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The Internet of Things (IoT) has witnessed exponential growth and widespread
integration across diverse sectors such as agriculture, logistics, smart cities, and
healthcare. Among various IoT communication paradigms, the Long-Range Wide

Area Network has emerged as a prominent and preferred technology, attributed to its
extended transmission range, energy efficiency, and cost-effectiveness. Nevertheless, the
escalating proliferation of IoT endpoints has amplified the complexity of efficient resource
orchestration, particularly in Spreading Factor (SF) optimization within infrastructures. To
mitigate this challenge, this study introduces a Machine Learning—driven Adaptive Data Rate
(ML-ADR) framework for dynamic SF management. A Long Short-Term Memory (LSTM)
neural network was meticulously trained using a dataset synthesized via ns-3 network
simulations to achieve optimal SF classification. The pre-trained LSTM model was
subsequently deployed on end-device nodes to enable intelligent and adaptive SF allocation
using real-time data during simulation. Experimental evaluations reveal significant
enhancements in packet delivery ratio and notable reductions in energy consumption,
thereby validating the efficacy and scalability of the proposed ML-ADR approach.

Keywords: Internet of Things (IoT), Machine Learning (ML), LSTM, Spreading Factor (SF),

Transmission Power (TP)
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Introduction:

The Internet of Things (IoT) has emerged as a disruptive technological paradigm,
facilitating the seamless convergence of the physical and digital realms through a vast ecosystem of
interconnected intelligent devices. By enabling ubiquitous sensing, communication, and
computation, IoT has revolutionized data-driven automation and decision intelligence across
multiple domains such as smart cities, precision agriculture, industrial automation, and healthcare
[1].

A pivotal technological enabler underpinning this evolution is the Low-Power Wide Area
Network (LPWAN), which offers long-range connectivity, minimal power consumption, and cost-
effective scalability for large-scale IoT deployments. Among the leading LPWAN standards—
Sigfox, Narrowband IoT (NB-1oT), Weightless, and Long-Term Evolution for Machines (LTE-M)
[2][3][4][5]—the Long-Range Wide Area Network (.oRa WAN) has attained notable prominence
due to its open standardization, architectural flexibility, and compatibility with heterogeneous IoT
infrastructures [6].

Table 1 delineates the comparative characteristics of these LPWAN technologies. Sigfox is
renowned for its minimalist architecture and economical deployment, while NB-IoT leverages
existing cellular infrastructure to offer enhanced data throughput and reliability. The Weightless
protocol is distinguished by its scalability and adaptive modulation schemes, and LTE-M excels in
mobility support and broad coverage areas. In contrast, LoRa WAN [7] has emerged as the
preeminent LPWAN standard, combining long-range transmission, energy efficiency, and
operational robustness. This has led to its pervasive adoption across academic research, industrial
innovation, and large-scale IoT ecosystems, solidifying its status as a cornerstone technology in the
modern IoT landscape.

LoRa and LoRa WAN: An Overview:

Long Range (LoRa) constitutes the physical (PHY) layer foundation of the LoRa
WAN protocol stack, leveraging Chirp Spread Spectrum (CSS) modulation to enable resilient,
long-distance wireless communication. CSS encodes information using chirp signals that
continuously sweep across a broad frequency spectrum, thereby enhancing immunity to
interference, multipath fading, and Doppler shifts [8]. This advanced modulation technique
yields an exceptionally high link budget exceeding 150 dB, facilitating transmission distances of
up to 15 km in rural terrains and 2-5 km in dense urban environments [9], as depicted in

Figure 1.
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Figure 1. Shows the network and Gateway communication.

At the Medium Access Control (MAC) layer, LoRa WAN orchestrates network-level
functionalities, including device authentication, adaptive data rate (ADR) optimization, and
bidirectional communication management. Operating within the unlicensed Industrial,
Scientific, and Medical (ISM) frequency bands—notably 868 MHz in Europe and 915 MHz in
North America—ILora WAN supports variable data rates ranging from 0.3 kbps to 50 kbps,
dynamically tuned in response to channel and network conditions [10].
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Table 1. Comparative analysis of prominent IoT communication technologies [11][12]

Technology aspect

Lora WAN

NB-IoT

Weightless

LTE-M

Frequency band

Unlicensed ISM bands (e.g., 868 MHz
EU, 915 MHz US)

Licensed LTE bands
guard-band, standalone)

(in-band,

Sub-1 GHz ISM bands

Licensed LTE bands

Channel bandwidth 125 kHz, 250 kHz, 500 kHz 180 kHz 12.5 kHz 1.4 MHz
Modulation scheme CSS (Chirp Spread Spectrum) QPSK GMSK, QPSK QPSK, 16 QAM
Max. application payload 51 to 242 bytes (region-dependent) ~1,600 bytes Variable, app-defined | ~1,500 bytes
Data throughput 0.3 kbps to 50 kbps ~250 kbps (downlink), ~20 kbps | Up to 100 kbps Up to 1 Mbps
(uplink)
Typical range [km| Urban = 2-5, Rural > 15 Urban = 1-2, Rural <10 Urban = 2 Enhanced coverage up to
10 km
Adaptive rate control Yes Yes Yes Yes
Power profile Extremely low Low Low Moderate
Mobility Supported (handovers can be challenging) | Supported in connected mode Supported Full, seamless handovers
Positioning method Uplink TDoA and RSSI [12][13] OTDOA, E-CID Supported OTDOA, E-CID
Private deployment Yes, fully supported Yes, via network slicing Yes Yes, via network slicing
Two-Way communication | Fully bidirectional Fully bidirectional Fully bidirectional Fully bidirectional
Network model Public or private Public (operator-led) Open standard Public (operator-led)

Available simulators [public]

Yes [14][15][16][17][18][19][20][21][22]

Yes [23]

Not publicly available

Yes
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When benchmarked against competing LPWAN standards such as Sigfox and NB-
IoT, Lora WAN demonstrates superior configurability, scalability, and autonomy, making it an
ideal choice for private network deployments and customized Quality of Service (QoS)
implementations.

Obijectives:
Lora WAN Architecture and Components:

Lora WAN adopts a star-of-stars network topology (Figure 2), comprising three
fundamental architectural entities that collectively ensure efficient data transmission, network
scalability, and reliability.

End Devices (EDs): These are low-power sensor or actuator nodes designed to collect,
process, and transmit environmental or operational data using .LoRa modulation techniques.
End devices are optimized for ultra-low energy consumption, achieving operational lifespans
between 2 and 10 years under standard duty-cycle constraints. Gateways (GWs): Functioning
as intermediary relay points, gateways receive uplink transmissions from multiple end devices
and forward them to the network server via standard IP backhaul connections. Gateways are
capable of multi-channel, multi-spreading-factor (SF) reception and utilize the capture effect to
demodulate partially overlapping signals, thereby enhancing network throughput and efficiency
[24].

Network Server (NS): Serving as the core intelligence hub of the LoRaWAN ecosystem, the
network server handles data deduplication, integrity verification, security management, and
adaptive data rate (ADR) optimization. It also routes validated payloads to application servers,
ensuring end-to-end communication integrity and QoS compliance [1].

Device Classes and Class A Operation:

Lora WAN categorizes end devices into **three operational classes—Class A, Class B,
and Class C—**cach tailored to distinct communication patterns, latency tolerances, and
energy constraints [4]. This hierarchical classification framework empowers device
manufacturers and application designers to optimize performance trade-offs between power
efficiency and communication responsiveness, aligning configurations with specific IoT
application requirements.

Class A devices, representing the fundamental and most energy-efficient mode, operate
under an asynchronous, ALOHA-based transmission scheme. Downlink communication is
permitted only during two short receive windows immediately following each uplink
transmission. This battery-optimized design significantly reduces energy expenditure, making
Class A highly suitable for low-duty-cycle applications, such as environmental monitoring or
smart metering, where data is transmitted infrequently and moderate latency is acceptable.

Class B devices enhance this architecture by integrating scheduled receive windows,
enabled through periodic beacon transmissions from the gateway. These beacons synchronize
end devices with the network, facilitating deterministic downlink communication slots.
Consequently, Class B is ideal for scenarios requiring timely and predictable data delivery, such
as firmware updates or configuration synchronization, albeit at the cost of slightly increased
power consumption compared to Class A.

Class C devices constitute the most responsive yet power-intensive configuration,
maintaining near-continuous receive capability except during active transmission intervals.
This mode is typically deployed in mains-powered systems or mission-critical applications
demanding real-time bidirectional communication, such as industrial process control, street
lighting management, or smart grid automation.

Overall, the Lora WAN device class hierarchy offers a flexible design continuum,
enabling developers to strategically balance energy efficiency, responsiveness, and reliability
according to the functional priorities of each deployment scenario.
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Problem Statement:

Although Adaptive Data Rate (ADR) and Baseline Adaptive Data Rate (BADR)
mechanisms offer foundational strategies for configuring Spreading Factor (SF) and
Transmission Power (TP) in Lora WAN networks, they exhibit significant limitations in
responsiveness and adaptability. Specifically, ADR tends to adjust parameters sluggishly under
dynamic network conditions, whereas BADR lacks adaptability altogether, leading to
suboptimal resource utilization and degraded network performance.

This underscores a critical research gap—the absence of an intelligent, context-aware
resource allocation mechanism capable of rapidly adapting to fluctuating wireless
environments. To address this challenge, we propose a Machine Learning—based Adaptive
Data Rate (ML-ADR) framework, wherein a trained predictive model dynamically determines
the optimal spreading factor for each end device using real-time contextual and historical data
features.

By exploiting data-driven insights and temporal network behavior patterns, the ML-
ADR approach aims to minimize packet loss, enhance packet success ratio (PSR), and
optimize energy efficiency, thereby effectively mitigating the inherent shortcomings of
conventional ADR and BADR schemes.

Contribution of the Paper:
The principal contributions of this research are summarized as follows:
Development of an Intelligent SF Allocation Framework:

We propose a deep neural network—based model capable of learning optimal
Spreading Factor (SF) allocation strategies by capturing the intrinsic relationship between
network dynamics, device distribution, and communication requirements. This design
effectively addresses the long-standing challenge of adaptive SF management in Lora WAN
networks.

Simulation-Based Model Training and Integration:

The deep learning model is trained using a comprehensive dataset generated through
the ns-3 simulation environment, incorporating parameters such as radio propagation
characteristics, end-device locations, gateway proximity, and corresponding successful SF
configurations. Once trained, the pre-trained model is deployed at the Network Server (NS) to
perform real-time SF optimization for end devices during network operation.

Performance Enhancement via ML-Driven Adaptation:

Through simulation-based evaluation in ns-3, the proposed Machine Learning—based
Adaptive Data Rate (ML-ADR) mechanism dynamically assigns the most efficient SF values to
end devices. This approach demonstrably improves packet delivery ratio (PDR) and reduces
energy consumption, thereby enhancing overall network efficiency and sustainability.
Structure of the Paper:

Section 2 provides a comprehensive review of existing Al-based approaches for
resource management in Lora WAN. Section 3 details the dataset collection process, identifies
the essential features, and outlines the most suitable ML techniques for resource allocation
based on these features. Section 4 describes the functioning of the proposed ML-ADR model.
Section 5 offers an in-depth discussion of the experimental setup and offline results, while
Section 6 presents the ns-3 simulation results, where the ML algorithm is applied to simulated
data. Finally, Section 8 concludes the study with key findings and insights.

Literature Review:

Recent research has extensively explored machine learning (ML) paradigms to enhance
Lora WAN resource allocation, particularly in spreading factor (SF) assighment, transmission
power (IP) control, and device classification. These studies can be broadly grouped into three
domains — reinforcement learning (RL) for dynamic SF optimization, supervised and deep
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learning for intelligent decision-making, and hybrid frameworks combining both to exploit
their complementary strengths.

Reinforcement learning techniques have demonstrated notable efficiency in adaptive
resource allocation. [25] applied a multi-armed bandit (MAB) model, improving packet
delivery ratio (PDR) and energy efficiency in simulated single-gateway setups with 100 devices.
Similarly, proposed a score table-based RL algorithm, achieving 24-27% energy reduction
versus traditional ADR schemes, with minimal computational overhead.

[26] introduced a dual-layer ML framework, integrating centralized supervised ML for
TP control with a decentralized EXP4-based RL algorithm for SF allocation. The approach
significantly enhanced network throughput and energy efficiency, especially in congested
environments. However, it required continuous gateway feedback during training, slightly
increasing channel overhead.

Supervised learning has proven effective for device-type classification and signal
pattern recognition. A Support Vector Machine (SVM) model accurately distinguished
between mobile and static nodes using minimal training data, though it lacked adaptive rate
adjustment. [19] leveraged a Gated Recurrent Unit (GRU) network, achieving 96%
classification accuracy and 98% PDR in medium-density networks using ns-3 simulations.

[15] implemented Fully Connected (FCNN) and Convolutional Neural Networks
(CNN) for smart SF assignment and collision detection, outperforming traditional ML
methods in prediction accuracy and energy optimization. However, CNN accuracy declined
with increasing node density due to limited spatial correlation.

Furthermore, [13] proposed a proactive ADR mechanism using K-Nearest Neighbors (KINN)
for SNR forecasting and dynamic parameter adaptation in mobile IoT nodes. Their model
reduced Bit Error Rate (BER) and energy consumption, although a slight overhead occurred
with larger SNR buffers.

Hybrid and Emerging Approaches:

Hybrid frameworks combining multiple ML paradigms have emerged as robust and
scalable solutions. [11] merged RI-based SF allocation with ML-driven TP optimization,
achieving 17% lower estimation error by fusing Lora WAN and environmental sensing data.
The surveyed literature identifies three persistent challenges motivating our proposed
ML-ADR model:

Reinforcement learning (RL)-based methods demonstrate strong adaptability in
dynamic environments; however, they often face challenges related to slow feedback loops and
increased latency, which can hinder real-time decision-making. In contrast, supervised learning
models deliver high predictive accuracy due to their reliance on labeled data but generally lack
the responsiveness required for real-time network adaptation. To balance these limitations,
hybrid solutions have been proposed, combining the strengths of RL and supervised learning
approaches. While these hybrid models effectively manage mobility and dynamic conditions,
they tend to introduce additional computational complexity, making them less suitable for
resource-constrained IoT deployments.

Data Generation and Preprocessing Framework:

The proposed framework efficiently processes Lora WAN transmission data using a
20-step sequential windowing method, where each window captures essential features for
optimal Spreading Factor (SF) selection derived from multi-SF transmissions.

Transmission Protocol:

Each End Device (ED) transmits identical packets simultaneously across six SFs (SF7—
SF12) in confirmed mode, requiring ACKs from the Gateway (GW). For every transmission,
the GW records success/failure status and signal quality metrics, while the ED logs ACK
receptions as binary values (1 = received, 0 = not received). This dual logging ensures
comprehensive data capture for all SFs during each transmission cycle.
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Optimal SF Selection and Feature Extraction:

The optimal SF (SF*) is determined as the smallest SF that successfully receives an ACK; if
none are received, SF12 is chosen by default. Each optimal transmission is linked with a
feature vector (f) containing parameters such as:

f= [x, y,d,SNR,SNRreq,SNRmargin,dnorm,Prx] f = |[x, y, d, SNR, SNR_{req},
SNR_ {margin}, d_{norm}, P_{rx}] f=[x,y,d, SNR,SNRreq,SNRmargin,dnorm,Prx]

Where spatial coordinates (x, ), distance (d), signal quality metrics (SNR, SNRreq,
SNRmargin), normalized distance (dnorm), and received power (Prx) collectively describe the
transmission environment.

Temporal Sequence Construction:

To prepare input for ML analysis, a sliding window technique constructs sequential
input matrices (Xi) comprising feature vectors from 20 consecutive transmissions:

The target label (yi) for each sequence corresponds to the optimal SF (SF*_i) of the
most recent transmission, enabling the model to learn temporal dependencies in SF
adaptation.

The time step i within each window represents the most recent transmission in the
sequence. Accordingly, every input matrix (Xi) consists of 20 temporal steps (rows) and 8
features per step (columns), yielding a total of 160 feature values per sample.

Simulations were performed using 500 End Devices (EDs) over 24 hours, where each
device transmitted six confirmed uplink messages per hour, generating approximately 72,000
raw transmission events. After applying the 20-step sliding window, the final preprocessed
dataset comprised 71,981 sequences, each containing 160 features and an associated optimal
SF label, as summatized in Table 3.

Framework Characteristics:

The proposed data generation and preprocessing framework exhibits several notable
properties relevant to Lora WAN channel modeling. By employing 20-step temporal windows,
the framework inherently captures time-dependent variations in channel conditions and signal
quality. The feature vector (f) provides a comprehensive, multidimensional depiction of each
communication instance, integrating spatial parameters, signal strength, and quality metrics.

Furthermore, defining the target label (SF*) based on empirically successful
transmissions establishes a reliable ground truth representing realistic link performance under
observed conditions. The multi-SF transmission protocol enhances data collection efficiency,
as each transmission simultaneously produces detailed reception and signal-quality data across
all operational SF levels.

Proposed Methodology:

This study introduced a machine learning framework that utilized Long Short-Term
Memory (LSTM) networks to optimize Lora WAN communication parameters, with a
particular emphasis on dynamic Spreading Factor (SF) selection. The adoption of LSTM was
motivated by its proven ability to capture temporal dependencies in sequential data—an
essential requirement for modeling time-varying LoRa signal behaviors. Unlike traditional ML
models such as Random Forests or Support Vector Machines, which processed samples
independently, LSTMs effectively modeled temporal correlations between successive
transmissions. This capability was particularly valuable in Lora WAN environments
characterized by fluctuating channel conditions, interference variations, and node mobility, all
of which influenced optimal SF decisions.

The proposed approach addressed three primary challenges in Lora WAN
optimization: (1) the non-stationary nature of wireless IoT channels, (2) the trade-off between
data rate and communication range in SF configuration, and (3) the need for energy-efficient
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communication mechanisms. The LSTM-based temporal model captured these dynamics
through a hierarchical learning architecture that processed sequences of transmission events
while retaining long-term contextual memory. This approach contrasts with conventional
methods that relied on static SF allocation or instantaneous channel estimation without
temporal awareness.

The implemented LSTM architecture was designed to learn and model temporal
dependencies across sequential Lora WAN transmission data. The network input was
represented as a matrix where TTT denoted the number of time steps and DDD the number
of features per step. Based on empirical analysis, T=20T = 20T=20 was chosen to incorporate
sufficient temporal history from the last twenty uplink transmissions—balancing
representational depth and computational efficiency. Each time step consisted of eight
features, including received power (Prx), signal-to-noise ratio (SNR), spatial coordinates (x, y),
distance (d), and SNR margin, as defined earlier in Equation (2).

The internal mechanism of the LSTM cell follows the standard gated architecture. At
each time step # the input vector (xz), previous hidden state (/;_;), and previous cell state
(Ct-1) are combined to compute four key components:

The Long Short-Term Memory (LSTM) network operates through four key
components that manage information flow within the model. The forget gate (f;) determines
which portions of past information should be retained or discarded from the cell state,
allowing the model to focus on relevant patterns. The input gate (i) controls the extent to
which new information is incorporated into the memory, ensuring that only significant updates
are added. The candidate cell state (C;) proposes potential modifications to the existing
memory content, contributing to the learning of new temporal features. Finally, the output
gate (op) regulates how much of the updated memory is exposed to the next layer, balancing
information retention with prediction output. Together, these gates enable LSTM networks to
effectively model long-term dependencies in sequential data.

Here, o and tanh represent the sigmoid and hyperbolic tangent activation functions,
ensuring nonlinearity and numerical stability. This gating mechanism allows the network to
retain long-term dependencies, filter irrelevant information, and adapt to dynamic signal
variations over time, as illustrated in Figure 4.

LSTM Training Mechanism:

The proposed model utilizes a stacked LSTM architecture comprising two layers, each
containing 128 hidden units. This configuration was selected for its strong memory capability
in modeling long-term temporal dependencies within time-series data—an essential feature for
identifying evolving transmission patterns in dynamic wireless channels. The first LSTM layer
processes the raw sequential input, while the second layer captures higher-level temporal
abstractions from the first layer’s output. To ensure continuity across training batches, the
network employs stateful processing, where the final hidden and cell states from one batch are
propagated as the initial states for the subsequent batch.

Following the LSTM layers, the network integrates fully connected (dense) layers
activated by the Rectified Linear Unit (ReLU) function (max (0, x)). These layers convert
temporal dependencies learned by the LSTMs into spatial feature representations suitable for
final classification. The RelLU activation introduces nonlinearity while mitigating vanishing
gradient problems often associated with sigmoid or tanh functions in deeper architectures.

To address the risk of overfitting—a common challenge in Lora WAN datasets of
limited size—the model employs two complementary regularization strategies:

To enhance the generalization capability of the model and prevent overfitting, two
regularization techniques were employed. Dropout regularization was applied with a rate of
p=0.2p = 0.2p=0.2, which randomly deactivated 20% of the neurons during training. This
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mechanism compelled the network to develop more generalized and robust feature
representations, reducing its dependence on specific neurons. Additionally, L2 weight
regularization was incorporated into the loss function as a penalty term to discourage
excessively large weight magnitudes. This approach helped prevent the model from over-
specializing to the training data, thereby improving its overall stability and performance on
unseen samples. These design choices collectively enhance the generalization capability and
stability of the model during both training and inference phases.

The final layer uses a SoftMax activation function to generate a probability distribution
over the six potential Spreading Factors (SF7—SF12). This enables adaptive decision-making,
allowing the model to automatically select the SF with the highest probability or to consider
additional constraints such as energy or latency requirements. The SoftMax function
normalizes the output as follows:

Where yiy_iyi denotes the one-hot encoded label. The Adam optimizer is used with an
initial learning rate of 10—310" {-3}10 3 and exponential decay rates $1=0.9\beta_1 =
0.981=0.9, 2=0.999\beta_2 = 0.99982=0.999. Early stopping with a patience of 10 epochs is
applied to prevent overfitting while ensuring convergence.

The trained system processes Lora WAN transmission sequences through this neural
pipeline, learning to predict optimal SFs based on prior channel and transmission patterns.
This data-driven, adaptive method significantly outperforms static allocation strategies while
remaining computationally efficient for real-world deployment on network servers.
Performance Evaluation of LSTM in Offline Mode:

For training and evaluation, the dataset consisting of 71,981 sequences was divided
using a hold-out strategy to maintain temporal independence and avoid data leakage.
Approximately 80% (57,585 samples) of the data were allocated for training, while 20%
(14,396 samples) were reserved for testing. Furthermore, from the training set, 10% (5,759
samples) was set aside as a validation subset, which was used for hyperparameter tuning and
implementing early stopping to enhance the model’s generalization and prevent overfitting.
Due to the sequential nature of the data, cross-validation was not applied, as retraining LSTM
models on large time-series datasets is computationally expensive. Instead, validation
monitoring with early stopping (patience = 10) was adopted—consistent with best practices
for time-series modeling.

Table 5 compares several machine learning models for Lora WAN SF classification,
including Random Forest, Gradient Boosting, SVM, KNN, XGBoost, MLP, and the proposed
LSTM. Models were assessed using Accuracy, Precision, Recall, F1 Score, and computational
measures such as Training Time (seconds) and Model Size (MB).

The results demonstrated that the LSTM model achieved the highest classification
accuracy of 0.7290, outperforming all other models. It was followed by the MLP model
(0.7193), SVM (0.7123), and Gradient Boosting (0.7103). The Random Forest (0.6991) and
XGBoost (0.6891) models showed moderate performance, while the KINN model exhibited
the lowest accuracy (0.6787) among the evaluated approaches. The recall values were largely
consistent with accuracy trends, whereas precision scores were generally lower—approximately
0.50-0.51 for LSTM, MLP, and SVM, and around 0.59 for KNN, XGBoost, and Random
Forest. These findings confirm the superior capability of the LSTM architecture in capturing
temporal dependencies within sequential Lora WAN transmission data. F1 scores showed
KNN and XGBoost performing slightly better due to their precision-recall balance, despite
lower overall accuracy. In terms of computational efficiency, Gradient Boosting required the
longest training time (8,254.48 s), while MLP (20.31 s) and KNN (13.55 s) were the fastest.
Regarding storage, Random Forest was the largest (67.76 MB), while MLP (0.21 MB), LSTM
(0.84 MB), and Gradient Boosting (0.93 MB) were notably lightweight.

Lora WAN Network Performance Evaluation — Online Mode:
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In the ns-3 online simulation, each device maintains a circular buffer that stores its
most recent 20 transmission features in real time. After every transmission, this buffer is
updated and fed into the model to determine the next Spreading Factor (SF) decision
dynamically.

0.74

0729
073

072

Accuracy

ol & & o o 2
& C & + G &

Figure 2. Visualizes the classification accuracies, clearly showing the LSTM model’s superior
performance, followed by MLP, SVM, and Gradient Boosting. The bar chart confirms the
tabulated results, offering a clear comparative insight into model effectiveness and efficiency.

Simulation Setup and Application:

This study evaluates end devices operating in confirmed data mode within a single-
gateway Lora WAN network spanning a 5 km radius. To emulate industrial asset monitoring
scenarios, devices follow a two-dimensional random mobility pattern, changing direction after
traveling 200 meters at speeds between 1.0-2.0 m/s, consistent with standard IoT mobility
models. Fach device transmits six confirmed uplink messages per hour over a 24-hour
operational period. To ensure statistical robustness, ten independent simulation runs are
performed, and results are presented as average performance metrics.

The experimental setup encompasses both static and mobile scenarios. In the static
case, between 100 and 1,000 end devices are uniformly distributed across the network’s
coverage area. In mobile scenarios, the aforementioned random mobility model is applied to
represent asset tracking applications.

All simulation configurations employ parameters specified in Table 6, which comply
with Lora WAN regional standards for European frequency bands.

Implications of Online Mode Performance:

The online evaluation results, illustrated in Figures 6-9, highlight the operational
benefits of the proposed ML.-ADR framework across multiple performance metrics. In mobile
deployment scenarios (Figure 6), ML-ADR achieves a 22% higher Packet Delivery Ratio
(PDR) than the traditional TF baseline at network densities of 1,000 devices. This
improvement arises primarily from two mechanisms: dynamic Spreading Factor (SF)
adaptation based on real-time channel variations and intelligent retransmission scheduling,
which minimizes acknowledgment collisions.

In static deployments (Figure 7), similar trends are observed—MIL-ADR consistently
outperforms conventional algorithms across all tested network scales. The energy efficiency
results (Figures 8-9) further demonstrate ML-ADR’s practical advantage, showing a 30%
reduction in median energy consumption compared to standard ADR implementations while
maintaining superior reliability. This dual gain directly addresses two key LoRaWAN
challenges: limited battery capacity of end devices and the need for reliable communication in
dense network conditions.

Limitations and Future Directions:
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Despite its promising results, the proposed ML-ADR framework has four notable limitations:

Offline Model Training:

The model’s dependence on offline training introduces latency when adapting to
new environments or network conditions. While efficient for deployment, it may yield
suboptimal performance during sudden environmental shifts (e.g., weather changes or
unmodeled mobility). Rapidly evolving channel dynamics—such as those caused by vehicular
movement in urban areas—may require retraining, delaying adaptation in real-world use.
Simplified Channel Assumptions:

The evaluation assumes ideal channel state information, which doesn’t fully
capture real-world conditions involving interference and multipath fading. Although ns-3
models-controlled propagation losses, actual deployments face unpredictable interference from
WiFi, LPWAN:S, or industrial systems. These effects, alongside hardware imperfections (e.g.,
antenna variations or clock drifts), could reduce ML-ADR’s real-world performance. Future
work will involve hardware-based validation using SX1276 LoRa nodes and large-scale
deployments via The Things Network, incorporating real interference data for retraining.
Single-Gateway Limitation:

The current single-gateway model simplifies evaluation but overlooks multi-cell
network complexities such as handover delays, inter-gateway interference, and load balancing
challenges. In multi-gateway scenarios, overlapping coverage can increase packet loss,
particularly under mobility. Future extensions should explore multi-gateway topologies to
assess ML-ADR’s scalability in distributed environments.

Scalability Constraints:

Simulations are limited to 1,000 devices, whereas large-scale IoT networks may involve
tens of thousands. The LSTM’s sequence-based computation can impose heavy server-side
loads in dense networks, leading to inference delays. Prior studies note similar scalability
bottlenecks in ML-based Lora WAN resource allocation, where performance degrades beyond
5,000 devices due to model complexity and contention. Moreover, ns-3 data generation
becomes computationally intensive at higher scales.

Future Research Directions:

Overcoming these challenges, future work focused on several key directions. First,
federated learning was proposed to enable distributed model updates across gateways without
requiring centralized retraining, thereby enhancing scalability and adaptability. Second,
Reinforcement Learning (RL) would be employed for real-time channel estimation and
interference mitigation to improve robustness under dynamic network conditions. Third, the
research aimed to extend multi-gateway and multi-hop simulations to better analyze handover
mechanisms and distributed coordination in large-scale Lora WAN environments. Finally,
hybrid architectures combining LSTM with lightweight ML models such as TinyML were
considered to support scalable edge inference and online learning, allowing the system to
dynamically adapt to evolving network densities.

Algorithm for Parsing and Summarization of Lora WAN

Begin

Built table T with rows n

Define

dest-ip=1, sign-ip=2; i=1;

Aler-dscrp-strct = T (1)(signature-name, signature-class-id, priority, score-ip, ip-
protocol, source-port, destination-port)

While (Length T'1 and I < length T)

For j=i+1 to Length T do

If (T'{d, alter-dscrp-ip) = T(j, alert-descrp-strct))

Add the I record in the table summarized T
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Delete i and j records from Table T, set i=1
Else

Merge i and j records of table T and add the resultant merge record in table T. Set i=1;
End if

End if

End for

i=it+1

End while

Add table T to table summarized T

End IF

Return summarized-T

Algorithm: The analysis algorithm for Model C

Begin

Input: test audit data during the current login session

Use CIDs to compute SaaS by aligning against in same machine
If SAS < @ sas Then

For each cloud node (C _node) containing user I, do

Use CIDs to compute SaS, for the ith user in C _ node

If SaS > Osas

Not-Masg-flag = True

Exit the loop

End if

End for

End if

If Not-Masq-flag = flag or HIDs instance is fired, then
Run step 2 of model A for each user CIDS instance firing
End if

Conclusions:

This study tackled the challenge of efficient Spreading Factor allocation in LoRaWAN

networks, crucial for the scalability of IoT deployments. We introduced a Machine Learning-
based Adaptive Data Rate (ML-ADR) mechanism leveraging LSTM models trained on ns-3
simulation data to intelligently predict and assign optimal SFs.

Comprehensive evaluations demonstrated that ML-ADR significantly improves

network performance—achieving higher packet delivery ratios and lower energy consumption
compared to existing methods like ADR, BADR, and TF baselines. These gains hold across
both static and mobile scenarios, emphasizing the method’s robustness and adaptability.
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