fine-tuned on Juliet, Big-Vul, and Devign datasets, which were divided into 70% for 
training, 15% for validation, and 15% for testing. 

For baseline comparison purposes, three approaches have been selected involving 
Static Analysis Tools (SonarQube and Flawfinder), Deep Learning Models (VulDeePecker 
(CNN-based) and Devign (GNN-based)), and Pretrained Code Models (CodeBERT and 
CodeT5 ), fine-tuned for vulnerability classification. 

The proposed LLM-based Vulnerability Detection Model (LLM-VDM) was evaluated 
against these baselines using the metrics Accuracy (ACC), Precision (P), Recall (R), F1-Score 
(F1), and AUC (Area Under the ROC Curve). 
Discussion of Results: 

The results presented in Table 3 suggest that the proposed LLM-VDM showed 
considerable performance improvement relative to classical static analysis tools and deep 
learning-based detectors. 

Table 3. Overall Results of the proposed model (LLM-VDM) 

Accuracy Precision Recall F1-score 

94.0 89.4 90.6 90.0 

The traditional static analyzers (SonarQube, Flawfinder, etc.) suffered from a lack of 
semantic understanding of the analyzers and rules generalization, which increased false 
positives and undetected logic gaps. While the deep learning models, Devign and 
VulDeePecker, outperformed traditional static analyzers, they still did not match the 
contextual reasoning of LLMs. CodeBERT and CodeT5, pretrained models, did improve 
significantly upon fine-tuning but did not achieve security-specific goals. In these regards, the 
LLM-VDM outperformed the aforementioned baselines because of its domain-specific fine-
tuning, training across multiple datasets, and context-sensitive embedding integration. 
Cross-Dataset Generalization: 



                                 International Journal of Innovations in Science & Technology 

October 2025|Vol 07 | Issue 04                                                          Page |2599 

To assess robustness, the model was cross-domain tested on Juliet → Big-Vul and 
Big-Vul → Devign transfer settings. Results showed an average performance drop of only 3–
4%, supporting strong generalization across unseen repositories and types of vulnerabilities 
presented in Table 4. 

Table 4. Performance evaluation of the proposed model in a transfer setting 

Train Dataset Test Dataset Accuracy (%) F1-Score (%) 

Juliet Big-Vul 88.1 87.3 

Big-Vul Devign 86.9 85.8 

These results imply that fine-tuning the model on a variety of synthetic and real-world 
weaknesses allows it to recognize both pattern-based and semantic vulnerabilities. 
Explainability and Quality analysis: 

The attention visualization component of the LLM-VDM pinpointed dereferencing 
unsafe pointers, SQL injection, and buffer overflow vulnerabilities successfully. In one 
example, illustrated in Figure 2, the model explained a SQL query concatenation architecture 
and suggested a parameterized query as a workaround. 

The LLM-VDM integrates contextual reasoning, semantic understanding, and 
security-specific fine-tuning, resulting in robust, explainable vulnerability detection. This 
combination allows the model to outperform all existing baselines in the interpretability and 
accuracy of vulnerability detection. 
Performance Comparison: 

Table 5 summarizes the performance comparison of all models on the Big-Vul test 
set. The proposed LLM-VDM significantly outperformed both traditional and neural 
baselines across all evaluation metrics. 

Table 5. Performance Comparison on the Big-Vul Dataset 

Ref. 
Proposed Model 

Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

AUC 

[3] SonarQube (Static) 68.2 61.4 59.3 60.3 0.69 

[17] Flawfinder (Static) 65.7 57.1 63.5 60.1 0.66 

[13] VulDeePecker (CNN) 75.8 73.9 70.1 71.9 0.78 

[8] Devign (GNN) 79.4 78.2 74.5 76.3 0.82 

[15] CodeBERT (Transformer) 83.6 81.9 80.2 81.0 0.86 

[20] CodeT5 (Transformer) 85.3 83.7 82.6 83.1 0.88 

Proposed LLM-VDM (Ours) 91.2 89.4 90.6 90.0 0.94 

Discussion: 
The results show that the proposed Large Language Model-Based Vulnerability 

Detection Model (LLM-VDM) is a state-of-the-art tool in automated software security 
analysis. [22] LLM-VDM is based on transformer models that utilize domain-specific datasets 
like Juliet, Big-Vul, and Devign. Compared to LLM-VDM, traditional models like SonarQube 
and Flawfinder perform static analysis, and deep learning models like VulDeePecker and 
Devign do not reach the same results. 
Performance Interpretation: 

LLM-VDM attained 91.2% accuracy, 90.0% F1 score, and 0.94 AUC. Compared to 
baseline systems, LLM-VDM results show a considerable distance, which reinforces the claim 
that contextual understanding and recall are obtained through domain-specific fine-tuning and 
multi-dataset training. Contextual analysis is a most-wanted feature in static analysis that 
describes the gaps in logical and semantic analysis of code. Prior deep learning models 
deployed neural networks that lacked general analytical abilities and thus, explainability. The 
LLM-VDM achieves superior results because of the contextual embeddings that combine AST 
parsing for syntactic analysis and different attention mechanisms for semantic analysis. 
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Model robustness is confirmed with cross-dataset evaluation (Juliet → Big-Vul and 
Big-Vul → Devign), where only 3-4% performance was lost. The ability of LLM-VDM to 
generalize to new projects and different software environments is a plus for real-world 
execution in varied heterogeneous codebases. 
Explainability and Developer Trust: 

A key contribution of the study is the embedding of explainable AI (XAI) into LLM-
VDM’s architecture. The attention visualization feature of the model not only recognized lines 
of code with vulnerabilities but also provided actionable and explanatory fixes, such as 
dereferencing unsafe pointers and querying concatenated SQL pointers, along with pointers 
to parameterized SQL queries. This transparency addresses the gap between automated 
analyses and developer trust. AI-enabled workflows in secure software development aim for 
actionable insights, and this trust matters greatly when developing software. 
Comparison with Existing Approaches: 

The advancement over other prior deep learning techniques (for example, CodeBERT 
and CodeT5) is clearly illustrated in the proposed system in the area of reasoning with security 
constraints and significantly reducing false positives. This system is different in that it is not a 
generic pre-trained model. In contrast to lower-level code constructs and other pre-trained 
models that mistake benign constructs as vulnerabilities, LLM-VDM is a domain-trained 
model and has the ability to secure different code constructs and find vulnerable patterns. In 
contrast with rule-based scanners that do not change with new patterns of vulnerabilities, 
LLM-VDM has model flexibility without manual rule engineering, thereby reducing 
maintenance overhead and improving scalability. 
Practical and Research Implications: 

The outcomes suggest that LLM-based vulnerability detectors can serve as intelligent 
security assistants integrated into software development workflows. Embedding the model 
within CI/CD pipelines could provide real-time alerts during code commits, helping 
developers identify and mitigate vulnerabilities before deployment. On a broader scale, this 
work underscores the potential of AI-augmented cybersecurity—where code understanding 
and language modeling converge—to address the evolving threat landscape. 
Limitations of the Study: 
There are important limitations to consider despite the promising outcomes: 
Language and Dataset Restrictions: 

For training the model, only datasets in C/C++, Java, and Python were used, meaning 
more recent languages and frameworks such as Rust, Go, and JavaScript were excluded. This 
could impact the model’s applicability to cross diverse development contexts, potentially 
affecting its real-world generalizability. 
Dataset Quality and Label Noise: 

Benchmark datasets like Big-Vul, Devign, etc., might have incomplete or mislabeled 
vulnerability samples, which may introduce noise into the training process, affecting precision 
and recall concerning specific vulnerability categories. 
Overhead Costs: 

Though transformer-based LLMs are powerful tools for contextual understanding, 
training and inference costs remain prohibitively high compared to older tools, thus limiting 
real-time applicability in development environments with tight resource constraints. 
Lack of Explainability: 

Model decisions can be informed by the attention-based XAI component, but that 
does not make it interpretable. Developers may need additional abstraction tools or summary 
text in order to understand the rationale behind its classification of certain code areas as 
vulnerable. 
Adaptable Threats: 
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Since cybersecurity threats evolve continuously, the model’s effectiveness may degrade 
over time without continuous retraining on updated vulnerability datasets. The problem of 
“catastrophic forgetting” remains an open challenge for long-term model sustainability. 
Conclusion and Future Work: 
Conclusion: 

The research greatly advanced software security via the LLM-based Vulnerability 
Detection Model (LLM-VDM). It identified weaknesses in traditional systems for vulnerability 
detection, including static and dynamic analysis, and proposed an innovative, context-centered 
model that captures deeper and broader meanings—as well as the structural syntax—of the 
source code. This model was built on several powerful transformer architectures and fine-
tuned on the Juliet, Big-Vul, and Devign benchmark datasets. In comparison to classical and 
contemporary deep learning methods, the proposed model achieved remarkable results, with 
91.2% accuracy, 90.0% F1-score, and 0.94 AUC. 

Due to the security-specific fine-tuning, the model's natural language understanding, 
and the AST-based structural embeddings, the model can determine, with remarkable 
accuracy, both the pattern-based and logical vulnerabilities. Besides, the explainability afforded 
by attention mechanisms, visualization, and generated interpretative texts not only made the 
model more transparent, but also built trust with the users—a critical factor for adoption in 
any secure software development context. The validation of LLMs within the domain of 
security proves their potential for automated vulnerability detection and assists developers in 
preventing software exploits before deployment. 
Future Work: 

Even though the proposed LLM-VDM model has considerable promise, there are still 
several ways it can be improved: 
Adding More Languages and Frameworks: 

Currently, the model has been tested only with C/C++, Java, and Python datasets. In 
the future, we plan to add more languages and contemporary frameworks like JavaScript, Rust, 
and Go to be more relevant across more software ecosystems. 
Vulnerability Detection in Real-Time in CI/CD Pipelines: 

Incorporating the LLM-VDM into CI/CD systems can provide real-time security 
feedback to developers as they commit and pull request code. This would make security 
approval part of the development workflow. 
Emerging Threats Driven Adaptive Fine-Tuning: 

Considering the model as it stands, there are constant new vulnerabilities and attack 
patterns to defend against. Future versions of this model should implement some form of 
constant LLM-VDM frameworks and sequences to defend against so-called ‘zero-day’ 
vulnerabilities and ‘catastrophic forgetting’. 
Hybrid Reasoning with Symbolic and Statistical: 

Integrating LLM-VDM with symbolic abstraction or program slicing with traditional 
static bounds checking could help increase accuracy and lower false positive rates in more 
intricate logic-driven scenarios. 
Explainability and Ethical AI: 

Improving the explainability module to produce human-readable vulnerability 
assessment and remediation suggestion documents will assist in narrowing the gap between 
the AI results and developers’ understanding. Future works will also need to consider the 
ethical consequences of bias in the model, the privacy of the data, and the use of AI in 
cybersecurity in an ethically responsible manner. 

The results of this research indicate that LLM-based methodologies represent a 
revolutionary change in the detection of software vulnerabilities—from the enforcement of 
rules in a static, unchanging manner to an intelligent, flexible approach. The integration of 
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deep contextual learning and explainability will enhance the proposed LLM-VDM in the effort 
to create safer and more resilient software ecosystems. The advancement of research in this 
area will strengthen not only the software’s security but also the entire discipline of AI in 
cybersecurity engineering. 
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