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ulmonary diseases like Pneumonia, Bronchiectasis, and Chronic Obstructive 
Pulmonary Disease cause a large number of deaths worldwide. For such diseases to be 
treated and managed effectively, an early and accurate diagnosis is essential. In this 

work, we propose a deep learning model based on Recurrent Neural Networks (RNN) that 
can detect three different pulmonary diseases, as well as healthy lung sounds, using only 
auscultation recordings. The model was trained using the ICBHI dataset, which contains 920 
recordings from 126 people and covers more than 6,800 respiratory cycles. To uniform the 
data, the audios are padded to equal length. To tackle class imbalance in the dataset, 
augmentation techniques of Gaussian noise injection, time-shifting, and time stretching are 
used. We employ a simplified version of the Gated Recurrent Unit (GRU)-based RNN 
architecture to deal with the padded sequences, along with a dropout layer to avoid overfitting. 
The model is trained using the Adamax optimizer with categorical cross-entropy loss, along 
with a model checkpoint to ensure learning consistency. Apart from the evaluation of model 
accuracy, we also evaluated the F1-score, accuracy, and loss graphs to ensure the competitive 
performance of our approach. Out of the six different experiments, with different data 
variations and two different model architectures, the outperforming model exhibited an 
accuracy of 98.53%, a precision of 98.57%, a recall of 98.53%, and an F1-score of 98.52%. 
Keywords: Pulmonary Disease; Auscultations; Deep Learning; Recurrent Neural Network; 
Data Augmentation; Gated Recurrent Unit 
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Introduction: 
Pulmonary disease refers to any condition that affects the lungs and compromises 

respiratory function. Numerous pulmonary disorders exist, including asthma, Chronic 
Obstructive Pulmonary Disease (COPD), pneumonia, bronchiectasis, and respiratory tract 
infections [1]. Recent studies have identified pulmonary diseases as the third leading cause of 
death worldwide, accounting for nearly 4 million fatalities in 2019, with approximately 80% of 
these deaths attributed to COPD [2]. Pneumonia also poses a major public health challenge, 
as emphasized by UNICEF’s 2017 global statistical report, which recorded its widespread 
prevalence worldwide [3]. In response to the increasing incidence of lung diseases, 
considerable global efforts have been made to reduce mortality rates. Assessment of lung 
health is done using pulmonary function tests, chest X-rays, and computed tomographic (CT) 
scans [4]. It is important to understand that these facilities and skilled staff are not always 
available or, if available, are expensive and time-consuming for most underprivileged areas. In 
contrast, auscultation provides a non-invasive, low-cost, portable alternative that enables 
doctors to use a standard stethoscope to analyze patients' lung sounds in order to detect 
diseases such as pneumonia, COPD, and asthma. However, since auscultation heavily relies 
on the physician’s subjective interpretation, there is a pressing need for a more consistent and 
objective diagnostic approach. 

With the rapid advancements in telemedicine and Artificial Intelligence (AI), it has 
become possible to detect subtle patterns in respiratory sounds, enabling more accurate and 
efficient clinical diagnosis. Accordingly, models can be built using AI that can detect 
respiratory diseases at an early stage, prior to the worsening of the patient's health, thus 
enabling timely treatment to save lives [4]. A core approach in this field is deep learning, which 
is inspired by the structure and architecture of the human brain. Several layers of artificial 
neurons make up deep learning models that derive complex and sophisticated features from 
input data [5]. These models are good at recognizing patterns, which form the core of a disease 
diagnosis from medical inputs such as auscultation recordings, CT scans, or X-rays. These 
models eliminate the need for manual feature extraction by automatically learning relevant 
features from raw data. This capability makes deep learning particularly well-suited for medical 
applications, where data complexity is substantial and diagnostic precision is essential. 

Recurrent Neural Networks (RNNs) are a class of deep learning models that are 
especially well-suited to handling time-series and sequential data [6]. In contrast to 
conventional neural networks, Recurrent Neural Networks (RNNs) are designed with 
feedback loops that allow them to store information from earlier inputs, giving them the ability 
to process and learn from sequential data. This temporal memory is useful for the analysis of 
lung sounds, which are sequential and vary dynamically during the respiratory cycle. Therefore, 
RNNs can capture the rhythmic and often periodic structure of breathing sounds, as wheezes, 
crackles, and other respiratory conditions manifest themselves in this way. The RNN model 
proposed in this study classifies features into four classes, namely COPD, bronchiectasis, 
pneumonia, and healthy, using a classification technique. Classification is a supervised machine 
learning technique used to assign class labels to given inputs [7]. In this process, a model is 
initially trained using a labeled dataset, and its performance is later assessed on an unlabeled 
testing dataset. Once the model demonstrates satisfactory accuracy and reliability, it is 
deployed to make predictions on new, unseen data. 

This research aims to develop a model, based on deep learning, which is able to detect 
and classify respiratory diseases from lung sound recordings accurately using the Int. Conf. on 
Biomedical Health Informatics (ICBHI) dataset [8]. The dataset consists of annotated 
auscultation recordings of various pulmonary conditions. This study undertakes six different 
experiments with multiple pre-processing techniques and adjusted RNN architectures in order 
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to determine the best combination of model structure with variation in data for proficient 
training. 
Novelty: 

Auscultation-based research emphasizes spectrogram-based features combined with 
convolutional or hybrid neural network architectures, while relatively little focus is given to 
alternative feature extraction and sequential modeling techniques. In this study, we aim to 
bridge these gaps by utilizing Mel-Frequency Cepstral Coefficients (MFCCs) instead of 
spectrograms, enabling a more effective representation of the spectral and temporal 
characteristics of respiratory signals. Also, as RNNs are best suited for sequential data and the 
temporal relationships found in lung sound recordings, the experiments focus on different 
model architectures for RNN as well as various data variation strategies, such as segmentation 
and the use of fully padded sequences, with the use of the masking layer to handle these 
sequences efficiently instead of relying on using convolutional or hybrid deep learning 
frameworks. 

The subsequent sections detail the development of our proposed system. The 
Literature Review summarizes relevant studies, highlighting key approaches, findings, and 
limitations. The Methodology section explains the training dataset, its variations, 
preprocessing techniques, feature extraction methods, model architectures, and performance 
evaluation metrics. This is followed by Results and Discussion, where results from six 
experiments are analyzed and compared. Finally, the Conclusion presents the main insights 
drawn from the study and outlines directions for future work. 
Literature Review: 

This section establishes the foundation for understanding the research domain, 
existing methodologies, and current research gaps, thereby supporting the development of an 
effective solution. It presents a comprehensive review of five recent and relevant studies in 
the field. 

Tariq et al. [9] proposed a CNN-based approach to classify seven respiratory sound 
classes from the ICBHI 2017 database. Mel spectrograms were generated using the Python 
library Librosa. To address the limitation of insufficient audio recordings for effective CNN 
training, the authors employed data augmentation techniques such as time stretching, pitch 
shifting, and dynamic range compression. They built a Custom 2D CNN (3 convolutional 
layers, 2 FC layers) along with ReLU (Leaky Rectified Linear Unit) activation and Softmax 
output. This configuration captured spatial patterns in spectrogram images efficiently. After 
comparing the results of different techniques applied to the dataset, they achieved the highest 
97% accuracy using a 70/30 split by applying augmentation techniques on normalized data. 

Basu and Rana [10] proposed a six-class deep neural network architecture by training 
it on Mel Frequency Cepstral Coefficients (MFCC) extracted using the ICBHI 2017 lungs 
sound dataset. The neural network is composed of five layers: a Gated Recurrent Unit (GRU), 
Leaky ReLU activation, a Dense layer, a Dropout layer, and an Add layer. Before training the 
model, data augmentation techniques are applied to enhance the representation of minority 
class recordings. The model was trained on 1000 iterations, and it achieved an accuracy of 
95.67%±0.77%. Petmezas et al. [11] introduce a hybrid approach that integrates CNN and 
LSTM architectures. Utilizing the ICBHI 2017 dataset, their model employs a CNN to reduce 
input dimensionality and extract relevant features, while the LSTM component captures and 
retains the temporal patterns present in each input sequence. Further, they handle data 
imbalance and reduce prediction errors by implementing the focal loss (FL) function. The 
accuracy of the model, which was trained using spectrograms, was 73.69% by split of 60/40, 
76.39% by interpatient 10-fold cross-validation, and 74.57% by leave-one-out cross-validation. 

Zhang et al. [12] conducted a comparative study of four models: CNN, LSTM, CNN-
LSTM, and CNN-BLSTM, and presented an effective approach for pulmonary disease 
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classification. The best-performing algorithm has been LSTM, achieving an overall accuracy 
of 98.82% owing to its capability to capture sequential patterns in time-series audio data. They 
implemented an imbalanced-learn toolbox to deal with class imbalances in the ICBHI 2017 
dataset. A six-class LSTM model has been trained using five audio features: MFCCs, Chroma, 
Tonal Centroids, Mel Spectrogram, and Spectral Contrast. The dataset has been divided into 
80% for training and 20% for testing. 

Nawaz et al. [13] introduced a novel 1D CNN architecture integrated with a denoising 
autoencoder. They trained their model on a combination of three datasets: ICBHI 2017, 
KAUH dataset, and some self-collected samples, making this approach an eight-class solution. 
They extracted Mel Spectrograms for training and implemented an autoencoder to clear the 
noise from the spectrograms. Their model consists of five convolutional layers, each followed 
by a MaxPooling1D layer. They have achieved an accuracy of 92.7% on the combined dataset, 
with 99.9% on the ICBHI data, 99.85% on the KAUH data, and 95.5% on self-collected 
samples. 

Although numerous studies have contributed to advancements in automated lung 
sound analysis, many continue to rely on similar experimental setups and well-structured 
datasets. The existing research emphasizes spectrogram-based features combined with 
convolutional or hybrid neural network architectures, while relatively little focus is given to 
alternative feature extraction and sequential modeling techniques. In this study, we aim to 
bridge these gaps by utilizing Mel-Frequency Cepstral Coefficients (MFCCs) instead of 
spectrograms, enabling a more effective representation of the spectral and temporal 
characteristics of respiratory signals [14]. In addition to that, instead of using convolutional or 
hybrid deep learning frameworks that are common in the literature, we focus on RNNs. RNNs 
are best suited for sequential data and the temporal relationships found in lung sound 
recordings [6]. We conducted numerous experiments on different model architectures and 
included data variation strategies, such as segmentation and the use of fully padded sequences, 
with the use of the masking layer to handle these sequences efficiently. Through these 
contributions, our study broadens the scope of existing research by investigating alternative 
yet effective design strategies for automated lung disease detection. 
Research Methodology: 
The research methodology followed in this research has been outlined in Figure 1. 

 
Figure 1. Research Methodology 

Data Collection: Our model was trained using the publicly available ICBHI dataset [15], 
which included 920 annotated respiratory sound recordings obtained from 126 patients. The 
recordings were captured using various types of stethoscopes, with durations ranging from 10 
to 90 seconds. In total, the dataset contains approximately 5.5 hours of audio, including 
samples with crackles, wheezes, and combinations of both, as well as recordings without any 
adventitious respiratory sounds. The dataset includes recordings from participants across 
various age groups, including children, adults, and the elderly, with adults and older individuals 
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contributing the majority of samples. It comprises audio data from seven pulmonary 
conditions (COPD, Pneumonia, Bronchiolitis, Asthma, Bronchiectasis, LRTI, and URTI) as 
well as from healthy subjects, resulting in a total of eight classes. Each patient is assigned a 
diagnostic label in a corresponding .csv file. Figure 2 illustrates the statistics for the number 
of audio recordings across the different classes in the dataset. 

 
Figure 2. Total number of audios 

Data Pre-processing: During the exploratory analysis of the dataset, we observed that it was 
not suitable for training in its original form. It was found that although the dataset contained 
920 recordings, the class distribution was highly imbalanced, with categories such as Asthma, 
LRTI, URTI, and Bronchiolitis having only a limited number of samples. This difference can 
affect the performance of deep learning models through underfitting and overfitting [16]. 
Overfitting occurs when a model memorizes the majority class patterns and is unable to find 
the logic behind the prediction. The model also struggles to capture the underlying patterns 
associated with minority classes, such as rare disease cases, which ultimately results in poor 
generalization performance [17]. In underfitting, the model is unable to learn patterns in the 
dataset for the class distribution, leading to errors in disease detection. This is particularly 
important in healthcare, where minority classes may correspond to rare but clinically 
significant conditions. Several methods have been employed in the literature to address these 
challenges, such as resampling and data augmentation. 

We excluded Asthma, LRTI, URTI, and Bronchiolitis to provide our model with a 
steadier learning process. This decision removed the severe shortage of instances, although 
there was still quite a noticeable class imbalance in the dataset, for which preprocessing before 
model training was warranted. To address class imbalance, only four recordings per patient 
were retained to undersample the COPD category. Data augmentation techniques such as time 
shifting, time stretching, and random noise injection were utilized to synthesize the minority 
class samples. 
Random Noise: Adding random noise or Gaussian noise refers to adding low-level white 
noise to audio signals to increase the variability of the data [18]. In this work, we generated the 
Gaussian Noise by using NumPy in Python and mixed it with the original audio data. The 
augmented audio signal would therefore contain the original data with a kind of faint Gaussian 
noise. 
Time Shift: Using this technique, we shifted the audio signal to the right, along the time axis, 
but kept the content and its duration intact [19]. This aims at emulating the temporal variations 
and delays that occur during the capture of real-world audio. We implement this in Python 
using the roll function from NumPy. 
Time Stretch: Time stretch augmentation is used to change the speed of the lung sound 
recordings without by having them modify their pitch [20]. This technique introduces the 
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model to changes in a person's breathing rate and helps the model generalize better. We used 
the Python time_stretch function from the librosa.effects module. 

In this variation, the preprocessing was performed using the complete audio 
recordings available in the dataset. However, an alternative approach was also explored, in 
which the original dataset was segmented into smaller audio clips to increase the number of 
samples. Segmentation is the process of dividing continuous lung auscultation recordings into 
shorter audio segments, each containing at least one complete respiratory cycle [21]. From this 
approach, two new datasets were created, one with segments of 10 seconds and the other with 
segments of 20 seconds, along with the previously mentioned augmentation techniques to 
further expand the dataset and improve diversity. For the original dataset or dataset 1, each 
audio recording was converted to a 40-dimensional MFCC feature sequence. The recordings 
maintained their full duration. The sequences were then padded to a fixed maximum length 
to standardize the input shape across dataset 1. In dataset 2, the audio recordings were divided 
into non-overlapping, 10-second segments. MFCC features were extracted from each segment 
in an attempt to enable the network to learn from shorter, consistently sized samples. Finally, 
in dataset 3, longer 20-second segments were used to determine if extended temporal context 
improves performance. Figure 3 illustrates the effect of preprocessing on all three dataset 
variations. The wave plots for each disease label and healthy lung sounds are shown in Figure 
4. From Figure 4, we can observe the distinct patterns of how each disease label affects lung 
sound characteristics. The healthy waveform is smooth with smaller oscillations when 
compared to pneumonia, which has frequent and intense fluctuations. In contrast, COPD has 
less intense fluctuations but still irregularities. Bronchiectasis has significant oscillations, but 
the intensity is lower than pneumonia.  

 
Figure 3. Number of Recordings in the Datasets after Preprocessing 

 
Figure 4. Wave Plots for each Disease Label 
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Feature Extraction: 
To extract meaningful patterns from respiratory audio signals, we obtained 40 Mel 

Frequency Cepstral Coefficients (MFCCs) from each audio file. MFCCs effectively capture 
unique sound qualities in each recording, such as pitch, tone, and rhythm [14]. We retained 
the entire sequence instead of averaging the time-variant MFCCs, as preserving temporal 
information is crucial for accurately recognizing breathing patterns. The duration of raw audio 
files ranged from 10 to 90 seconds, resulting in MFCC arrays with different time steps. In 
order to resolve this anomaly and prepare a proper 3D input for the model, we employed the 
Pad_Sequence function [22]. This technique ensures that all audio samples have an equal 
number of time steps and that during training, the padded values are ignored. In this case, 
each audio file had a category label, such as COPD, Pneumonia, Bronchiectasis, or Healthy. 
These string labels were changed to binary one-hot encoding vectors, in which the disease is 
represented as a vector with a single ‘1’ indicating the true class and '0's elsewhere. 
Model Architecture: 

RNNs are considered deep learning models that have been developed to deal with 
sequential data. These are effective in modeling temporal dependencies, usually involving 
time-series or audio signals [6]. In contrast to conventional neural networks, RNNs are 
designed with recurrent connections that enable them to remember information from earlier 
inputs, allowing the model to recognize temporal dependencies. When applied to respiratory 
audio, RNNs can learn the timing and duration of characteristic sounds such as wheezes and 
crackles, which are vital for identifying respiratory disorders. This capacity to interpret 
sequential data makes RNNs a powerful tool for analyzing and classifying health-related audio 
signals. 

For our deep neural network architecture, we chose the following five layers: the 
masking layer, GRU layer, Leaky ReLU layer, Dense layers, and Dropout layers. 
Masking Layer: Masking Layer is responsible for ignoring the padded values in audio 
sequences [23]. This helps the model not to be confused by artificially added silence, but rather 
focus its attention on real data. 
Gated Recurrent Unit: GRU is a type of RNN that is used for processing sequential data 
such as audio [24]. It can remember useful information over time, which helps in learning 
temporal patterns. 
Leaky Rectified Linear Unit: This activation function enables a small gradient in the case 
of negative input for resolving the dead neuron problem. The goal here is to enhance model 
learning capability through the addition of Leaky ReLU after each GRU and Dense layer [25]. 
Dense Layer: This layer connects all neurons from the previous layer to the next layer [26]. 
It is also used as the final layer with a softmax activation function to change the raw outputs 
into a probability distribution, allowing the model to select the most probable class as the 
prediction. 
Dropout Layer: Dropout is used to prevent overfitting by dropping off a percentage of 
neurons randomly during training [27]. We used a dropout rate of 0.5. 

To analyze the impact of architectural complexity on performance, we implemented 
two different variations of the proposed GRU-based model. The first variation, Model 
Architecture 1, features a more complex design consisting of six stacked GRU layers, each 
followed by a Leaky ReLU activation function. Additionally, a dropout layer is incorporated 
to prevent overfitting and enhance model generalization. Model Architecture 2 was designed 
as a comparatively simpler structure with three GRUs and leaky ReLU activation layers, and 
the application of a dropout layer at the end. The model summary for Model Architecture 2, 
which demonstrated the best performance among all configurations, is presented in Table 1. 
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Table 1. Details of Model Architecture-2 

Layer (type) Output Shape Param# Connected to 

input_layer (InputLayer) (None, None, 40) 0 - 

not_equal_1 (NotEqual) (None, None, 40) 0 input_layer[0][0] 

masking_1 (Masking) (None, None, 40) 0 input_layer[0][0] 

any_1 (Any) (None, None) 0 
not_equal_1[0][
0] 

gru_5(GRU) 
(None, None, 
128) 

65,280 
masking_1[0][0], 
any_1[0][0] 

leaky_re_lu_5 
(LeakyReLU) 

(None, None, 
128) 

0 
gru_5[0][0] 

gru_6 (GRU) (None, None, 64) 37,248 
leaky_re_lu_5[0]
[0], any_1[0][0] 

leaky_re_lu_6 
(LeakyReLU) 

(None, None, 64) 0 
gru_6[0][0] 

gru_7 (GRU) (None, 32) 9,408 
leaky_re_lu_6[0]
[0], any_1[0][0] 

dense_2 (Dense) (None, 64) 2,112 leakygru_7[0][0] 

leaky_re_lu_7 
(LeakyReLU) 

(None, 64) 0 
dense_2[0][0] 

dropout_2 (Dropout) (None, 64) 0 
leaky_re_lu_7[0]
[0] 

dense_3 (Dense) (None, 40) 260 dropout_2[0][0] 

Total params: 342,926 (1.31 MB) 
Trainable params: 114,308 (446.52 KB) 
Non-trainable params: 0 (0.00 B) 
Optimizer params: 228,618 (893.04 KB) 

 

 

Model Training: 
To assess the impact of the architectural design and pre-processing techniques applied 

thus far, a total of six experiments were carried out. These experiments integrated two different 
model architectures with three different pre-processing strategies, providing a foundation for 
comparison. 

The dataset was pre-processed into three different input configurations to investigate 
how the segmentation and duration affect learning dynamics. The two model architectures we 
experimented with are as follows: 
Model Architecture 1: The first configuration increased the network depth by adding 
additional GRU layers, thus creating a more complex model to test if greater representational 
Capacity might improve performance. 
Model Architecture 2: The second model configuration involved three GRU layers, along 
with LeakyRelu, dense, and dropout layers were used in the outperforming model. This 
architecture represents a well-balanced design that effectively captures temporal dependencies 
while minimizing unnecessary complexity. It achieved the highest overall accuracy across all 
dataset variations. Figure 5 illustrates the workflow of the proposed RNN model. 

For each experiment, we split the dataset into a testing and a training set with a 30/70 
ratio, with 50% of the test set reserved as a validation set. The training of the model was 
performed with 32 batch size and 200 epochs. The model utilizes MFCC features derived from 
respiratory audio signals as its input. These features are first fed into a Masking layer to ignore 
padded values during the learning process. Then the masked input is processed through a deep 
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sequence of GRU layers, each followed by a Leaky ReLU activation function to improve 
learning and gradient flow. The resulting features are then passed through a Dense layer to 
reduce dimensionality, followed by a Dropout layer with a rate of 0.5 to reduce overfitting. 
Finally, a Dense layer with softmax activation and five neurons produces the probability 
distribution across four classes related to respiratory diseases, thus enabling accurate 
classification. 

 
Figure 5. Flow of the proposed RNN architecture 

Model Evaluation: 
The experiments were run using Google Colab [28] with GPU acceleration, allowing 

for efficient training over 200 epochs, and evaluated using the following metrics: 
Accuracy: Accuracy is the proportion of correct classifications out of the total made 
classifications [29] and is represented through eq. 1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 1) 

Precision: Precision is a way of measuring and analyzing the model's positive classifications. It 
is measured using the equation. 2). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  2) 

Recall: Recall is the proportion of all actual positives that were classified correctly as positives 
[29]. Recall can be measured using Eq. 3. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐹𝑃

𝑇𝑃+𝐹𝑁
 3) 

F1-Score: F1-Score is the harmonic mean of precision and recall, useful for imbalanced data 
[29]. It is measured using Eq. 4. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 4) 

Results and Discussion: 
Experiment 01: 

In this experiment, Model Architecture 1 was trained on Dataset variation 1, having 
full sequences of audio recordings. It achieved an accuracy of 95.59%, with a precision of 
95.70%, a recall of 95.59%, and an F1-score of 95.58%, demonstrating strong performance in 
the experiment. The class-wise performance report of the model is presented in Table 2. 

Table 2. Class-wise report of the first experiment. 

Class Precision Recall F1-Score 

Bronchiectasis 1.00 1.00 1.00 

COPD 0.97 0.90 0.94 

Healthy 0.94 0.97 0.95 

Pneumonia 0.91 0.97 0.94 

Table 2 illustrates that bronchiectasis achieved perfect precision and recall. This is 
likely due to a smaller, less diverse subset of samples, leading to possible overfitting on that 
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class. COPD showed lower recall (0.90) compared to its precision (0.97), suggesting that the 
model misclassified several COPD instances as other diseases. Healthy and Pneumonia classes 
showed relatively balanced results, though the minor gap between their precision and recall 
indicates room for improvement. 

Figure 6 shows the training and validation accuracy and loss curves. The training loss 
showed a steady decline, whereas the validation loss remained consistently high, indicating that 
the model suffered from overfitting. Overall, the model gave better classification results but 
shows a clear gap between training and validation loss, indicating poor performance. 

 
Figure 6. Training and validation accuracy and loss graph for Experiment 01 

Experiment 02: 
In this experiment, Model Architecture 1 was trained using Dataset Variation 2, which 

consisted of 10-second segmented audio recordings. The model achieved an overall accuracy 
of 95.51%, with a precision of 95.61%, a recall of 95.51%, and an F1-score of 95.52%, which 
are comparable to the first experiment’s results. Class-wise report for this model is presented 
in Table 3. 

Table 3. Class-wise report of the second experiment. 

Class Precision Recall F1-Score 

Bronchiectasis 1.00 0.96 0.98 

COPD 0.93 0.96 0.95 

Healthy 0.93 0.98 0.95 

Pneumonia 0.98 0.93 0.95 

The class-wise report indicates that the Bronchiectasis class achieved perfect precision 
with some errors in recall, indicating the model’s strong confidence in predictions but 
occasional failure to detect all instances. The COPD and Healthy classes showed improved 
recall (0.96 and 0.98, respectively) compared to Experiment 1, suggesting that segmentation 
may have helped the model recognize a wider range of acoustic variations for these conditions. 
However, Pneumonia displayed the opposite trend - precision improved (0.98) but recall 
dropped (0.93), implying that although predictions for pneumonia were more accurate, some 
positive samples were still missed. 

The training and validation accuracy and loss curves are presented in Figure 7. Training 
accuracy improved steadily, while validation accuracy leveled off at a slightly lower value. 
Training loss decreased to about 8.4%, but validation loss settled at a higher value of about 
35.6%, indicating mild overfitting. Overall, there is a very slight change in model accuracy 
compared to experiment 1, but the overfitting ratio visible in the loss graph has improved. 
Experiment 03: 

In the third experiment, Dataset 3 was used to train Model Architecture 1, and the 
overall results achieved were an accuracy of 93%, with a precision of 0.94, a recall of 0.93, and 
an F1-score of 0.93, showing a slight decline in numbers as compared to the previous 
experiments. Table 4 presents the class-wise report for this experiment. 
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Figure 7. Experiment 02 training and validation accuracy and loss graph 

Table 4. Class-wise report of the third experiment 

Class Precision Recall F1-Score 

Bronchiectasis 0.97 1.00 0.98 

COPD 1.00 0.88 0.94 

Healthy 0.93 0.89 0.91 

Pneumonia 0.98 1.00 0.93 

The class-wise performance indicates mixed results. Bronchiectasis maintained strong 
results, reflecting consistent identification for this class. However, COPD exhibited an 
imbalance between precision (1.00) and recall (0.88), suggesting that the model failed to detect 
several true COPD samples. The Healthy class and Pneumonia also showed reduced 
performance as compared to previous approaches. The training and validation graphs are 
shown in Figure 8. The training accuracy increased steadily, while the validation accuracy 
plateaued at a lower level. Similarly, the training loss continued to decrease, but the validation 
loss remained relatively high. This indicates a consistent pattern of overfitting, as the gap 
between the training and validation curves appears at regular intervals. 

 
Figure 8. Training and validation accuracy and loss graph - Experiment 03 

Experiment 04: 
After the previous three experiments, we shifted to Model Architecture 2 to analyze 

the behaviour. First, the Dataset variation 3 was used to train the new model arrangement. 
The model achieved an overall accuracy of 94.56%, precision of 94.82%, recall of 94.56%, and 
an F1-score of 94.52%, which shows a slight increase in performance as compared to 
Experiment 3, where the same Dataset 3 was used. The class-wise report is shown in Table 5. 

Table 5. Class-wise report of the fourth experiment. 

Class Precision Recall F1-Score 

Bronchiectasis 0.94 1.00 0.97 

COPD 1.00 0.91 0.95 

Healthy 0.94 0.89 0.91 

Pneumonia 0.91 1.00 0.95 

The class-wise evaluation also reflects consistent behaviour. Bronchiectasis exhibited 
perfect recall but a lower precision (0.94), while COPD and Pneumonia maintained balanced 
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precision–recall relationships. The Healthy class, however, showed lower recall (0.89), 
implying occasional misclassification as abnormal lung sounds. Although the numerical results 
are comparable to those obtained from the complex model, the training and validation curves 
in Figure 9 showed a great improvement with reduced gaps between training and validation 
for both loss and accuracy, indicating a better approach to handle overfitting. 

 
Figure 9. Training and validation accuracy and loss curve - Experiment 04 

Experiment 05: 
After an improved behaviour in experiment 4, Dataset 2 was used to train Model 

Architecture 2. The model got an overall accuracy of 0.91, with 0.91 precision, a recall of 0.91, 
and an F1-score of 0.91, marking a noticeable decline compared to previous experiments. 
These observations, along with results from other approaches using segmented data, suggest 
that segmentation may have led to the loss of critical information necessary for accurate 
classification. Class-wise report also presents similar behaviour in Table 6. 

Table 6. Class-wise report of the fifth experiment. 

Class Precision Recall F1-Score 

Bronchiectasis 0.89 1.00 0.94 

COPD 0.95 0.91 0.93 

Healthy 0.90 0.88 0.89 

Pneumonia 0.91 0.91 0.91 

Figure 10 shows the accuracy and loss curves. A similar pattern of reduced overfitting 
is observed as in experiment 4. This shows that the model is dealing well with overfitting. 
However, at some final epochs, an increasing trend of the gap can be seen for both loss and 
accuracy between training and validation. Overall, in comparison to experiment 2, this model 
has shown great improvement in accuracy and loss graphs. 

 
Figure 10. Experiment 05: training and validation accuracy and loss graph 

Experiment 06: 
For this final experiment, Model Architecture 2 was trained on Dataset 1, the full-

length sequences. This configuration produced the best overall performance among all 
experiments, achieving an accuracy of 98.53%, precision of 98.57%, recall of 98.53%, and an 
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F1-score of 98.52%. The class-wise results shown in Table 7 further highlight the effectiveness 
of this configuration. Bronchiectasis achieved perfect scores across all metrics (1.00 each), 
while COPD, Healthy, and Pneumonia also showed near-perfect numbers, reflecting the 
model’s strong discriminative power across all respiratory sound categories. 

Table 7. Class-wise report of the sixth experiment. 

Class Precision Recall F1-Score 

Bronchiectasis 1.00 1.00 1.00 

COPD 1.00 0.95 0.98 

Healthy 0.97 1.00 0.98 

Pneumonia 0.97 1.00 0.99 

The accuracy and loss graphs as presented in Figure 11 showed consistent results, with 
training and validation accuracy being close and a little difference in loss, showing good 
generalization. This approach not only improved in evaluation parameters but also presented 
a great difference in model loss graphs, indicating that full sequences of audio provided a 
greater chance to learn features from auscultation recordings. 

 
Figure 11. Training and validation accuracy and loss for Experiment 06 

Overall, the six experiments performed on different dataset variations and model 
architectures provided a chance to analyze different behaviours on evaluation parameters 
along with generalization ability from Model loss and accuracy graphs. The results of the sixth 
approach suggest that the model is capturing fine-grained temporal features while avoiding 
overfitting, making it the best approach with an accuracy of 98.53%. 
Discussion: 

The results of all experimental configurations undertaken in this research are 
summarized in Table 8. We explored different dataset variations and model architectures to 
assess their effect on performance. From these results, it is evident that complex model 
architectures tend to yield lower accuracy, while simpler architectures achieve higher accuracy 
and more stable convergence. This suggests that the effectiveness of a model depends not 
only on its architecture but also on the size and quality of the dataset. When the amount of 
training data is limited, a simpler design helps to reduce overfitting and improve generalization. 

Table 8. Summary of Model Performance Across Different Configurations 

Experiments Preprocessing Model 
Architecture 

Accuracy Training/validatio
n loss curves 

Experiment 01 Full audio sequences 5 GRU layers 95.59% Poor convergence 

Experiment 02 10 sec segmentation 5 GRU layers 95.51% Poor convergence 

Experiment 03 20 sec segmentation 5 GRU layers 93% Poor convergence 

Experiment 04 20 sec segmentation 3 GRU layers 94.56% Good convergence 

Experiment 05 10 sec segmentation 3 GRU layers 91% Good convergence 

Experiment 06 Full audio sequences 3 GRU layers 98.53% Good convergence 

Table 9 compares the performance of the model proposed in this research with other 
existing studies using the ICBHI 2017 dataset. The results show that our RNN-based model 
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performs as well as, or even better than, several existing advanced methods. For instance, 
Tariq et al. [9] achieved 97% accuracy with a 2D CNN, while Zhang et al. [12] reported 98.82% 
accuracy using an LSTM-based model. Our model achieved 98.53% accuracy, outperforming 
other deep learning approaches proposed in [10], which achieved an accuracy of 95.67% and 
[11], which achieved an accuracy of 76.39%, while maintaining a simpler structure and 
requiring fewer computational resources. 

Table 9. Comparison of the Proposed RNN-based GRU Model with Other Research 
Works 

Ref# Preprocessing 
Techniques 

Feature 
Extraction 

Model 
Architecture 

Accuracy 
(%) 

[9] Normalization, 
Augmentation (time 
stretch, pitch shift, 
dynamic range 
compression) 

Mel Spectrograms Custom 2D CNN 
(3 Conv + 2 FC 
layers, ReLU + 
Softmax) 

97% 

[10] Undersampling and 
Augmentation for 
minority classes 

Mel Frequency 
Cepstral 
Coefficients 

GRU + Leaky 
ReLU + Dense + 
Dropout + Add 
layer 

95.67% 

[11] Focal Loss to handle 
imbalance 

Spectrograms Hybrid CNN-
LSTM 

76.39% 

[12] Imbalance learn toolbox 
to deal with class 
imbalance 

MFCCs, Chroma, 
Tonal Centroids, 
Mel Spectrogram, 
Spectral Contrast 

LSTM 98.82% 

[13] Normalization, 
Augmentation, 
Denoising Autoencoder 

Mel Spectrograms 1D CNN + 
Autoencoder 

99.9% 

Current 
Research 

Undersampling, 
Augmentation 
(Gaussian noise, time-
shift, time-stretch), 
Padded sequences 

Mel Frequency 
Cepstral 
Coefficients 

Masking Layer, 
GRU, Leaky 
ReLU, Dense, 
Dropout 

98.53% 

All studies compared in Table 9 utilized the ICBHI 2017 dataset [8] and relied on Mel 
Spectrogram-based feature extraction. In contrast, we used MFCCs because they effectively 
capture distinct sound features such as pitch, tone, and rhythm [14]. Additionally, rather than 
adopting complex or hybrid architectures, we implemented a GRU-based RNN model, which 
provided an effective balance between simplicity, efficiency, and accuracy. These findings 
confirm that robust preprocessing, MFCC feature extraction, and a lightweight GRU 
architecture together can achieve strong performance in pulmonary disease classification tasks 
using respiratory sound data. 
Conclusion: In this research, an RNN-based approach was developed to classify auscultation 
sounds into four categories. The proposed model demonstrated an effective balance between 
accuracy and generalization, achieving a notable accuracy of 98.53% using the full-sequence 
audio data variation. Our findings highlight that accuracy alone cannot fully represent model 
performance. Other factors, such as stability and generalization capability, are equally critical 
when working with limited medical datasets. That is why model loss and accuracy curves were 
also analyzed to assess training behaviour and consistency to select an approach that 
performed optimally in both aspects. 
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In the future, we plan to expand this work by collecting auscultation recordings from 
nearby hospitals. This will further evaluate and enhance the model’s generalizability in practical 
clinical settings. Ultimately, with this research, we aim to contribute towards reducing 
diagnostic costs and time, enabling timely interventions, and improving patient care through 
reliable, AI-assisted pulmonary disease detection.  
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