K;z ACCESS

OPEN ’ifj

International Journal of Innovations in Science & Technology
RESEARCH & INNOVATION e
-

=
oy i

Improving Software Security Through an LLM-Based

Vulnerability Detection Model
Mohsin Sami, Kashif Nasr, Saira Andleeb Gillani, Rabia Tehseen
Department of Computer Science, University of Central Punjab, Lahore, Pakistan
*Cotrespondence: rabia.tehseen@ucp.edu.pk
Citation | Saim. M, Nasr. K, Gillani. S. A, Tehseen. R, “Improving Software Security Through
LLM-Based Vulnerability Detection Model”, IJIST, Vol. 07, Issue. 04 pp 2592-2603, October
2025
Received | August 29, 2025 Revised | September 23, 2025 Accepted | September 25, 2025
Published | October 28, 2025.

NOISIAI

and include data breaches, unauthorized access, and losses in revenue. Although

traditional static and dynamic analysis tools are effective in discovering vulnerability
patterns, they are not able to recognize complex, context-dependent, logic-based, and security-
embedded flaws that evolve within software systems. This research offers a Large Language
Model-based Vulnerability Detection Model (LLM-VDM) focused on enhancing software
security with intelligent, context-aware code analysis. Leveraging transformer-based
architecture adapted to the Juliet, Big-Vul, and Devign benchmark datasets to assess the
performance and integration of code semantic and code contextualization methods, the
proposed model was evaluated. Experimental results demonstrated LLM-VDM’s superiority
to both baseline and deep learning competitors SonarQube, Devign, CodeBERT, and
CodeT5, attaining 91.2% accuracy, 90.0% F1l-score, and 0.94 AUC. Furthermore, the
integrated explainability module improves explainability by pinpointing vulnerable code and
outlining remediation strategies. The findings showed LLM-based technology provides
software developers with more secure, adaptive, explainable, and scalable systems, meeting the
needs of contemporary software development.
Keywords: Software Security, Large Language Models, Vulnerability Detection, Transformer
Networks, Code Analysis, Explainable AI, Cybersecurity, Deep Learning, Static Analysis, Big-

The risks to modern digital infrastructures posed by software vulnerabilities are critical

Vul Dataset.
2 IPIndexi % Cj R RESEARCHBIB gy .
‘ lndeglingel"}gltrallg K CiteFactor ACADEMIC RESOURCE INDEX B @ IDEAS
JOURNALS R@TINDEXIN(ili iNFOBASE INDEX
[E LA Ter Tist @ Scilit
7 > O
T - - b A ResearchGate WIKIDATA - % ;
DRJI Crossref IN

October 2025 | Vol 07 | Issue 04 Page | 2592

mailto:rabia.tehseen@ucp.edu.pk

OPEN (5) ACCESS

International Journal of Innovations in Science & Technology

Introduction:

As software systems become dominant in the healthcare and finance industries, as well
as the transportation and defense sectors, software security has become an indispensable
aspect of computing. Protection of software against potential attacks has reached an advanced
stage. With the quickly evolving digital and software ecosystems, addressing security issues has
become even more complex. Uncontrolled access, significant damage, data loss, and even
complete system outages can result from unprotected software code. This has made early
identification and vulnerability mitigation sequence critical in the software development
lifecycle. This has made early identification and mitigation of potential software design
vulnerabilities an unresolved sequence critical in the software development lifecycle [1].
Protection of software digital assets and system integrity has become vital to organizations and
researchers alike.

Dynamic and static code analysis, as well as other traditional code, serve as the basis
for software development security. Unfortunately, the rule of code systems that analyze and
assess software security fails to address complex logical code gaps and context-sensitive issues.
Growing LLLMs and other Al systems present new opportunities in software threat detection,
as LLMs gain new capabilities and provide more advanced programming and natural language
software data understanding, LLLMs semantic meaning, programming context, and dev- eloper
intent—includes elements that allow them to effectively examine raw code and identify
security issues that other approaches may miss [2].

Most LLMs implemented concerning software security are general-purpose and do
not focus on vulnerability detection. They have been particularly challenged in differentiating
between harmless code constructs and real security threats, which creates a problem of
excessive false positives and excessive false negatives. Additionally, new security vulnerabilities
arise in software ecosystems and are left unaddressed by legacy security tools. This results in
modern security threats that are sophisticated and pootly countered by legacy detection
systems. This research has been motivated by a specialized LLLM-based model that automates
detection, classification, and explanation of software vulnerabilities to the extent of lifting
human effort and the probable human error [3].

This work presented an LLM-Based Vulnerability Detection Model that unites the
contextual reasoning capabilities of large language models with domain-specific fine-tuning on
purpose-built security datasets. The target of the newly designed model is to amplify precision,
lower the false detection rate, and offer coherent justifications for the identified vulnerabilities.
In contrast to traditional rule-based analyzers, it identifies patterns from both vulnerable code
and secure code, which detects both known and unknown threats. This research integrates
natural language understanding with code intelligence to create a scalable solution that
progresses the use of Al in cybersecurity.

The remainder of this paper has been organized as follows. Section II presents the
related work of the proposed method. The proposed Methodology is shown in Section III,
while the results are discussed in Section IV. Conclusions are finally presented in Section V.
Literature Review:

Classical Software Security Analysis: Static, Dynamic, and Fuzzing:

Foundational work in software assurance bolstered the initial building blocks of the
proposed model. Static analysis systems managed to mine code for bugs by tracking
application code and system code for rule and idiom deviations [4][5]. Security-based static
analysis developed advanced flow and context-sensitive taint tracking and uncovered injection
and XSS attack vectors in web applications [6]. Simultaneously, the dynamic techniques, which
included symbolic execution (e.g., KLEE) that revealed real bugs in complex C programs by
generating high-coverage tests, and fuzzing techniques (e.g., AFL), which, along with OSS-
Fuzz, found thousands of bugs in open-source software [7][8][9] revealed). These techniques

October 2025 | Vol 07 | Issue 04 Page | 2593

International Journal of Innovations in Science & Technology

provide strong baseline systems, but context-dependent logic flaws might still be missed;
manual rule engineering, along with harnesses and sanitizers, may still be needed.
Deep Learning for Vulnerability Detection:

Driven by the shortcomings of hand-crafted rules, the focus of research turned to the
use of deep learning models that work directly on source code. VulDeePecker utilized ‘code
gadgets’ along with a neural detector and demonstrated that learned patterns of vulnerabilities
could surpass the performance of traditional, highly engineered systems [10]. Draper’s VDISC
project designed a function-level dataset of considerable size that was labeled using static
analyzers to train rapid neural detectors [11] Graph-based models (Devign) learned program
semantics to effectively classify vulnerable functions using multiple code graphs [12]. Later
enhancements of the dataset to real CVEs (Big-Vul) focused on sharpening the representation
learning frameworks for code defects and achieving further improvements in accuracy across
different languages and projects [13]. High false-positive rates, limited interpretability, and
challenges with cross-project generalization were still persistent.

Pretrained Code Models and Large Language Models (LLMs):

Pre-trained models at a large scale transformed code intelligence. CodeBERT (bimodal
NL-PL) and CodeT5 (identifier-aware encoder-decoder) offered effective general
representations that were critical for transfer to downstream tasks such as defect detection
[14][15]. The construction of tasks and evaluation metrics for benchmarks such as
CodeXGLUE made evaluation and reproducible research easy, with integrated systems and
cross-task comparisons [16]. While Codex illustrated advanced code synthesis capabilities,
research confirmed significant security concerns in LLM-generated code: Under security-
related prompts, Copilot consistently provided insecure suggestions, and follow-up studies
validated these weaknesses [17][2][18]. Efforts like VulBERTa and more recent work on code
LMs regarding pretraining for vulnerabilities have documented some progress, but the newest
work also emphasizes critical gaps around generalization and robustness [19][20]. These issues
create the need for purpose-built, security-tuned LLLM pipelines that incorporate explainability
and automated safeguards.

Datasets, Test Suites, and Evaluation Practices:

For reliable training and fair evaluation, a corpus that is diverse and of high quality is
necessary. In addition to the research datasets (VDISC, Devign, Big-Vul), the NIST
SARD/Juliet suites also contain labeled, CWE-mapped synthetic cases actoss
C/C++/Java/C# that include structural components for systematic testing, negative controls,
and regression [21]. These, along with community benchmarks (CodeXGLUE) and large
curated sets emerging around real CVEs, provide the components for stratified evaluation
based on weakness type, project, and language. Remaining pain points include label noise, data
leakage, and limited coverage of modern frameworks—issues that proposed work might
address through security-oriented fine-tuning and thorough leakage-aware splits.

Gaps and Direction of Contribution:

The previous work indicated strong baselines from static, dynamic, and fuzzing
analysis; encouraging results from neural and graph approaches; and powerful albeit precarious
general Large Language Models (LLMs) as presented in Table 1. Cross-repository
generalization, actionable explanations, and noiseless real-world performance against a
dynamic weakness’s taxonomy remained to be solved. Recent literature underscored hybrid
approaches that integrate program analysis signals and curated security datasets with LLM
reasoning (systematic reviews, 2024). The proposed model seeks to bridge these gaps by
aligning the LLM security objective representations, integrating security code context
graphs/flows with learned semantics, and evaluating to improve recall and reduce false
positives on real-world (Big-Vul) and synthetic (Juliet) datasets across several previously
unseen projects.

October 2025 | Vol 07 | Issue 04 Page | 2594

International Journal of Innovations in Science & Technology

Tablel. Literature Review

No. | Technique Applied Dataset Used Strengths Weaknesses
Static analy§1s via Linux & BSD Early scalable bug . ngh false positives;
1 | pattern deviation inference; automatic error | limited to system-
. kernel code ;
detection pattern discovery level code
5 Static analysis with Java open- Efficient bug scanning; Shallow semantic
lightweight dataflow source projects | integrated into IDEs understanding
3 Taint analysis for data | Java enterprise Accurate injection Requires manual rule
flow tracking apps detection; rule-based tuning
)) Coreutils, GNU | High coverage; finds Path explosion;
4 | Symbolic execution e
tools deep bugs scalability issues
Coverage-guided Open-source Scalable automation; Reqmres b%nanes;
5 . . limited logic flaw
fuzzing projects finds real-world CVEs .
detection
6 Deep learning on code | NVD & CVE Learns vulnerability Limited context
gadgets datasets features automatically understanding
7 CNN—based code . VDISC dataset Works on raw source . Lacks explainability
representation learning code; language-agnostic
g Graph Neural Devien dataset Captures data/control Ricrlulrtfsr%rﬁﬁj }L
Networks (GNN) cvign datase flow context extraction, tig
computation cost
. + ++ .
Data-driven M .C/C) Large-scale real data; Class imbalance;
7| vulnerability mini functions with ducibl isy label
vulnerability mining CVEs reproducible noisy labels
Transformer-based CodeSearchNet, | Learns joint NL—code Needs task-specific
10
pretrained model GitHub code representation fine-tuning
. Vulnerability-specific
11 Seq25eq transformer CodeSearchNet Strong .rnul.tl—langu age performance not
(encoder—decoder) generalization
tested
14 code Not don
12 | Benchmark suite intelligence Standardized evaluation ot tocused
vulnerabilities
datasets
Large Language Model | 159 GB GitHub . Produces tsecure
13 Powerful code generation | code; lacks security
(GPT-style) code .
training
. . Real-world . o/ :
14 Empm.cal secutity prompts (C First 1arge—s.cale LLM ~40% insecure code
evaluation of Copilot Python, |S) security audit output
15 Fine-tuned BERT on Big-Vul, Juliet Simpler pretraining for Limited to token-
code vulnerabilities defects level cues
16 Replication & risk OWASP Confirms insecure Lack of mitigation
categorization benchmark code | pattern reproduction strategies
Statistical evaluation of . Reveals fuzzing Non—sen}ggtlc
17 FuzzBench suite vulnerabilities
fuzzers performance trends :
ignored
13 Survey on LLLM-based | Multiple datasets | Identifies LLM research | No empirical
security detection reviewed gaps validation
19 Fine-tuned transformer Big-Vul + Julict Improved precision; Needs a larger

for vulnerabilities

contextual reasoning

domain corpora

October 2025 | Vol 07 | Issue 04

Page | 2595

OPEN gegACCESS

International Journal of Innovations in Science & Technology

20

60+ prior Lacks unified
studies evaluation metrics

Comprehensive

Systematic review
Y taxonomy & trends

Methodology:

In line with the previously mentioned systematic reviews, the proposed LLM-based
vulnerability detection framework automatically identifies, classifies, and explains potential
software vulnerabilities embedded within the source code. The model merged the contextual
understanding and semantic reasoning capabilities of contemporary transformer architectures
with security domain knowledge acquired through fine-tuning on curated vulnerability
datasets. Figure 1 presents the stages of the proposed model.

4

Model Architecture
and Fine-tuning

Feature Representation
and Context Encoding

Training and
Evaluation

Explainability
and Validation

Figure 1. Stages of the proposed model

Dataset Description:

To ensure a balanced and realistic learning environment, multiple benchmark datasets
have been utilized in this research, each representing different aspects of vulnerability
detection and classification, which have been summarized in Table 2.

Table 2. Dataset studied

Dataset [13]

million real-world vulnerable and patched
C/CH++ functions linked to CVE IDs.

Dataset Description Purpose in Study
A synthetic dataset containing thousands | Used for baseline training,
Juliet Test | of small C/C++, Java, and C# programs | initial fine-tuning, and
Suite [21] labeled according to CWE (Common | controlled performance
Weakness Enumeration) categories. evaluation.
Big-Vul A large-scale dataset containing over one | Used for real-world fine-

tuning and cross-project
generalization testing.

Devign
Dataset [12]

A graph-based dataset that connects code
structures with known vulnerabilities using

AST and CFG representations.

Used to capture contextual
semantics and improve
graph-level reasoning.

Custom
Curated
Dataset

Created by combining verified
vulnerability examples from GitHub
repositories and open CVE disclosures
(2020-2024).

Used for final evaluation and
model robustness testing
across unseen samples.

Each dataset went through a cleaning process to directly remove duplicates,
comments, and inconsistencies in formatting. In line with the use of transformer models, code
snippets have been tokenized and normalized using the Byte Pair Encoding (BPE) tokenizer.
In order to reduce potential class imbalance issues, non-vulnerable code samples had been
balanced against vulnerable samples.

Model Architecture:

The proposed model is based on a transformer-based pretrained LLM (e.g., CodeT5+

or CodeBERT) and scope adapted to vulnerability detection through task-specific fine-tuning.

October 2025 | Vol 07 | Issue 04 Page | 2596

ACCESS
International Journal of Innovations in Science & Technology

INPUT ENCODER TRANSFORMER LAYERS CLASSIFICATION HEAD

2 e ——

VULNERAL
=X >
TRANSFORMER

LAYERS EXPLANATION
GENERATOR

Auxiliary decorets

AST CrG textually interprets
Contextualized attention weights
3 identifiying

embeddings i
vulnerabilitties

NON-

& VULNERABLE
»

CLASSIFICATION
> HEAD

Figure 2. Conceptual design of the proposed model

The design consists of multiple layers as presented in Figure 2. Input Encoder encodes
tokens, and structural (AST and control flow graphs) embeddings are transformed into
contextualized vector embeddings. Transformer Layers contain several self-attention layers
that analyze and capture the long-range dependencies and semantic patterns that were
suggestive of vulnerability. The Classification Head classifies code snippets into vulnerable
and non-vulnerable through a fully connected layer with sigmoid activation. Finally, the
Explanation Generator works as an auxiliary decoder that describes the textually, interpreting
the attention weights that identify code lines or functions containing the vulnerabilities. The
proposed methodology has been presented in Figure 3.

Dataset Training and Evaluation
« Julief Test Suite « Pre-training Adaplation
. B'q-yd Dataset « Fine-tuning on Security Data
« Devign Dataset « Data Augmentation
« Custom Curated Dataset « Hyperparameler Optimization
1 « Evaluation Metrics
LLM-based Vulnerability
Data Acquisition Detection Model
and Preprocessing

I
Feature Representation
and Context Encoding
« Code Embeddings
+ AST Embeddings
Explainability and Valida- «—— . Comment Embedings

« Atiention-based Visuaiiza- l
« Cross-validation
« Human Expert Review £) Vulnerability
e
Source Report
Code
Source Code

Figure 3. Proposed methodology
Training Process:

The training of the model occurred in multiple phases. The first phase is pre-training
adaptation, in which the basic model training begins, during which the model is initialized
using the pretrained weights from CodeBERT or CodeT5, which were previously trained on
large programming corpora. In the second stage, fine-tuning on the security of data is
performed, which ensures that the model has been trained on the vulnerability datasets (Juliet
+ Big-Vul) using a binary cross-entropy loss function. After that, data augmentation is done
to increase generalization, and synthetic vulnerabilities have been added using code mutation
and obfuscation techniques. In the next stage, hyperparameter optimization is achieved in
which the model has been tuned using the AdamW optimizer, warm-up learning rate, dropout
regularization, and other techniques in order to achieve fit performance. The last stage involves
the calculation of evaluation metrics to capture the performance reliability, and correctness.
The system uses a combination of precision, recall, F1, accuracy, and ROC-AUC score as
evaluation metrics.

Feature Representation and Context Embedding:

October 2025 | Vol 07 | Issue 04 Page | 2597

International Journal of Innovations in Science & Technology
The utility of code embeddings, AST embeddings, and comment/contextual

embeddings was fused during model structural and semantic integration, thus facilitating a

comprehensive understanding of both syntax and meaning,.

Explainability and Validation:

One of the challenges faced with Al-driven security systems has been the challenge of
a system being interpretable. To solve this, the model employs attention-based XAI and
system-output attention tracking. The system pointed out which parts of the source code have
been most relevant to the decision of vulnerability classification.

The final evaluation consists of 3 validation stages:

Cross-validation on Datasets to assess the model's robustness.

An Expert Review of the selected data and corresponding system predictions, in the context
of interpretability.

History of Cross-reference with Baseline Comparison of the traditional static analyzers
SonarQube and Flawfinder, and deep learning models Devign and VulDeePecker.

The proposed LLLM-based framework offers a cohesive and unified approach. It is
model-based, data-driven, and integrates vulnerability detection within traditional software
security analysis. Modern reasoning is achieved through artificial intelligence. Extensive fine-
tuning and interpretability focused on accuracy, explainability, and adaptability when tracking
evolving security threats.

Experimental Results and Evaluation:
Experimental Setup:

The system is capable of high-performance, explainable detection. It was developed
and evaluated on a workstation with an Intel Core 19 processor, 64 GB of RAM, and an
NVIDIA RTX 4090 GPU (24 GB VRAM). The model written in Python 3.10 and PyTorch
2.0 was fine-tuned on Juliet, Big-Vul, and Devign datasets, which were divided into 70% for
training, 15% for validation, and 15% for testing.

For baseline comparison purposes, three approaches have been selected involving
Static Analysis Tools (SonarQube and Flawfinder), Deep Learning Models (VulDeePecker
(CNN-based) and Devign (GNN-based)), and Pretrained Code Models (CodeBERT and
CodeT5), fine-tuned for vulnerability classification.

The proposed LLM-based Vulnerability Detection Model (LLM-VDM) was evaluated
against these baselines using the metrics Accuracy (ACC), Precision (P), Recall (R), F1-Score
(F1), and AUC (Area Under the ROC Curve).

Discussion of Results:

The results presented in Table 3 suggest that the proposed LLM-VDM showed
considerable performance improvement relative to classical static analysis tools and deep
learning-based detectors.

Table 3. Overall Results of the proposed model (LLM-VDM)
Accuracy | Precision | Recall | F1-score
94.0 89.4 90.6 90.0

The traditional static analyzers (SonarQube, Flawfinder, etc.) suffered from a lack of
semantic understanding of the analyzers and rules generalization, which increased false
positives and undetected logic gaps. While the deep learning models, Devign and
VulDeePecker, outperformed traditional static analyzers, they still did not match the
contextual reasoning of LLMs. CodeBERT and CodeT5, pretrained models, did improve
significantly upon fine-tuning but did not achieve security-specific goals. In these regards, the
LLM-VDM outperformed the aforementioned baselines because of its domain-specific fine-
tuning, training across multiple datasets, and context-sensitive embedding integration.
Cross-Dataset Generalization:

October 2025 | Vol 07 | Issue 04 Page | 2598

International Journal of Innovations in Science & Technology

To assess robustness, the model was cross-domain tested on Juliet — Big-Vul and
Big-Vul — Devign transfer settings. Results showed an average performance drop of only 3—
4%, supporting strong generalization across unseen repositories and types of vulnerabilities
presented in Table 4.

Table 4. Performance evaluation of the proposed model in a transfer setting

Train Dataset | Test Dataset | Accuracy (%) | F1-Score (%)
Juliet Big-Vul 88.1 87.3
Big-Vul Devign 86.9 85.8

These results imply that fine-tuning the model on a variety of synthetic and real-world
weaknesses allows it to recognize both pattern-based and semantic vulnerabilities.
Explainability and Quality analysis:

The attention visualization component of the LLM-VDM pinpointed dereferencing
unsafe pointers, SQL injection, and buffer overflow vulnerabilities successfully. In one
example, illustrated in Figure 2, the model explained a SQL query concatenation architecture
and suggested a parameterized query as a workaround.

The LLM-VDM integrates contextual reasoning, semantic understanding, and
security-specific fine-tuning, resulting in robust, explainable vulnerability detection. This
combination allows the model to outperform all existing baselines in the interpretability and
accuracy of vulnerability detection.

Performance Comparison:

Table 5 summarizes the performance comparison of all models on the Big-Vul test
set. The proposed LLM-VDM significantly outperformed both traditional and neural
baselines across all evaluation metrics.

Table 5. Performance Comparison on the Big-Vul Dataset

Ref. Proposed Model Acc(:;;:)acy Pre(co:/los)lon R((ZZ:);H F1 (f/j)ore AUC
[3] | SonarQube (Static) 068.2 61.4 59.3 060.3 0.69
[17] | Flawfinder (Static) 065.7 57.1 63.5 00.1 0.66
[13] | VulDeePecker (CNN) 75.8 73.9 70.1 71.9 0.78
[8] | Devign (GNN) 79.4 78.2 74.5 76.3 0.82
[15] | CodeBERT (Transformer) 83.6 81.9 80.2 81.0 0.86
[20] | CodeT5 (Transformer) 85.3 83.7 82.6 83.1 0.88
Proposed LLM-VDM (Ours) 91.2 89.4 90.6 90.0 0.94
Discussion:

The results show that the proposed Large Language Model-Based Vulnerability
Detection Model (LLM-VDM) is a state-of-the-art tool in automated software security
analysis. [22] LLM-VDM is based on transformer models that utilize domain-specific datasets
like Juliet, Big-Vul, and Devign. Compared to LLM-VDM, traditional models like SonarQube
and Flawfinder perform static analysis, and deep learning models like VulDeePecker and
Devign do not reach the same results.

Performance Interpretation:

LLM-VDM attained 91.2% accuracy, 90.0% F1 score, and 0.94 AUC. Compared to
baseline systems, LLM-VDM results show a considerable distance, which reinforces the claim
that contextual understanding and recall are obtained through domain-specific fine-tuning and
multi-dataset training. Contextual analysis is a most-wanted feature in static analysis that
describes the gaps in logical and semantic analysis of code. Prior deep learning models
deployed neural networks that lacked general analytical abilities and thus, explainability. The
LLM-VDM achieves superior results because of the contextual embeddings that combine AST
parsing for syntactic analysis and different attention mechanisms for semantic analysis.

October 2025 | Vol 07 | Issue 04 Page | 2599

International Journal of Innovations in Science & Technology

Model robustness is confirmed with cross-dataset evaluation (Juliet — Big-Vul and
Big-Vul — Devign), where only 3-4% performance was lost. The ability of LLM-VDM to
generalize to new projects and different software environments is a plus for real-world
execution in varied heterogeneous codebases.

Explainability and Developer Trust:

A key contribution of the study is the embedding of explainable AI (XAI) into LLM-
VDM’s architecture. The attention visualization feature of the model not only recognized lines
of code with vulnerabilities but also provided actionable and explanatory fixes, such as
dereferencing unsafe pointers and querying concatenated SQL pointers, along with pointers
to parameterized SQL queries. This transparency addresses the gap between automated
analyses and developer trust. Al-enabled workflows in secure software development aim for
actionable insights, and this trust matters greatly when developing software.

Comparison with Existing Approaches:

The advancement over other prior deep learning techniques (for example, CodeBERT
and CodeT5) is clearly illustrated in the proposed system in the area of reasoning with security
constraints and significantly reducing false positives. This system is different in that it is not a
generic pre-trained model. In contrast to lower-level code constructs and other pre-trained
models that mistake benign constructs as vulnerabilities, LLM-VDM is a domain-trained
model and has the ability to secure different code constructs and find vulnerable patterns. In
contrast with rule-based scanners that do not change with new patterns of vulnerabilities,
LLM-VDM has model flexibility without manual rule engineering, thereby reducing
maintenance overhead and improving scalability.

Practical and Research Implications:

The outcomes suggest that LLM-based vulnerability detectors can serve as intelligent
security assistants integrated into software development workflows. Embedding the model
within CI/CD pipelines could provide real-time alerts during code commits, helping
developers identify and mitigate vulnerabilities before deployment. On a broader scale, this
work underscores the potential of Al-augmented cybersecurity—where code understanding
and language modeling converge—to address the evolving threat landscape.

Limitations of the Study:
There are important limitations to consider despite the promising outcomes:
Language and Dataset Restrictions:

For training the model, only datasets in C/C++, Java, and Python wete used, meaning
more recent languages and frameworks such as Rust, Go, and JavaScript were excluded. This
could impact the model’s applicability to cross diverse development contexts, potentially
affecting its real-world generalizability.

Dataset Quality and Label Noise:

Benchmark datasets like Big-Vul, Devign, etc., might have incomplete or mislabeled
vulnerability samples, which may introduce noise into the training process, affecting precision
and recall concerning specific vulnerability categories.

Overhead Costs:

Though transformer-based LLMs are powerful tools for contextual understanding,
training and inference costs remain prohibitively high compared to older tools, thus limiting
real-time applicability in development environments with tight resource constraints.

Lack of Explainability:

Model decisions can be informed by the attention-based XAl component, but that
does not make it interpretable. Developers may need additional abstraction tools or summary
text in order to understand the rationale behind its classification of certain code areas as
vulnerable.

Adaptable Threats:

October 2025 | Vol 07 | Issue 04 Page | 2600

International Journal of Innovations in Science & Technology

Since cybersecurity threats evolve continuously, the model’s effectiveness may degrade
over time without continuous retraining on updated vulnerability datasets. The problem of
“catastrophic forgetting” remains an open challenge for long-term model sustainability.
Conclusion and Future Work:

Conclusion:

The research greatly advanced software security via the LLM-based Vulnerability
Detection Model (LLM-VDM). It identified weaknesses in traditional systems for vulnerability
detection, including static and dynamic analysis, and proposed an innovative, context-centered
model that captures deeper and broader meanings—as well as the structural syntax—of the
source code. This model was built on several powerful transformer architectures and fine-
tuned on the Juliet, Big-Vul, and Devign benchmark datasets. In comparison to classical and
contemporary deep learning methods, the proposed model achieved remarkable results, with
91.2% accuracy, 90.0% F1-score, and 0.94 AUC.

Due to the security-specific fine-tuning, the model's natural language understanding,
and the AST-based structural embeddings, the model can determine, with remarkable
accuracy, both the pattern-based and logical vulnerabilities. Besides, the explainability afforded
by attention mechanisms, visualization, and generated interpretative texts not only made the
model more transparent, but also built trust with the users—a critical factor for adoption in
any secure software development context. The validation of LLLMs within the domain of
security proves their potential for automated vulnerability detection and assists developers in
preventing software exploits before deployment.

Future Work:

Even though the proposed LLM-VDM model has considerable promise, there are still
several ways it can be improved:

Adding More Languages and Frameworks:

Cutrently, the model has been tested only with C/C++, Java, and Python datasets. In
the future, we plan to add more languages and contemporary frameworks like JavaScript, Rust,
and Go to be more relevant across more software ecosystems.

Vulnerability Detection in Real-Time in CI/CD Pipelines:

Incorporating the LLM-VDM into CI/CD systems can provide treal-time security
feedback to developers as they commit and pull request code. This would make security
approval part of the development workflow.

Emerging Threats Driven Adaptive Fine-Tuning:

Considering the model as it stands, there are constant new vulnerabilities and attack
patterns to defend against. Future versions of this model should implement some form of
constant LLM-VDM frameworks and sequences to defend against so-called ‘“zero-day’
vulnerabilities and ‘catastrophic forgetting’.

Hybrid Reasoning with Symbolic and Statistical:

Integrating LLM-VDM with symbolic abstraction or program slicing with traditional
static bounds checking could help increase accuracy and lower false positive rates in more
intricate logic-driven scenarios.

Explainability and Ethical Al:

Improving the explainability module to produce human-readable vulnerability
assessment and remediation suggestion documents will assist in narrowing the gap between
the Al results and developers’ understanding. Future works will also need to consider the
ethical consequences of bias in the model, the privacy of the data, and the use of Al in
cybersecurity in an ethically responsible manner.

The results of this research indicate that LLM-based methodologies represent a
revolutionary change in the detection of software vulnerabilities—from the enforcement of
rules in a static, unchanging manner to an intelligent, flexible approach. The integration of

October 2025 | Vol 07 | Issue 04 Page | 2601

0
OPEN °) ACCESS

International Journal of Innovations in Science & Technology

deep contextual learning and explainability will enhance the proposed LLM-VDM in the effort

to create safer and more resilient software ecosystems. The advancement of research in this

area will strengthen not only the software’s security but also the entire discipline of Al in
cybersecurity engineering.

References:

[1] S. Lipner, “Security development lifecycle,” Datenschutz und Datensicherbeit - DuD, vol.
34, no. 3, pp. 135-137, Mar. 2010, doi: 10.1007/511623-010-0021-7.

[2] R. K. Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt,
“Asleep at the Keyboard? Assessing the Security of GitHub Copilot’s Code
Contributions,” Proc. - IEEE Symp. Secur. Priv., 2021, doi:
https://doi.org/10.48550/arXiv.2108.09293.

[3] M. Omar and H. M. Zangana, “Application of Large LLanguage Models (LLLMs) for
Software Vulnerability Detection,” Appl. Large Lang. Model. Softw. 1V ulnerability Detect.,
pp. 1-516, Jan. 2024, doi: 10.4018/979-8-3693-9311-6.

[4] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as deviant behavior,”
Proc. eighteenth ACM Symp. Oper. Syst. Princ., pp. 57-72, Oct. 2001, doi:
10.1145/502034.502041.

[5] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM SIGPL.AN Not., vol. 39,
no. 12, pp. 92-1006, Dec. 2004, doi:
10.1145/1052883.1052895;SERIALTOPIC:TOPIC:ACM-PUBTYPE.

[6] M.S.L.V.Benjamin Livshits, “Finding security vulnerabilities in java applications
with static analysis,” SSYM05 Proc. 14th Conf. USENIX Secur. Symp., vol. 14, p. 18,
2005, [Online]. Available: https://dl.acm.org/doi/10.5555/1251398.1251416

[7] Cristian Cadar, Daniel Dunbar, “KLEE: unassisted and automatic generation of high-
coverage tests for complex systems programs,” OSDI'08 Proc. 8th USENIX Conf.
Oper. Syst. Des. Implement., pp. 209-224, 2008, [Online]. Available:
https://dl.acm.org/doi/10.5555/1855741.1855756

[8] A. Fioraldi, A. Mantovani, D. Maier, and D. Balzarotti, “Dissecting American Fuzzy
Lop - A FuzzBench Evaluation - RCR Report,” ACM Trans. Softw. Eng. Methodol., vol.
32, no. 2, Apr. 2023, doi: 10.1145/3580600;WGROUP:STRING:ACM.

[9] K. Serebryany, “{OSS-Fuzz} - Google’s continuous fuzzing setvice for open soutce
software,” 2017.

[10] H.]J. Zhen Li, Deqing Zou, Xu, Shouhuai Ou, Xinyu, “VulDeePecker: A Deep
Learning-Based System for Vulnerability Detection,” Netw. Distrib. Syst. Secur. Symp.,
2018, [Online]. Available: https://www.ndss-symposium.org/wp-
content/uploads/2018/02/ndss2018_03A-2_Li_paper.pdf

[11] R. Russell ¢z al, “Automated Vulnerability Detection in Source Code Using Deep
Representation Learning,” Proc. - 17th IEEE Int. Conf. Mach. Learn. Appl. ICMI.A
2018, pp. 757-762, Jul. 2018, doi: 10.1109/ICMLA.2018.00120.

[12] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective Vulnerability
Identification by Learning Comprehensive Program Semantics via Graph Neural
Networks,” Adp. Neural Inf. Process. Syst., vol. 32, Sep. 2019, doi:
10.48550/arxiv.1909.03496.

[13] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A C/C++ Code Vulnerability Dataset
with Code Changes and CVE Summaries,” Proc. - 2020 IEEE/ ACM 171h Int. Conf.
Min. Softw. Repos. MSR 2020, pp. 508-512, Jun. 2020, doi: 10.1145/3379597.3387501.

[14] M. Z. Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming
Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, “CodeBERT: A Pre-Trained
Model for Programming and Natural Languages,” Find. Assoc. Comput. Linguist. Find.
ACL EMNLP 2020, 2020, [Online]. Available:

October 2025 | Vol 07 | Issue 04 Page | 2602

OPEN

ﬁ%}

yACCESS
' International Journal of Innovations in Science & Technology

[15]

[16]

[17]

18]

https:/ /aclanthology.org/2020.findings-emnlp.139/

S. C. H. H. Yue Wang, Weishi Wang, Shafiq Joty, “CodeT5: Identifier-aware Unified
Pre-trained Encoder-Decoder Models for Code Understanding and Generation,”
EMNILP 2021 - 2021 Conf. Empir. Methods Nat. Lang. Process. Proc., 2021, [Online].
Available: https://aclanthology.org/2021.emnlp-main.685/

C. C. Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, “CodeXGLUE: A Machine Learning Benchmark Dataset for Code
Understanding and Generation,” Ady. Neural Inf. Process. Syst., 2021, doi:
https://doi.org/10.48550/arXiv.2102.04664.

J. T. Mark Chen, “Evaluating Large Language Models Trained on Code,”
arXiv:2107.03374, 2021, doi: https://doi.org/10.48550/arXiv.2107.03374 Focus to
learn more.

A. M. Vahid Majdinasab, Michael Joshua Bishop, Shawn Rasheed, “Assessing the
Security of GitHub Copilot Generated Code -- A Targeted Replication Study,” Proc. -
2024 IEEE Int. Conf. Softw. Anal. Evol. Reengineering, SANER 2024, 2023, dot:
https://doi.org/10.48550/arXiv.2311.11177.

H. Hanif and S. Maffeis, “VulBERTa: Simplified Source Code Pre-Training for
Vulnerability Detection,” Proc. Int. Jt. Conf. Neural Networks, 2022, dot:
10.1109/IJCNN550064.2022.9892280.

S. C. Xin Zhou, “Large Language Model for Vulnerability Detection and Repair:
Literature Review and the Road Ahead,” ACM Trans. Softw. Eng. Methodol., vol. 34, no.
5, pp- 1-31, 2025, doi: https://doi.org/10.1145/3708522.

T. Boland and P. E. Black, “The Juliet 1.1 C/C++ and Java Test Suite,” Computer
(Long. Beach. Calgf)., vol. 45, no. 10, pp. 88-90, 2012, doi: 10.1109/MC.2012.345.

D. W. Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun
Chen, Basel Alomair, “Vulnerability Detection with Code Language Models: How Far
Are We?,” Proc. - Int. Conf. Softw. Eng., vol. 3, 2024, doi:
https://doi.org/10.48550/arXiv.2403.18624.

@ ® Copyright © by authors and 50Sea. This work is licensed under F) the
Creative Commons Attribution 4.0 International License.

October 2025 | Vol 07 | Issue 04 Page | 2603

