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he Internet of Things (IoT) has witnessed exponential growth and widespread 
integration across diverse sectors such as agriculture, logistics, smart cities, and 
healthcare. Among various IoT communication paradigms, the Long-Range Wide 

Area Network has emerged as a prominent and preferred technology, attributed to its 
extended transmission range, energy efficiency, and cost-effectiveness. Nevertheless, the 
escalating proliferation of IoT endpoints has amplified the complexity of efficient resource 
orchestration, particularly in Spreading Factor (SF) optimization within infrastructures. To 
mitigate this challenge, this study introduces a Machine Learning–driven Adaptive Data Rate 
(ML-ADR) framework for dynamic SF management. A Long Short-Term Memory (LSTM) 
neural network was meticulously trained using a dataset synthesized via ns-3 network 
simulations to achieve optimal SF classification. The pre-trained LSTM model was 
subsequently deployed on end-device nodes to enable intelligent and adaptive SF allocation 
using real-time data during simulation. Experimental evaluations reveal significant 
enhancements in packet delivery ratio and notable reductions in energy consumption, 
thereby validating the efficacy and scalability of the proposed ML-ADR approach. 
Keywords: Internet of Things (IoT), Machine Learning (ML), LSTM, Spreading Factor (SF), 
Transmission Power (TP) 
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Introduction: 
The Internet of Things (IoT) has emerged as a disruptive technological paradigm, 

facilitating the seamless convergence of the physical and digital realms through a vast ecosystem of 
interconnected intelligent devices. By enabling ubiquitous sensing, communication, and 
computation, IoT has revolutionized data-driven automation and decision intelligence across 
multiple domains such as smart cities, precision agriculture, industrial automation, and healthcare 
[1]. 

A pivotal technological enabler underpinning this evolution is the Low-Power Wide Area 
Network (LPWAN), which offers long-range connectivity, minimal power consumption, and cost-
effective scalability for large-scale IoT deployments. Among the leading LPWAN standards—
Sigfox, Narrowband IoT (NB-IoT), Weightless, and Long-Term Evolution for Machines (LTE-M) 
[2][3][4][5]—the Long-Range Wide Area Network (LoRa WAN) has attained notable prominence 
due to its open standardization, architectural flexibility, and compatibility with heterogeneous IoT 
infrastructures [6]. 

Table 1 delineates the comparative characteristics of these LPWAN technologies. Sigfox is 
renowned for its minimalist architecture and economical deployment, while NB-IoT leverages 
existing cellular infrastructure to offer enhanced data throughput and reliability. The Weightless 
protocol is distinguished by its scalability and adaptive modulation schemes, and LTE-M excels in 
mobility support and broad coverage areas. In contrast, LoRa WAN [7] has emerged as the 
preeminent LPWAN standard, combining long-range transmission, energy efficiency, and 
operational robustness. This has led to its pervasive adoption across academic research, industrial 
innovation, and large-scale IoT ecosystems, solidifying its status as a cornerstone technology in the 
modern IoT landscape. 
LoRa and LoRa WAN: An Overview: 

Long Range (LoRa) constitutes the physical (PHY) layer foundation of the LoRa 
WAN protocol stack, leveraging Chirp Spread Spectrum (CSS) modulation to enable resilient, 
long-distance wireless communication. CSS encodes information using chirp signals that 
continuously sweep across a broad frequency spectrum, thereby enhancing immunity to 
interference, multipath fading, and Doppler shifts [8]. This advanced modulation technique 
yields an exceptionally high link budget exceeding 150 dB, facilitating transmission distances of 
up to 15 km in rural terrains and 2–5 km in dense urban environments [9], as depicted in 
Figure 1. 

 
Figure 1. Shows the network and Gateway communication. 

At the Medium Access Control (MAC) layer, LoRa WAN orchestrates network-level 
functionalities, including device authentication, adaptive data rate (ADR) optimization, and 
bidirectional communication management. Operating within the unlicensed Industrial, 
Scientific, and Medical (ISM) frequency bands—notably 868 MHz in Europe and 915 MHz in 
North America—Lora WAN supports variable data rates ranging from 0.3 kbps to 50 kbps, 
dynamically tuned in response to channel and network conditions [10]. 



                              International Journal of Innovations in Science & Technology 

November 2025|Vol 07 | Issue 04                                                      Page |2648 

Table 1. Comparative analysis of prominent IoT communication technologies [11][12] 
Technology aspect Lora WAN NB-IoT Weightless LTE-M 

Frequency band Unlicensed ISM bands (e.g., 868 MHz 
EU, 915 MHz US) 

Licensed LTE bands (in-band, 
guard-band, standalone) 

Sub-1 GHz ISM bands Licensed LTE bands 

Channel bandwidth 125 kHz, 250 kHz, 500 kHz 180 kHz 12.5 kHz 1.4 MHz 
Modulation scheme CSS (Chirp Spread Spectrum) QPSK GMSK, QPSK QPSK, 16 QAM 
Max. application payload 51 to 242 bytes (region-dependent) ∼1,600 bytes Variable, app-defined ∼1,500 bytes 
Data throughput 0.3 kbps to 50 kbps ∼250 kbps (downlink), ∼20 kbps 

(uplink) 
Up to 100 kbps Up to 1 Mbps 

Typical range [km] Urban ≈ 2–5, Rural > 15 Urban ≈ 1–2, Rural ≤ 10 Urban ≈ 2 Enhanced coverage up to 
10 km 

Adaptive rate control Yes Yes Yes Yes 
Power profile Extremely low Low Low Moderate 
Mobility Supported (handovers can be challenging) Supported in connected mode Supported Full, seamless handovers 
Positioning method Uplink TDoA and RSSI [12][13] OTDOA, E-CID Supported OTDOA, E-CID 
Private deployment Yes, fully supported Yes, via network slicing Yes Yes, via network slicing 
Two-Way communication Fully bidirectional Fully bidirectional Fully bidirectional Fully bidirectional 
Network model Public or private Public (operator-led) Open standard Public (operator-led) 
Available simulators [public] Yes [14][15][16][17][18][19][20][21][22] Yes [23] Not publicly available Yes 
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When benchmarked against competing LPWAN standards such as Sigfox and NB-
IoT, Lora WAN demonstrates superior configurability, scalability, and autonomy, making it an 
ideal choice for private network deployments and customized Quality of Service (QoS) 
implementations. 
Objectives: 
Lora WAN Architecture and Components: 

Lora WAN adopts a star-of-stars network topology (Figure 2), comprising three 
fundamental architectural entities that collectively ensure efficient data transmission, network 
scalability, and reliability. 
End Devices (EDs): These are low-power sensor or actuator nodes designed to collect, 
process, and transmit environmental or operational data using LoRa modulation techniques. 
End devices are optimized for ultra-low energy consumption, achieving operational lifespans 
between 2 and 10 years under standard duty-cycle constraints. Gateways (GWs): Functioning 
as intermediary relay points, gateways receive uplink transmissions from multiple end devices 
and forward them to the network server via standard IP backhaul connections. Gateways are 
capable of multi-channel, multi-spreading-factor (SF) reception and utilize the capture effect to 
demodulate partially overlapping signals, thereby enhancing network throughput and efficiency 
[24]. 
Network Server (NS): Serving as the core intelligence hub of the LoRaWAN ecosystem, the 
network server handles data deduplication, integrity verification, security management, and 
adaptive data rate (ADR) optimization. It also routes validated payloads to application servers, 
ensuring end-to-end communication integrity and QoS compliance [1]. 
Device Classes and Class A Operation: 

Lora WAN categorizes end devices into **three operational classes—Class A, Class B, 
and Class C—**each tailored to distinct communication patterns, latency tolerances, and 
energy constraints [4]. This hierarchical classification framework empowers device 
manufacturers and application designers to optimize performance trade-offs between power 
efficiency and communication responsiveness, aligning configurations with specific IoT 
application requirements. 

Class A devices, representing the fundamental and most energy-efficient mode, operate 
under an asynchronous, ALOHA-based transmission scheme. Downlink communication is 
permitted only during two short receive windows immediately following each uplink 
transmission. This battery-optimized design significantly reduces energy expenditure, making 
Class A highly suitable for low-duty-cycle applications, such as environmental monitoring or 
smart metering, where data is transmitted infrequently and moderate latency is acceptable. 

Class B devices enhance this architecture by integrating scheduled receive windows, 
enabled through periodic beacon transmissions from the gateway. These beacons synchronize 
end devices with the network, facilitating deterministic downlink communication slots. 
Consequently, Class B is ideal for scenarios requiring timely and predictable data delivery, such 
as firmware updates or configuration synchronization, albeit at the cost of slightly increased 
power consumption compared to Class A. 

Class C devices constitute the most responsive yet power-intensive configuration, 
maintaining near-continuous receive capability except during active transmission intervals. 
This mode is typically deployed in mains-powered systems or mission-critical applications 
demanding real-time bidirectional communication, such as industrial process control, street 
lighting management, or smart grid automation. 

Overall, the Lora WAN device class hierarchy offers a flexible design continuum, 
enabling developers to strategically balance energy efficiency, responsiveness, and reliability 
according to the functional priorities of each deployment scenario. 
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Problem Statement: 
Although Adaptive Data Rate (ADR) and Baseline Adaptive Data Rate (BADR) 

mechanisms offer foundational strategies for configuring Spreading Factor (SF) and 
Transmission Power (TP) in Lora WAN networks, they exhibit significant limitations in 
responsiveness and adaptability. Specifically, ADR tends to adjust parameters sluggishly under 
dynamic network conditions, whereas BADR lacks adaptability altogether, leading to 
suboptimal resource utilization and degraded network performance. 

This underscores a critical research gap—the absence of an intelligent, context-aware 
resource allocation mechanism capable of rapidly adapting to fluctuating wireless 
environments. To address this challenge, we propose a Machine Learning–based Adaptive 
Data Rate (ML-ADR) framework, wherein a trained predictive model dynamically determines 
the optimal spreading factor for each end device using real-time contextual and historical data 
features. 

By exploiting data-driven insights and temporal network behavior patterns, the ML-
ADR approach aims to minimize packet loss, enhance packet success ratio (PSR), and 
optimize energy efficiency, thereby effectively mitigating the inherent shortcomings of 
conventional ADR and BADR schemes. 
Contribution of the Paper: 
The principal contributions of this research are summarized as follows: 
Development of an Intelligent SF Allocation Framework: 

We propose a deep neural network–based model capable of learning optimal 
Spreading Factor (SF) allocation strategies by capturing the intrinsic relationship between 
network dynamics, device distribution, and communication requirements. This design 
effectively addresses the long-standing challenge of adaptive SF management in Lora WAN 
networks. 
Simulation-Based Model Training and Integration: 

The deep learning model is trained using a comprehensive dataset generated through 
the ns-3 simulation environment, incorporating parameters such as radio propagation 
characteristics, end-device locations, gateway proximity, and corresponding successful SF 
configurations. Once trained, the pre-trained model is deployed at the Network Server (NS) to 
perform real-time SF optimization for end devices during network operation. 
Performance Enhancement via ML-Driven Adaptation: 

Through simulation-based evaluation in ns-3, the proposed Machine Learning–based 
Adaptive Data Rate (ML-ADR) mechanism dynamically assigns the most efficient SF values to 
end devices. This approach demonstrably improves packet delivery ratio (PDR) and reduces 
energy consumption, thereby enhancing overall network efficiency and sustainability. 
Structure of the Paper: 

Section 2 provides a comprehensive review of existing AI-based approaches for 
resource management in Lora WAN. Section 3 details the dataset collection process, identifies 
the essential features, and outlines the most suitable ML techniques for resource allocation 
based on these features. Section 4 describes the functioning of the proposed ML-ADR model. 
Section 5 offers an in-depth discussion of the experimental setup and offline results, while 
Section 6 presents the ns-3 simulation results, where the ML algorithm is applied to simulated 
data. Finally, Section 8 concludes the study with key findings and insights. 
Literature Review: 

Recent research has extensively explored machine learning (ML) paradigms to enhance 
Lora WAN resource allocation, particularly in spreading factor (SF) assignment, transmission 
power (TP) control, and device classification. These studies can be broadly grouped into three 
domains — reinforcement learning (RL) for dynamic SF optimization, supervised and deep 
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learning for intelligent decision-making, and hybrid frameworks combining both to exploit 
their complementary strengths. 

Reinforcement learning techniques have demonstrated notable efficiency in adaptive 
resource allocation. [25] applied a multi-armed bandit (MAB) model, improving packet 
delivery ratio (PDR) and energy efficiency in simulated single-gateway setups with 100 devices. 
Similarly, proposed a score table-based RL algorithm, achieving 24–27% energy reduction 
versus traditional ADR schemes, with minimal computational overhead. 

[26] introduced a dual-layer ML framework, integrating centralized supervised ML for 
TP control with a decentralized EXP4-based RL algorithm for SF allocation. The approach 
significantly enhanced network throughput and energy efficiency, especially in congested 
environments. However, it required continuous gateway feedback during training, slightly 
increasing channel overhead. 

Supervised learning has proven effective for device-type classification and signal 
pattern recognition. A Support Vector Machine (SVM) model accurately distinguished 
between mobile and static nodes using minimal training data, though it lacked adaptive rate 
adjustment. [19] leveraged a Gated Recurrent Unit (GRU) network, achieving 96% 
classification accuracy and 98% PDR in medium-density networks using ns-3 simulations. 

[15] implemented Fully Connected (FCNN) and Convolutional Neural Networks 
(CNN) for smart SF assignment and collision detection, outperforming traditional ML 
methods in prediction accuracy and energy optimization. However, CNN accuracy declined 
with increasing node density due to limited spatial correlation. 
Furthermore, [13] proposed a proactive ADR mechanism using K-Nearest Neighbors (KNN) 
for SNR forecasting and dynamic parameter adaptation in mobile IoT nodes. Their model 
reduced Bit Error Rate (BER) and energy consumption, although a slight overhead occurred 
with larger SNR buffers. 
Hybrid and Emerging Approaches: 

Hybrid frameworks combining multiple ML paradigms have emerged as robust and 
scalable solutions. [11] merged RL-based SF allocation with ML-driven TP optimization, 
achieving 17% lower estimation error by fusing Lora WAN and environmental sensing data. 
The surveyed literature identifies three persistent challenges motivating our proposed 
ML-ADR model: 

Reinforcement learning (RL)-based methods demonstrate strong adaptability in 
dynamic environments; however, they often face challenges related to slow feedback loops and 
increased latency, which can hinder real-time decision-making. In contrast, supervised learning 
models deliver high predictive accuracy due to their reliance on labeled data but generally lack 
the responsiveness required for real-time network adaptation. To balance these limitations, 
hybrid solutions have been proposed, combining the strengths of RL and supervised learning 
approaches. While these hybrid models effectively manage mobility and dynamic conditions, 
they tend to introduce additional computational complexity, making them less suitable for 
resource-constrained IoT deployments. 
Data Generation and Preprocessing Framework: 

The proposed framework efficiently processes Lora WAN transmission data using a 
20-step sequential windowing method, where each window captures essential features for 
optimal Spreading Factor (SF) selection derived from multi-SF transmissions. 
Transmission Protocol: 

Each End Device (ED) transmits identical packets simultaneously across six SFs (SF7–
SF12) in confirmed mode, requiring ACKs from the Gateway (GW). For every transmission, 
the GW records success/failure status and signal quality metrics, while the ED logs ACK 
receptions as binary values (1 = received, 0 = not received). This dual logging ensures 
comprehensive data capture for all SFs during each transmission cycle. 
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Optimal SF Selection and Feature Extraction: 
The optimal SF (SF*) is determined as the smallest SF that successfully receives an ACK; if 
none are received, SF12 is chosen by default. Each optimal transmission is linked with a 
feature vector (f) containing parameters such as: 
f= [x, y,d,SNR,SNRreq,SNRmargin,dnorm,Prx] f = [x, y, d, SNR, SNR_{req}, 
SNR_{margin}, d_{norm}, P_{rx}] f=[x,y,d,SNR,SNRreq,SNRmargin,dnorm,Prx]  

Where spatial coordinates (x, y), distance (d), signal quality metrics (SNR, SNRreq, 
SNRmargin), normalized distance (dnorm), and received power (Prx) collectively describe the 
transmission environment. 
Temporal Sequence Construction: 

To prepare input for ML analysis, a sliding window technique constructs sequential 
input matrices (Xi) comprising feature vectors from 20 consecutive transmissions: 

The target label (yi) for each sequence corresponds to the optimal SF (SF*_i) of the 
most recent transmission, enabling the model to learn temporal dependencies in SF 
adaptation. 

The time step i within each window represents the most recent transmission in the 
sequence. Accordingly, every input matrix (Xi) consists of 20 temporal steps (rows) and 8 
features per step (columns), yielding a total of 160 feature values per sample. 

Simulations were performed using 500 End Devices (EDs) over 24 hours, where each 
device transmitted six confirmed uplink messages per hour, generating approximately 72,000 
raw transmission events. After applying the 20-step sliding window, the final preprocessed 
dataset comprised 71,981 sequences, each containing 160 features and an associated optimal 
SF label, as summarized in Table 3. 
Framework Characteristics: 

The proposed data generation and preprocessing framework exhibits several notable 
properties relevant to Lora WAN channel modeling. By employing 20-step temporal windows, 
the framework inherently captures time-dependent variations in channel conditions and signal 
quality. The feature vector (f) provides a comprehensive, multidimensional depiction of each 
communication instance, integrating spatial parameters, signal strength, and quality metrics. 

Furthermore, defining the target label (SF*) based on empirically successful 
transmissions establishes a reliable ground truth representing realistic link performance under 
observed conditions. The multi-SF transmission protocol enhances data collection efficiency, 
as each transmission simultaneously produces detailed reception and signal-quality data across 
all operational SF levels. 
Proposed Methodology: 

This study introduced a machine learning framework that utilized Long Short-Term 
Memory (LSTM) networks to optimize Lora WAN communication parameters, with a 
particular emphasis on dynamic Spreading Factor (SF) selection. The adoption of LSTM was 
motivated by its proven ability to capture temporal dependencies in sequential data—an 
essential requirement for modeling time-varying LoRa signal behaviors. Unlike traditional ML 
models such as Random Forests or Support Vector Machines, which processed samples 
independently, LSTMs effectively modeled temporal correlations between successive 
transmissions. This capability was particularly valuable in Lora WAN environments 
characterized by fluctuating channel conditions, interference variations, and node mobility, all 
of which influenced optimal SF decisions. 

The proposed approach addressed three primary challenges in Lora WAN 
optimization: (1) the non-stationary nature of wireless IoT channels, (2) the trade-off between 
data rate and communication range in SF configuration, and (3) the need for energy-efficient 
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communication mechanisms. The LSTM-based temporal model captured these dynamics 
through a hierarchical learning architecture that processed sequences of transmission events 
while retaining long-term contextual memory. This approach contrasts with conventional 
methods that relied on static SF allocation or instantaneous channel estimation without 
temporal awareness. 

The implemented LSTM architecture was designed to learn and model temporal 
dependencies across sequential Lora WAN transmission data. The network input was 
represented as a matrix where TTT denoted the number of time steps and DDD the number 
of features per step. Based on empirical analysis, T=20T = 20T=20 was chosen to incorporate 
sufficient temporal history from the last twenty uplink transmissions—balancing 
representational depth and computational efficiency. Each time step consisted of eight 
features, including received power (Prx), signal-to-noise ratio (SNR), spatial coordinates (x, y), 
distance (d), and SNR margin, as defined earlier in Equation (2). 

The internal mechanism of the LSTM cell follows the standard gated architecture. At 

each time step t, the input vector (xₜ), previous hidden state (hₜ₋₁), and previous cell state 

(Cₜ₋₁) are combined to compute four key components: 
The Long Short-Term Memory (LSTM) network operates through four key 

components that manage information flow within the model. The forget gate (fₜ) determines 
which portions of past information should be retained or discarded from the cell state, 

allowing the model to focus on relevant patterns. The input gate (iₜ) controls the extent to 
which new information is incorporated into the memory, ensuring that only significant updates 

are added. The candidate cell state (Ĉₜ) proposes potential modifications to the existing 
memory content, contributing to the learning of new temporal features. Finally, the output 

gate (oₜ) regulates how much of the updated memory is exposed to the next layer, balancing 
information retention with prediction output. Together, these gates enable LSTM networks to 
effectively model long-term dependencies in sequential data. 

Here, σ and tanh represent the sigmoid and hyperbolic tangent activation functions, 
ensuring nonlinearity and numerical stability. This gating mechanism allows the network to 
retain long-term dependencies, filter irrelevant information, and adapt to dynamic signal 
variations over time, as illustrated in Figure 4. 
LSTM Training Mechanism: 

The proposed model utilizes a stacked LSTM architecture comprising two layers, each 
containing 128 hidden units. This configuration was selected for its strong memory capability 
in modeling long-term temporal dependencies within time-series data—an essential feature for 
identifying evolving transmission patterns in dynamic wireless channels. The first LSTM layer 
processes the raw sequential input, while the second layer captures higher-level temporal 
abstractions from the first layer’s output. To ensure continuity across training batches, the 
network employs stateful processing, where the final hidden and cell states from one batch are 
propagated as the initial states for the subsequent batch. 

Following the LSTM layers, the network integrates fully connected (dense) layers 
activated by the Rectified Linear Unit (ReLU) function (max (0, x)). These layers convert 
temporal dependencies learned by the LSTMs into spatial feature representations suitable for 
final classification. The ReLU activation introduces nonlinearity while mitigating vanishing 
gradient problems often associated with sigmoid or tanh functions in deeper architectures. 
To address the risk of overfitting—a common challenge in Lora WAN datasets of 
limited size—the model employs two complementary regularization strategies: 

To enhance the generalization capability of the model and prevent overfitting, two 
regularization techniques were employed. Dropout regularization was applied with a rate of 
p=0.2p = 0.2p=0.2, which randomly deactivated 20% of the neurons during training. This 
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mechanism compelled the network to develop more generalized and robust feature 
representations, reducing its dependence on specific neurons. Additionally, L2 weight 
regularization was incorporated into the loss function as a penalty term to discourage 
excessively large weight magnitudes. This approach helped prevent the model from over-
specializing to the training data, thereby improving its overall stability and performance on 
unseen samples. These design choices collectively enhance the generalization capability and 
stability of the model during both training and inference phases. 

The final layer uses a SoftMax activation function to generate a probability distribution 
over the six potential Spreading Factors (SF7–SF12). This enables adaptive decision-making, 
allowing the model to automatically select the SF with the highest probability or to consider 
additional constraints such as energy or latency requirements. The SoftMax function 
normalizes the output as follows: 

Where yiy_iyi denotes the one-hot encoded label. The Adam optimizer is used with an 
initial learning rate of 10−310^ {-3}10 3 and exponential decay rates β1=0.9\beta_1 = 
0.9β1=0.9, β2=0.999\beta_2 = 0.999β2=0.999. Early stopping with a patience of 10 epochs is 
applied to prevent overfitting while ensuring convergence. 

The trained system processes Lora WAN transmission sequences through this neural 
pipeline, learning to predict optimal SFs based on prior channel and transmission patterns. 
This data-driven, adaptive method significantly outperforms static allocation strategies while 
remaining computationally efficient for real-world deployment on network servers. 
Performance Evaluation of LSTM in Offline Mode: 

For training and evaluation, the dataset consisting of 71,981 sequences was divided 
using a hold-out strategy to maintain temporal independence and avoid data leakage. 
Approximately 80% (57,585 samples) of the data were allocated for training, while 20% 
(14,396 samples) were reserved for testing. Furthermore, from the training set, 10% (5,759 
samples) was set aside as a validation subset, which was used for hyperparameter tuning and 
implementing early stopping to enhance the model’s generalization and prevent overfitting. 
Due to the sequential nature of the data, cross-validation was not applied, as retraining LSTM 
models on large time-series datasets is computationally expensive. Instead, validation 
monitoring with early stopping (patience = 10) was adopted—consistent with best practices 
for time-series modeling. 

Table 5 compares several machine learning models for Lora WAN SF classification, 
including Random Forest, Gradient Boosting, SVM, KNN, XGBoost, MLP, and the proposed 
LSTM. Models were assessed using Accuracy, Precision, Recall, F1 Score, and computational 
measures such as Training Time (seconds) and Model Size (MB). 

The results demonstrated that the LSTM model achieved the highest classification 
accuracy of 0.7290, outperforming all other models. It was followed by the MLP model 
(0.7193), SVM (0.7123), and Gradient Boosting (0.7103). The Random Forest (0.6991) and 
XGBoost (0.6891) models showed moderate performance, while the KNN model exhibited 
the lowest accuracy (0.6787) among the evaluated approaches. The recall values were largely 
consistent with accuracy trends, whereas precision scores were generally lower—approximately 
0.50–0.51 for LSTM, MLP, and SVM, and around 0.59 for KNN, XGBoost, and Random 
Forest. These findings confirm the superior capability of the LSTM architecture in capturing 
temporal dependencies within sequential Lora WAN transmission data. F1 scores showed 
KNN and XGBoost performing slightly better due to their precision-recall balance, despite 
lower overall accuracy. In terms of computational efficiency, Gradient Boosting required the 
longest training time (8,254.48 s), while MLP (20.31 s) and KNN (13.55 s) were the fastest. 
Regarding storage, Random Forest was the largest (67.76 MB), while MLP (0.21 MB), LSTM 
(0.84 MB), and Gradient Boosting (0.93 MB) were notably lightweight. 
Lora WAN Network Performance Evaluation – Online Mode: 
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In the ns-3 online simulation, each device maintains a circular buffer that stores its 
most recent 20 transmission features in real time. After every transmission, this buffer is 
updated and fed into the model to determine the next Spreading Factor (SF) decision 
dynamically. 

 
Figure 2. Visualizes the classification accuracies, clearly showing the LSTM model’s superior 

performance, followed by MLP, SVM, and Gradient Boosting. The bar chart confirms the 
tabulated results, offering a clear comparative insight into model effectiveness and efficiency. 

Simulation Setup and Application: 
This study evaluates end devices operating in confirmed data mode within a single-

gateway Lora WAN network spanning a 5 km radius. To emulate industrial asset monitoring 
scenarios, devices follow a two-dimensional random mobility pattern, changing direction after 
traveling 200 meters at speeds between 1.0–2.0 m/s, consistent with standard IoT mobility 
models. Each device transmits six confirmed uplink messages per hour over a 24-hour 
operational period. To ensure statistical robustness, ten independent simulation runs are 
performed, and results are presented as average performance metrics. 

The experimental setup encompasses both static and mobile scenarios. In the static 
case, between 100 and 1,000 end devices are uniformly distributed across the network’s 
coverage area. In mobile scenarios, the aforementioned random mobility model is applied to 
represent asset tracking applications. 

All simulation configurations employ parameters specified in Table 6, which comply 
with Lora WAN regional standards for European frequency bands. 
Implications of Online Mode Performance: 

The online evaluation results, illustrated in Figures 6–9, highlight the operational 
benefits of the proposed ML-ADR framework across multiple performance metrics. In mobile 
deployment scenarios (Figure 6), ML-ADR achieves a 22% higher Packet Delivery Ratio 
(PDR) than the traditional TF baseline at network densities of 1,000 devices. This 
improvement arises primarily from two mechanisms: dynamic Spreading Factor (SF) 
adaptation based on real-time channel variations and intelligent retransmission scheduling, 
which minimizes acknowledgment collisions. 

In static deployments (Figure 7), similar trends are observed—ML-ADR consistently 
outperforms conventional algorithms across all tested network scales. The energy efficiency 
results (Figures 8–9) further demonstrate ML-ADR’s practical advantage, showing a 30% 
reduction in median energy consumption compared to standard ADR implementations while 
maintaining superior reliability. This dual gain directly addresses two key LoRaWAN 
challenges: limited battery capacity of end devices and the need for reliable communication in 
dense network conditions. 
Limitations and Future Directions: 
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Despite its promising results, the proposed ML-ADR framework has four notable limitations: 
 
Offline Model Training:  
 The model’s dependence on offline training introduces latency when adapting to 
new environments or network conditions. While efficient for deployment, it may yield 
suboptimal performance during sudden environmental shifts (e.g., weather changes or 
unmodeled mobility). Rapidly evolving channel dynamics—such as those caused by vehicular 
movement in urban areas—may require retraining, delaying adaptation in real-world use. 
Simplified Channel Assumptions:  
 The evaluation assumes ideal channel state information, which doesn’t fully 
capture real-world conditions involving interference and multipath fading. Although ns-3 
models-controlled propagation losses, actual deployments face unpredictable interference from 
WiFi, LPWANs, or industrial systems. These effects, alongside hardware imperfections (e.g., 
antenna variations or clock drifts), could reduce ML-ADR’s real-world performance. Future 
work will involve hardware-based validation using SX1276 LoRa nodes and large-scale 
deployments via The Things Network, incorporating real interference data for retraining. 
Single-Gateway Limitation: 

The current single-gateway model simplifies evaluation but overlooks multi-cell 
network complexities such as handover delays, inter-gateway interference, and load balancing 
challenges. In multi-gateway scenarios, overlapping coverage can increase packet loss, 
particularly under mobility. Future extensions should explore multi-gateway topologies to 
assess ML-ADR’s scalability in distributed environments. 
Scalability Constraints: 

Simulations are limited to 1,000 devices, whereas large-scale IoT networks may involve 
tens of thousands. The LSTM’s sequence-based computation can impose heavy server-side 
loads in dense networks, leading to inference delays. Prior studies note similar scalability 
bottlenecks in ML-based Lora WAN resource allocation, where performance degrades beyond 
5,000 devices due to model complexity and contention. Moreover, ns-3 data generation 
becomes computationally intensive at higher scales. 
Future Research Directions: 

Overcoming these challenges, future work focused on several key directions. First, 
federated learning was proposed to enable distributed model updates across gateways without 
requiring centralized retraining, thereby enhancing scalability and adaptability. Second, 
Reinforcement Learning (RL) would be employed for real-time channel estimation and 
interference mitigation to improve robustness under dynamic network conditions. Third, the 
research aimed to extend multi-gateway and multi-hop simulations to better analyze handover 
mechanisms and distributed coordination in large-scale Lora WAN environments. Finally, 
hybrid architectures combining LSTM with lightweight ML models such as TinyML were 
considered to support scalable edge inference and online learning, allowing the system to 
dynamically adapt to evolving network densities. 

Algorithm for Parsing and Summarization of Lora WAN 
Begin 
Built table T with rows n 
Define 
dest-ip=1, sign-ip=2; i=1; 
Aler-dscrp-strct = T (1)(signature-name, signature-class-id, priority, score-ip, ip-
protocol, source-port, destination-port) 
While (Length T 1 and I < length T) 
For j=i+1 to Length T do 
If (T(I, alter-dscrp-ip) = T(j, alert-descrp-strct)) 
Add the I record in the table summarized T 
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Delete i and j records from Table T, set i=1 
Else 
Merge i and j records of table T and add the resultant merge record in table T. Set i=1; 
End if 
End if 
End for 
i=i+1 
End while 
Add table T to table summarized T 
End IF 
Return summarized-T 

Algorithm: The analysis algorithm for Model C 
Begin 
Input: test audit data during the current login session 
Use CIDs to compute SaaS by aligning against in same machine 

If SAS < Փ sas Then 

For each cloud node (C _node) containing user I, do 
Use CIDs to compute SaS, for the ith user in C _ node 

If SaS > Փsas  

Not-Masq-flag = True 
Exit the loop 
End if 
End for 
End if 
If Not-Masq-flag = flag or HIDs instance is fired, then 
Run step 2 of model A for each user CIDS instance firing 
End if 

Conclusions: 
This study tackled the challenge of efficient Spreading Factor allocation in LoRaWAN 

networks, crucial for the scalability of IoT deployments. We introduced a Machine Learning-
based Adaptive Data Rate (ML-ADR) mechanism leveraging LSTM models trained on ns-3 
simulation data to intelligently predict and assign optimal SFs. 

Comprehensive evaluations demonstrated that ML-ADR significantly improves 
network performance—achieving higher packet delivery ratios and lower energy consumption 
compared to existing methods like ADR, BADR, and TF baselines. These gains hold across 
both static and mobile scenarios, emphasizing the method’s robustness and adaptability. 
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