
                              International Journal of Innovations in Science & Technology 

December 2025|Vol 7 | Issue 4                                                          Page |3096 

  

A Computational Analysis of Nonlinear Fractional Partial 
Integro-differential Equation Using Meshfree Multiquadric 

Radial Basis Function Method 
Arshed Ali1*, Fasiha Shaheen1, Imtiaz Ahmad2, Hadia Atta1 
1Department of Mathematics, Islamia College Peshawar, Pakistan.  
2Institute of Informatics and Computing in Energy (IICE), Universiti Tenaga Nasional 
(UNITEN), Kajang, Selangor, Malaysia. 
*Correspondence: arshad.ali@icp.edu.pk 
Citation| Ali. A, Shaheen. F, Ahmad. I, Atta. H, “A Computational Analysis of Nonlinear 
Fractional Partial Integro-differential Equation Using Meshfree Multiquadric Radial Basis 
Function Method”, IJIST, Vol. 7, Issue. 4 pp 3096-3111, December 2025 
Received| November 07, 2025 Revised| November 24, 2025 Accepted| December 04, 
2025 Published| December 10, 2025 

ractional partial integro-differential equations play an important role in describing 
physical and engineering systems that exhibit memory and nonlocal effects. Their 
nonlinear structure and the presence of weakly singular kernels make analytical 

solutions difficult to obtain, which highlights the need for accurate and flexible numerical 
strategies. This study develops a meshfree computational method based on multiquadric 
radial basis functions for solving a nonlinear fractional partial integro-differential equation 
involving the Caputo derivative. The temporal discretization is carried out using a backward 
difference formula, and the spatial operators are approximated through radial basis function 
interpolation. The resulting scheme avoids mesh generation and is suitable for irregular or 
scattered spatial nodes. Numerical experiments are presented to illustrate the accuracy, 
reliability, and efficiency of the method for representative test problems. The results indicate 
that the proposed meshfree approach provides a robust tool for nonlinear fractional models 
with weakly singular kernels. 
Keywords: Fractional Partial Integro-Differential Equation; Caputo Derivative; Weakly 
Singular Kernel; Meshfree Method; Radial Basis Functions; Integral Operator. 
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Introduction: 
Fractional calculus generalizes differentiation and integration to non-integer orders, 

offering mathematical operators that can model memory effects and hereditary properties in 
complex systems [1]. Unlike classical derivatives, fractional derivatives are nonlocal, as their 
evaluation at any given time depends on the entire history of the function. This nonlocal 
property makes them particularly suitable for modeling anomalous diffusion, viscoelasticity, 
relaxation processes, and multiscale transport phenomena [2][3]. Among the various 
definitions of fractional derivatives, the Caputo derivative is widely used in physical models 
because it accommodates classical initial conditions and possesses well-understood analytical 
properties [4]. The growing interest in fractional operators is linked to increasing 
experimental evidence that many natural and engineered systems display power-law memory, 
long-range interactions, and non-exponential relaxation, which cannot be captured accurately 
by integer-order models [5][6]. 

Fractional partial integro-differential equations (FPIDEs) appear naturally when 
fractional differentiation is combined with convolution-type integral operators representing 
additional memory effects [7][8]. Many fractional partial integro-differential equations 
(FPIDEs) involve weakly singular kernels, often of the form (t-s)^(α-1), which commonly 
appear in viscoelasticity, hereditary heat conduction, and population models with distributed 
delays [8][9][10][11]. Nonlinear FPIDEs are particularly difficult because they couple 
nonlocal differential operators, integral memory terms, and nonlinear reaction terms in a 
single framework [11][12][13][14][15]. The diversity of applications of nonlinear FPIDEs has 
stimulated the development of numerical strategies capable of handling nonlocal operators, 
memory integrals, and nonlinearities [9][11][12][13][14][15][16][17]. 

A wide range of numerical methods has been proposed by researchers to solve 
FPIDEs. For nonlinear FPIDEs, iterative schemes including Newton linearization, 
predictor–corrector techniques, fixed-point iterations, and Anderson-accelerated solvers 
have been used to enhance robustness and convergence behavior [11][12][13][16][17]. These 
grid-based methods have been successful; they often require structured meshes and may 
become less effective for irregular geometries, moving boundaries, or scattered spatial data 
sets.  

Meshfree numerical methods have emerged as an effective alternative to classical 
grid-based schemes, as they eliminate the need for mesh generation and rely instead on 
scattered computational nodes to construct approximations [18]. These methods provide 
geometric flexibility, simplify local refinement, and allow the use of smooth basis functions 
that support accurate evaluation of higher order derivatives [19]. Commonly used meshfree 
techniques include the element-free Galerkin framework, moving least squares formulations, 
and radial basis function (RBF) interpolation [20]. Their ability to employ globally smooth 
functions makes them particularly suitable for fractional and integro-differential models 
where nonlocal operators require consistent approximation over extended spatial supports 
[21]. Recent developments in meshless theory further demonstrate their efficiency and 
robustness for a broad class of time-dependent and fractional PDEs. Examples include local 
differential quadrature formulations for PDEs [22], symmetric RBF schemes for elliptic 
problems [23], high-accuracy local meshless procedures for fractional PDEs arising in 
physics [24], and numerical simulation of multi-dimensional models using improved local 
meshless approaches [25]. Recent studies have also demonstrated the effectiveness of 
meshfree strategies for fractional viscous wave models with variable coefficients [26] and for 
highly complex nonlinear plasma and energy-related fractional PDE [27][28][29]. An 
increasing body of research shows that meshfree RBF-based methods provide a powerful 
and flexible framework for solving fractional partial integro-differential equations, especially 
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when handling scattered data, irregular geometries, derivative discontinuities, memory-
dependent dynamics, or spatially nonlocal interactions [7]. 

Among meshfree techniques, radial basis function methods have shown strong 
performance for a variety of fractional partial differential equations due to their spectral-like 
accuracy and ability to approximate derivatives on scattered nodes [30]. Global RBFs such as 
Gaussian, multiquadric, and inverse multiquadric kernels provide smooth approximants that 
facilitate accurate computation of fractional and integral operators [31]. RBF collocation and 
RBF-based differential quadrature have been successfully applied to fractional diffusion, 
advection–diffusion, telegraph, and wave-diffusion equations in recent studies [25]. 
Extensions of RBF methods include local RBF collocation, hybrid RBF schemes, and spatio-
temporal RBF formulations, which improve computational efficiency and conditioning while 
maintaining high accuracy [29]. These developments demonstrate that meshfree RBF 
methods provide a promising framework for solving nonlinear fractional partial integro-
differential equations with weakly singular kernels, motivating the approach taken in the 
present article. 

Although many numerical techniques have been developed for fractional partial 
integro-differential equations, several gaps remain in the existing literature. Most grid-based 
schemes rely on structured meshes and often lose accuracy when the solution involves 
strong nonlinearities or when spatial nodes are irregular or scattered. In addition, the 
presence of weakly singular kernels and memory-driven operators increases the difficulty of 
constructing stable and accurate approximations. These limitations motivate the need for 
meshfree strategies that can provide accurate derivative approximation, maintain stability for 
nonlinear models, and remain effective for scattered node distributions. The present study 
addresses these gaps by developing a multiquadric RBF-based method tailored for nonlinear 
FPIDEs with weakly singular kernels. 
In this work, we consider the nonlinear FPIDE presented in equations (1)–(3) as follows:  

𝜕𝛼𝑣

𝜕𝑡𝛼 + 𝑣
𝜕𝑣

𝜕𝜒
− ∫ (𝑡 − 𝑝)𝜂−1 𝜕2𝑣(𝜒,𝑝)

𝜕𝜒2 𝑑𝑝
𝑡

0
= 𝐺(𝜒, 𝑡), 𝑡 ≥ 0  (1) 

𝑣(𝜒, 0) = 𝜑0(𝜒),        (2) 

𝑣(𝑎, 𝑡) = 𝜑1(𝑡), 𝑣(𝑏, 𝑡) = 𝜑2(𝑡) , 𝑡 ≥ 0,     (3) 

where 𝑎 ≤ 𝜒 ≤ 𝑏, 𝑣 = 𝑣(𝜒, 𝑡), 
𝜕𝛼

𝜕𝑡𝛼 Denotes the 𝛼-order Caputo fractional derivative 

with  0 < 𝛼 ≤ 1, 𝜒 is the space variable, 𝑡 is the time variable, and 𝜑0, 𝜑1, 𝜑2, 𝐺(𝜒, 𝑡) 
Given smooth functions. 

This formulation encompasses a broad class of fractional evolution equations, where 
both memory-driven diffusion and hereditary integral effects influence the system dynamics. 
The initial and boundary conditions specified in equations (2) and (3) ensure the well-
posedness of the problem and provide the foundation for the numerical treatment 
developed in the subsequent sections. 
Objective: 

This study presents a meshfree computational framework based on multiquadric 
radial basis functions (RBFs) for solving nonlinear fractional partial integro-differential 
equations (FPIDEs) with weakly singular kernels. The primary objective is to develop an 
accurate, flexible numerical scheme that circumvents the need for structured meshes, thereby 
efficiently handling problems with irregular geometries or scattered data. The novelty lies in 
the integration of a backward difference formula for Caputo derivative discretization with a 
global RBF interpolation for spatial and integral operators, specifically tailored to address the 
challenges posed by nonlinearity, memory effects, and weak singularities simultaneously. 
Through systematic numerical experiments, the work demonstrates the robustness, stability, 
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and high accuracy of the proposed method, offering a reliable computational tool for 
complex fractional models in science and engineering. 
Methodology: 

To construct the numerical scheme, the time interval [0, 𝑇] is partitioned into 

uniform time levels 𝑡𝑙 = 𝑙∆𝑡, 𝑙 = 0,1,2, … , 𝐿, and the spatial domain [𝑎, 𝑏] is divided by 𝑀 
nodes. The solution is then approximated at these discrete space–time points. 
The following definitions provide the mathematical framework for the proposed technique. 
Definition 1: 

A function Φ: ℝ𝑛 → ℝ is referred to as radial when it can be written in the form 

Φ(𝜒) = 𝜓(  ⃦𝜒  ⃦), 
where    ⃦.  ⃦ represents the Euclidean norm and  𝜓: [0, ∞) → ℝ is a single-variable 

function [30]. 
Definition 2: 

An RBF is a real-valued function of one variable whose argument is the Euclidean 

distance from a prescribed center. For any node 𝜒𝑗 , the corresponding RBF takes the form 

 𝜓𝑗(𝑟) = 𝜓(  ⃦𝜒 − 𝜒𝑗   ⃦) 

In this study, we employ the multiquadric (MQ) radial basis function, which is an 
infinitely smooth RBF given by [30]: 

𝝍(𝒓𝒋) = √𝒓𝒋
𝟐 + 𝒄𝟐, 

where  𝑟𝑗 =   ⃦𝜒 − 𝜒𝑗    ⃦and 𝑐 > 0 is the shape parameter. The choice of 𝑐 influences 

both the accuracy of the approximation and the conditioning of the resulting system [30]. 
Definition 3: 

The Caputo derivative 
𝜕𝛼𝑣(𝜒,𝑡)

𝜕𝑡𝛼  The order 𝛼 has the following form [10]: 

𝜕𝛼𝑣(𝜒,𝑡)

𝜕𝑡𝛼 =
1

Γ(1−𝛼)
∫ (𝑡 − 𝑞)−𝛼 𝜕𝑣(𝜒,𝑞)

𝜕𝑞
𝑑𝑞

𝑡

0
,(4) 

where 0 ≤ 𝛼 ≤ 1. 
Approximation in Time: 

To develop the proposed technique, we take   𝑡 = 𝑡𝑁+1 in Eq. (1),  

𝜕𝛼𝑣(𝜒, 𝑡𝑁+1)

𝜕𝑡𝛼
+ 𝑣(𝜒, 𝑡𝑁+1)

𝜕𝑣(𝜒, 𝑡𝑁+1)

𝜕𝜒
− ∫ (𝑡𝑁+1 − 𝑝)𝜂−1

𝜕2𝑣(𝜒, 𝑝)

𝜕𝜒2
𝑑𝑝

𝑡𝑁+1

0

= 𝐺(𝜒, 𝑡𝑁+1),                                                                                                 (5) 
For the Caputo derivative appearing in (5), the corresponding backward difference 

approximation of the truncation error 𝑅∆𝑡
𝑁+1 is given by [10]:  

𝜕𝛼𝑣(𝜒,𝑡𝑁+1)

𝜕𝑡𝛼
=

1

Γ(2−𝛼)
∑ 𝑐𝑙

𝑣(𝜒,𝑡𝑁+1−𝑙)−𝑣(𝜒,𝑡𝑁−𝑙)

(∆𝑡)𝛼
𝑁
𝑙=0 + 𝑅∆𝑡

𝑁+1,    (6) 

where   𝑐𝑙 = (𝑙 + 1)1−𝛼 − 𝑙1−𝛼, 𝑙 = 0,1,2, … , 𝑁, and 𝑅∆𝑡
𝑁+1 ≤ 𝐶𝑣∆𝑡2−𝛼. 

The integral term in Eq. (5) is approximated as follows: 

∫ (𝑡𝑁+1 − 𝑝)𝜂−1

𝑡𝑁+1

0

𝜕2𝑣(𝜒, 𝑝)

𝜕𝜒2
𝑑𝑝 = ∫ 𝑝𝜂−1

𝑡𝑁+1

0

𝜕2𝑣(𝜒, 𝑡𝑁+1 − 𝑝)

𝜕𝜒2
𝑑𝑝,  

= ∑ ∫ 𝑝𝜂−1

𝑡𝑙+1

𝑡𝑙

𝜕2𝑣(𝜒, 𝑡𝑁+1 − 𝑝)

𝜕𝜒2
𝑑𝑝,

𝑁

𝑙=0

 

Taking 𝑝 = 𝑡𝑙    in 
𝜕2𝑣(𝜒,𝑡𝑁+1−𝑝)

𝜕𝜒2
, we get 
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= ∑
𝜕2𝑣(𝜒, 𝑡𝑁+1 − 𝑡𝑙)

𝜕𝜒2
∫ 𝑝𝜂−1𝑑𝑝,

𝑡𝑙+1

𝑡𝑙

𝑁

𝑙=0

 

=
∆𝑡𝜂

𝜂
∑

𝜕2𝑣(𝜒, 𝑡𝑁+1 − 𝑡𝑙)  

𝜕𝜒2

𝑁

𝑙=0

((𝑙 + 1)𝜂 − 𝑙𝜂), 

=
∆𝑡𝜂

𝜂
∑ 𝑑𝑙 

𝜕2𝑣(𝜒, 𝑡𝑁+1−𝑙)  

𝜕𝜒2

𝑁

𝑙=0

, (7)     

where 𝑑0 = 1, 𝑑𝑙 = (𝑙 + 1)𝜂 − 𝑙𝜂 , 𝑙 = 1,2, … , 𝑁. 

The nonlinear term 𝑣(𝜒, 𝑡𝑁+1)
𝜕𝑣(𝜒,𝑡𝑁+1)

𝜕𝜒
  in Eq. (5) is linearized by the following 

formula, 

𝑣(𝜒, 𝑡𝑁+1)
𝜕𝑣(𝜒,𝑡𝑁+1)

𝜕𝜒
= 𝑣(𝜒, 𝑡𝑁)

𝜕𝑣(𝜒,𝑡𝑁+1)

𝜕𝜒
+ 𝑣(𝜒, 𝑡𝑁+1)

𝜕𝑣(𝜒,𝑡𝑁)

𝜕𝜒
− 𝑣(𝜒, 𝑡𝑁)

𝜕𝑣(𝜒,𝑡𝑁)

𝜕𝜒
. (8) 

Thus, using Eqs. (6)-(8) in (5) and rearranging, we have      

𝑣𝑁+1(𝜒) + ∆𝑡𝛼  Γ(2 − 𝛼) (𝑣𝜒
𝑁(𝜒)𝑣𝑁+1(𝜒) + 𝑣𝑁(𝜒)𝑣𝜒

𝑁+1(𝜒) −
∆𝑡𝜂

𝜂
𝑣𝜒𝜒

𝑁+1(𝜒))

= ∆𝑡𝛼Γ(2 − 𝛼)𝑣𝑁(𝜒)𝑣𝜒
𝑁(𝜒) + 𝑐𝑁𝑣0(𝜒) + (1 − 𝑐1)𝑣𝑁(𝜒)

+ ∑ (𝑐𝑙 − 𝑐𝑙+1)𝑣𝑁−𝑙(𝜒)
𝑁−1

𝑙=1
+

∆𝑡𝛼+𝜂

𝜂
 Γ(2 − 𝛼) ∑ 𝑑𝑙𝑣𝜒𝜒

𝑁+1−𝑙(𝜒)

𝑁

𝑙=1

+ ∆𝑡𝛼Γ(2 − 𝛼)𝐺𝑁+1(𝜒),                                                                                (9) 

where 𝑣𝑁(𝜒) = 𝑣(𝜒, 𝑡𝑁), 𝑣𝜒
𝑁(𝜒) =

𝜕𝑣(𝜒,𝑡𝑁)

𝜕𝜒
 and 𝐺𝑁+1(𝜒) = 𝐺(𝜒, 𝑡𝑁+1). 

For 𝜒 = 𝜒𝑖 , Eq. (9) becomes 

𝑣𝑁+1(𝜒) + ∆𝑡𝛼  Γ(2 − 𝛼) (𝑣𝜒
𝑁(𝜒)𝑣𝑁+1(𝜒) + 𝑣𝑁(𝜒)𝑣𝜒

𝑁+1(𝜒) −
∆𝑡𝜂

𝜂
𝑣𝜒𝜒

𝑁+1(𝜒))

=  𝐻𝑖,                                                                                                                    (10) 
where 

𝐻𝑖 = ∆𝑡𝛼Γ(2 − 𝛼)𝑣𝑁(𝜒𝑖)𝑣𝜒
𝑁(𝜒𝑖) + 𝑐𝑁𝑣0(𝜒𝑖) + (1 − 𝑐1)𝑣𝑁(𝜒𝑖)

+ ∑ (𝑐𝑙 − 𝑐𝑙+1)𝑣𝑁−𝑙(𝜒𝑖)
𝑁−1

𝑙=1
+

∆𝑡𝛼+𝜂

𝜂
 Γ(2 − 𝛼) ∑ 𝑑𝑙𝑣𝜒𝜒

𝑁+1−𝑙(𝜒𝑖)

𝑁

𝑙=1

+ ∆𝑡𝛼Γ(2 − 𝛼)𝐺𝑁+1(𝜒𝑖). 
Approximation in Space: 

The RBF approximation of the function 𝑣𝑁+1(𝜒) at 𝜒 = 𝜒𝑖 , 𝑖 = 1,2, … , 𝐿 is given by 

𝑣𝑁+1(𝜒𝑖) = ∑ 𝜆𝑗
𝑁+1𝜓(𝑟𝑖𝑗),

𝑀

𝑗=1

(11)    

where 𝑟𝑖𝑗 =   ⃦𝜒𝑖 − 𝜒𝑗   ⃦. 

Thus for 𝑖 = 2,3, … , 𝑀 − 1,  Eqs. (10) and (11) provide 
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∑ 𝜆𝑗
𝑁+1𝜓(𝑟𝑖𝑗)

𝑀

𝑗=1

+ ∆𝑡𝛼  Γ(2 − 𝛼) (∑ 𝜆𝑗
𝑁𝜓′(𝑟𝑖𝑗)

𝑀

𝑗=1

∑ 𝜆𝑗
𝑁+1𝜓(𝑟𝑖𝑗)

𝑀

𝑗=1

+ ∑ 𝜆𝑗
𝑁+1𝜓′(𝑟𝑖𝑗)

𝑀

𝑗=1

∑ 𝜆𝑗
𝑁𝜓(𝑟𝑖𝑗)

𝑀

𝑗=1

−
∆𝑡𝜂

𝜂
∑ 𝜆𝑗

𝑁+1 𝜓′′(𝑟𝑖𝑗)

𝑀

𝑗=1

)

= 𝐻𝑖 .                                                                            (12) 

For 𝑖 = 1, 𝑀, Eq. (3) leads to  

∑ 𝜆𝑗
𝑁+1𝜓(𝑟𝑖𝑗) =

𝑀

𝑗=1

𝜑1(𝑡𝑁+1) (13)   

and 

∑ 𝜆𝑗
𝑁+1𝜓(𝑟𝑖𝑗) =

𝑀

𝑗=1

𝜑2(𝑡𝑁+1), (14)  

Respectively. 
Eqs. (12)-(14) are represented in matrix form as follows: 

(𝐀 + ∆𝑡𝛼  Γ(2 − 𝛼)(𝐯𝑁 ∗ 𝐁 + 𝐯𝜒
𝑁 ∗ 𝐂) −

∆𝑡𝛼+𝜂

𝜂
 Γ(2 − 𝛼)𝐃) 𝝀𝑁+1 = 𝐇, (15) 

Where 𝐀, 𝐁, 𝐂 are 𝑀 × 𝑀 matrices and 𝐯𝑁 , 𝐯𝜒
𝑁 Are 𝑀 × 1 matrices such that 𝐀 =

[𝜓(𝑟𝑖𝑗): 1 ≤ 𝑖, 𝑗 ≤ 𝑀], 𝐁 = [𝜓′(𝑟𝑖𝑗): 2 ≤ 𝑖 ≤ 𝑀 − 1,1 ≤ 𝑗 ≤ 𝑀, and 0 elsewhere], 

𝐂 = [𝜓(𝑟𝑖𝑗): 2 ≤ 𝑖 ≤ 𝑀 − 1,1 ≤ 𝑗 ≤ 𝑀 and 0 elsewhere], 𝐯𝑁 = [𝑣𝑁(𝜒𝑖): 1 ≤ 𝑖 ≤ 𝑀], 

𝐯𝜒
𝑁 = [𝑣𝜒

𝑁(𝜒𝑖): 1 ≤ 𝑖 ≤ 𝑀], 𝐇 = [𝜑1(𝑡𝑁+1), 𝐻2, 𝐻3, … , 𝐻𝑀−1, 𝜑2(𝑡𝑁+1)] and 𝝀𝑁+1 =

[𝜆𝑖
𝑁+1: 1 ≤ 𝑖 ≤ 𝑀]. 

Algorithm: 
The numerical scheme in (15) can be carried out through the following sequence of steps: 
Selection of spatial nodes: 

Choose 𝑀 collocation points in the spatial interval [𝑎, 𝑏] that will be used for constructing 
the RBF approximation. 
Time Discretization: 

Fix the time step ∆𝑡 and determine the discrete time levels. 𝑡𝑙 = 𝑙∆𝑡, 𝑙 = 0,1,2, … , 𝐿. 
Computation of RBF quantities: 

Specify the multiquadric radial basis function 𝜓(𝑟) and evaluate all matrices and vectors that 
appear in the discrete formulation in Eq. (15). 
Initialization and first solve: 

Use the initial condition from Eq. (2) to obtain the coefficients 𝝀0. 
Then solve the system in Eq. (15) to compute the solution at the first time level. 
Time marching: 

For each successive step 𝑁, update the coefficients 𝝀𝑁+1 by solving Eq. (15) and evaluating 
the approximate solution using Eq. (11). 
The flow diagram of the algorithm is given as: 
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Stability Analysis: 

The stability of the proposed meshfree scheme is investigated using a perturbation 
approach. We examine how errors in the initial data propagate through the time-stepping 
procedure. The following theorem establishes a sufficient condition for numerical stability. 
Theorem 1 (Stability): 

Consider the numerical scheme defined by Eq. (15). Assume the exact 

solution 𝑣(𝜒, 𝑡) is sufficiently smooth and the multiquadric RBF shape parameter cc is 

chosen such that the system matrices are well-conditioned. If the time step 𝛥𝑡 satisfies the 
condition 

𝛥𝑡𝛼  𝛤(2 − 𝛼)(∥ 𝒗𝜒
𝑁 ∥∞ +∥ 𝒗 

𝑁 ∥∞∥ 𝐿′ ∥) ≤ 𝜅 < 1, 

where 𝐿′ is the spatial differential operator associated with the RBF approximation, 
then the scheme is unconditionally stable in the sense that a small perturbation in the initial 
data leads to a bounded perturbation in the numerical solution at later times. 

Proof.  Let 𝑣̃𝑁 Be the perturbed numerical solution at time level 𝑁, and define the 

error. 𝑒𝑁 = 𝑣𝑁 − 𝑣̃𝑁. Substituting into the linearized discrete equation (10) and subtracting 
the perturbed equation, we obtain an error evolution equation. Under the linearization (8) 
and using the properties of the Caputo derivative discretization [10], the error satisfies 

(1 + 𝛥𝑡𝛼𝛤(2 − 𝛼)𝐿𝑁)𝑒𝑁+1 = ∑ 𝛽𝑙𝑒
𝑁−1

𝑁−1

𝑙=0

+ 𝛥𝑡𝛼+𝜂𝛾 ∑ 𝑑𝑙 𝐿𝜒𝜒𝑒𝑁+1−𝑙

𝑁

𝑙=1

, 

where 𝐿𝑁 is a linear operator depending on 𝑣𝑁 and 𝑣𝜒
𝑁, and 𝛽𝑙, 𝛾 are constants 

derived from the discretization weights. Taking norms and applying Gronwall’s inequality 
for discrete systems [11], we find 

∥ 𝑒𝑁+1 ∥≤ 𝐶 ∥ 𝑒0 ∥ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑁 ≥ 0, 
provided the condition on 𝛥𝑡 holds. The constant 𝐶 depends on 𝛼, 𝜂, 𝑇, and the 

stability constants of the RBF interpolation matrices [30]. This demonstrates that initial 
errors do not grow unboundedly, ensuring numerical stability. 
Remarks: 

The condition in Theorem 1 is mild and is typically satisfied for moderate time steps, 
as observed in the numerical experiments where stable results were obtained for all tested 

values of 𝛥𝑡. 
Convergence Analysis: 

The convergence of the proposed method is analysed by estimating the truncation 
error and examining its behavior as the spatial and temporal step sizes approach zero. The 
following theorem provides the convergence rate. 
Theorem 2 (Convergence): 

Let 𝑣(𝜒, 𝑡) ∈ 𝐶4,2([𝑎, 𝑏] × [0, 𝑇]) be the exact solution of the nonlinear FPIDE 

(1)–(3), and let 𝑣ℎ,𝛥𝑡 be the numerical solution obtained by the scheme (15) using 

multiquadric RBFs with shape parameter cc and uniform time step 𝛥𝑡. Assume the stability 
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condition of Theorem 1 holds. Then, there exist constants 𝐶1, 𝐶2 > 0, independent 

of ℎ and 𝛥𝑡, such that the global error satisfies 

∥ 𝑣(⋅, 𝑡𝑁) − 𝑣ℎ,𝛥𝑡(⋅, 𝑡𝑁) ∥𝐿∞
≤ 𝐶1 𝛥𝑡2−𝛼 + 𝐶2 ℎ𝑚(𝑐), 

Where 𝑚(𝑐) > 0 is the convergence order of the multiquadric RBF interpolation, 

which depends on the shape parameter 𝑐 and the smoothness of the solution [30]. 

Proof. The global error at time 𝑡𝑁 Is decomposed into temporal and spatial components: 

𝐸𝑁 = 𝑣(⋅, 𝑡𝑁) − 𝑣ℎ,𝛥𝑡(⋅, 𝑡𝑁) = (𝑣(⋅, 𝑡𝑁) − 𝑣𝛥𝑡(⋅, 𝑡𝑁)) +
𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐸𝑟𝑟𝑜𝑟

 = (𝑣𝛥𝑡(⋅, 𝑡𝑁) − 𝑣ℎ,𝛥𝑡(⋅, 𝑡𝑁))
𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐸𝑟𝑟𝑜𝑟

. 

Temporal Error: 

The Caputo derivative is approximated by the 𝐿1-formula with local truncation 

error 𝑂(𝛥𝑡2−𝛼) [10][11]. By the stability, the accumulation of the local errors over N steps 

yields a global temporal error bound 𝑂(𝛥𝑡2−α). 
Spatial Error: 

The spatial approximation uses multiquadric RBF interpolation. For a sufficiently 
smooth solution, the error between the exact solution and its RBF interpolant at the 
collocation nodes satisfies [30][31] 

∥ 𝑣(⋅, 𝑡) − 𝛱ℎ𝑣(⋅, 𝑡) ∥𝐿∞
≤ 𝐹(𝑐) ℎ𝑚(𝑐), 

where 𝛱ℎ is the RBF interpolation operator, ℎ is the nodal spacing, and 𝐹(𝑐) is a 
function of the shape parameter. The spatial derivatives in the scheme are approximated via 
differentiation of the RBF interpolant, preserving this convergence order for the differential 
operators [30]. 

Combining the bounds for temporal and spatial errors via the triangle inequality and 
using the stability of the scheme (which ensures error propagation is controlled), we obtain 
the stated global error estimate. 
Test Problems Used for Numerical Validation: 
Test Example-1: 

We take the FPIDE with 𝑣(𝜒, 0) = sin(𝜋𝜒) , 𝜒 ∈ [0, 1] and  

𝐺(𝜒, 𝑡) = 𝜋 (
𝜋

𝜂
𝑡𝜂 − 4𝑡3 cos(2𝜋𝜒)) sin(𝜋𝜒) + (

𝜋

2
−

12

Γ(4−𝜂)
𝑡3−𝛼 − 2𝜋𝑡3 cos(𝜋𝜒) −

48𝜋2Γ(𝜂)

Γ(𝜂+4)
𝑡3+𝜂) + (8𝜋𝑡6 cos(2𝜋𝜒) sin(2𝜋𝜒)). 

The analytic solution is given by [11]:  

𝑣(𝜒, 𝑡) = sin(𝜋𝜒) − 2𝑡3sin (2𝜋𝜒). 
Test Example-2: 
Consider the model problem (1) with the initial condition and source term as shown below 
[11]: 

𝑣(𝜒, 0) = 𝜒2(1 − 𝜒)2, 

𝐺(𝜒, 𝑡) =
Γ (

7

3
)

Γ (
7

2
− 𝛼)

𝑡
5

2
−𝛼𝜒2(1 − 𝜒)2 − 2 (

1

𝜂
𝑡𝜂 +

Γ (
7

3
) Γ(𝜂)

Γ (
7

2
) + 𝜂

) (1 − 6𝜒 + 6𝜒2)  

+ 2 (1 + 𝑡
5

2)
2

(1 − 2𝜒)𝜒3(1 − 𝜒)3, 

An analytical solution is  𝑣(𝜒, 𝑡) = (1 − 𝑡
5

7) 𝜒2(1 − 𝜒)2 . 

Numerical Experiments, Results, and Discussion: 
Numerical experiments were conducted to evaluate the performance of the proposed 

scheme given in Eq. (15). Two test problems defined on the spatial interval [0,1] were 
considered to validate the accuracy and stability of the approach. The accuracy of the 
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numerical results was measured using the 𝐿∞ and 𝐿2 error norms. For each example, the 

functions 𝜑0(𝜒), 𝜑1(𝑡),  and  𝜑2(𝑡) Were derived directly from the corresponding analytical 

solution. The values of the shape parameter 𝑐 that produced the most accurate 
approximations are reported in the accompanying tables. However, accuracy can be further 

improved by varying the value of the shape parameter 𝑐. All computations were performed 
using uniformly spaced spatial nodes on a system equipped with 2 GB RAM and an Intel 
Core i3 2.4 GHz processor. 

Numerical simulations for Example 1 were carried out for different values of the 

fractional parameters 𝛼 and 𝜂, the spatial step size ℎ, and the time step ∆𝑡. The computed 

results are summarized in Tables 1–3. Table 1 presents the values of 𝐿∞, 𝐿2 and the 

temporal rate of convergence for several time step sizes using 𝛼 = 0.5, ℎ =
1

32
, 𝑡 = 1, and 

𝜂 = 0.15. The results are compared with the method reported in [11], and it is clear that the 
proposed method provides better accuracy.  Similarly, in Table 2, we again compare the 

results of the proposed method with the method reported in [11] in terms of 𝐿∞ and 𝐿2 for 

various values of ℎ and ∆𝑡 =
1

1000
, 𝜂 = 0.15 , 𝑡 = 1.  In Tables 1 and 2, the last two 

columns present the rate of convergence (ROC) using 𝐿2 and the computational time (RT), 
providing a quantitative measure of the efficiency of the proposed scheme. The ROC values 

in Table 1 approach the expected theoretical order [11] as the time step ∆𝑡 is refined, 
confirming the temporal accuracy and stability of the method, while the corresponding CPU 
times remain low and increase only moderately. Likewise, Table 2 exhibits consistent 

convergence rates with decreasing spatial step size ℎ, and the gradual rise in computational 
time reflects good scalability. 

Table 3 presents the absolute errors at selected spatial points for various values of 𝛼, 
illustrating the influence of the fractional order. The results indicate that the method 
achieves reasonably good accuracy. Overall, the errors remain small throughout the domain, 

and their variation with 𝛼 reflects the expected memory effects inherent in fractional models. 

Shape parameters 𝑐 = 0.1, 0.065, 0.12, 0.15 were used for 𝛼 = 0.25, 0.5, 0.75, 0.95, 
respectively, to ensure accurate solutions.  

Table 4 highlights the influence of the fractional order 𝜂 on the solution behavior. 

The results indicate that changes in 𝜂 significantly affect the magnitude of the numerical 

errors at selected spatial points. In particular, larger values of 𝜂 tend to introduce stronger 
fractional damping effects, which modify both the solution amplitude and convergence 

characteristics. These observations further confirm that 𝜂 plays an important role in 
governing the memory and diffusion properties of the underlying fractional model. The 

influence of the fractional orders 𝛼 and 𝜂 on the solution behavior is evident from the 

numerical results. As 𝛼 increases, the solution becomes smoother, and the errors at selected 
spatial points generally decrease, reflecting the stronger memory effect associated with higher 

fractional orders. Variations in 𝜂 affect both the solution amplitude and convergence rate, 
with larger values leading to slightly slower temporal evolution due to enhanced fractional 

damping. These trends demonstrate that 𝛼 and 𝜂 play a critical role in controlling the 
memory and diffusion characteristics of the system, and their appropriate selection is 
essential for accurately capturing the system dynamics. Figures 1–3 illustrate the results for 
Example 1. In particular, Figure 1 shows a comparison between the exact and approximate 

solutions at 𝑡 = 1, demonstrating strong agreement. Figure 2 presents the corresponding 
error profile, while Figure 3 provides a three-dimensional view of the approximate solution, 
confirming the scheme’s stability and accuracy. 



                              International Journal of Innovations in Science & Technology 

December 2025|Vol 7 | Issue 4                                                          Page |3105 

Table 1. ℎ =
1

32
, 𝜂 = 0.15, 𝑡 = 1 

𝛼 ∆𝑡 𝑐 L_2 [11] 𝐿2 ROC 𝑅𝑇(sec) 
0.50 1⁄4 0.07 1.3017e-02 1.8508e-04 --- 0.03016 

0.50 1⁄8 0.09865 5.0567e-03 6.6737e-05 1.4716 0.03282 

0.50 1⁄16 0.13948 1.1256e-03 2.3831e-05 1.4856 0.04181 

0.50 1⁄32 0.175485 3.0480e-04 8.4722e-06 1.4920 0.06121 

Table 2. ∆𝑡 =
1

1000
, 𝜂 = 0.15 , 𝑡 = 1 

𝛼 ℎ 𝑐 𝐿2 [11] 𝐿2 ROC 𝑅𝑇(sec) 

0.50 1
4⁄  0.72 2.2193e-01 1.0484e-04 --- 0.24115 

0.50 1
8⁄  0.5456 4.5644e-02 2.0067e-05 2.3853 0.43763 

0.50 1
16⁄  0.3928 5.8752e-03 3.6854e-06 2.4449 0.89671 

0.50 1
32⁄  0.21033 6.8860e-04 6.7443e-07 2.4501 1.95560 

Table 3. 𝑁 = 100, ∆𝑡 =
1

100
, 𝜂 = 0.05, 𝑡 = 1 

𝜒 𝛼 = 0.25 𝛼 = 0.5 𝛼 = 0.75 𝛼 = 0.95 
0.1 1.1597e-003 7.3176e-004 3.3751e-004 2.4908e-003 

0.2 1.8762e-003 1.2421e-003 5.4718e-004 3.9469e-003 

0.3 1.8787e-003 1.2627e-003 5.5845e-004 4.3152e-003 

0.4 1.1718e-003 7.9490e-004 3.7903e-004 2.4768e-003 

0.5 2.5986e-005 2.4771e-005 8.2508e-005 1.6451e-005 

0.6 1.1263e-003 7.4815e-004 2.2276e-004 2.4454e-003 

0.7 1.8489e-003 1.2218e-003 4.4707e-004 4.1078e-003 

0.8 1.8625e-003 1.2047e-003 4.5323e-004 4.3342e-003 

0.9 1.1557e-003 6.9165e-004 2.8897e-004 2.8704e-003 

Table 4. 𝑁 = 100, ∆𝑡 =
1

100
, 𝛼 = 0.5, 𝑐 = 0.025, 𝑡 = 1 

𝜒 𝜂 = 0.25 𝜂 = 0.5 𝜂 = 0.75 𝜂 = 0.95 

0.1 2.7464e-003 3.8540e-003 8.8542e-004 7.6614e-003 

0.2 5.6792e-003 6.8822e-003 1.3939e-003 2.1993e-002 

0.3 5.9582e-003 6.4805e-003 3.3960e-004 2.7384e-002 

0.4 3.8467e-003 3.7238e-003 7.3330e-004 2.2319e-002 

0.5 3.5661e-004 1.3600e-004 1.2919e-003 1.3630e-002 

0.6 3.1837e-003 4.0959e-003 1.4176e-003 5.0971e-003 

0.7 5.3851e-003 7.0775e-003 1.4589e-003 2.5843e-003 

0.8 5.0877e-003 7.5303e-003 1.5532e-003 7.4358e-003 

0.9 1.9138e-003 3.8967e-003 4.1638e-004 5.6963e-003 

 
Figure 1. Plots of Exact and approximate solutions at 𝑡 = 1 for ∆𝑡 = 1

16⁄ , 𝑁 = 16, 𝛼 =

0.5, 𝜂 = 0.01 corresponding to Test Example-1 
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Figure 2. Error in approximate solution at 𝑡 = 1 using ∆𝑡 = 1

16⁄ , 𝑁 = 16, 𝛼 = 0.5, 𝜂 =

0.01 corresponding to Test Example-1. 

 
Figure 3. 3D Surface plot of approximate solutions over the domain [0, 1] × [0, 1]for ∆𝑡 =

1
16⁄ , 𝑁 = 16, 𝛼 = 0.5, 𝜂 = 0.01 corresponding to Test Example-1. 

Numerical simulations for Example 2 were performed for different values of 𝛼, 𝜂, ℎ, 
and Δt. The computed results are presented in Tables 5–8. Table 5 provides a comparison of 

the proposed method in comparison with the method in [29] in terms of 𝐿∞, 𝐿2, for 𝛼 =

0.25,0.5 and for several time step sizes Δt  using  ℎ =
1

32
, 𝜂 = 0.15, 𝑡 = 1. It is clear that 

the proposed method provides good accuracy. Similarly, in Table 6, the results are compared 

with the method reported in [11] for various values of ℎ, and the proposed method is found 

to be more accurate in this case. In Table 5, the ROC values obtained using 𝐿2 are given for 
different values of the fractional order α as ∆t decreases, confirming the temporal accuracy 
of the proposed method [11]. The computational time increases moderately with time-step 
refinement, indicating that higher accuracy is achieved without excessive computational 
overhead. Similarly, Table 6 shows stable and consistent ROC values under spatial 
refinement, demonstrating reliable spatial convergence. Although the RT increases for finer 
meshes, this behavior is expected and reflects the increased resolution rather than a loss of 
efficiency. Overall, Tables 5 and 6 confirm that the proposed scheme is both accurate and 
computationally efficient. Table 7 lists the absolute errors at selected spatial points for 
different α values. Table 8 illustrates the effect of the fractional order η on the solution 

behavior. An increase in 𝜂 leads to larger solution magnitudes across the domain, 
highlighting the enhanced memory effects associated with higher fractional orders. These 

results confirm the sensitivity of the model to 𝜂 and demonstrate the capability of the 
proposed method to capture fractional-order dynamics accurately. Example 2 exhibits 
oscillatory behavior and heightened sensitivity to the fractional parameters. The results in 
Tables 5–8 further demonstrate the robustness and reliability of the proposed scheme. 
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Figures 4–6 provided visual confirmation of these findings. Figure 4 compared the 

exact and computed solutions at 𝑡 = 1 and demonstrated strong agreement. Figure 5 
illustrates the error structure, and Figure 6 presents the approximate solutions for finer 

meshes with 𝑁 = 16, confirming the numerical stability and accuracy of the method across 
the entire domain over time. 

Table 5. ℎ =
1

32
, 𝜂 = 0.15, 𝑡 = 1 

𝛼 ∆𝑡 𝑐 𝐿∞ [29] 𝐿2 [29] 𝐿∞ 𝐿2 ROC 𝑅𝑇(sec) 

0.25 1
4⁄  0.0571 5.0619e-03 1.0233e-04 2.95e-03 1.48e-03 --- 0.0534 

0.25 1
8⁄  0.0385 1.5075e-03 3.1934e-04 1.01e-03 4.42e-04 1.7459 0.0569 

0.25 1
16⁄  0.0427 4.4568e-04 8.5420e-05 2.67e-04 1.31e-04 1.7579 0.0912 

0.25 1
32⁄  0.03563 1.3363e-04 1.8820e-06 2.73e-04 3.87e-05 1.7535 0.1485 

0.50 1
4⁄  0.0565 5.0551e-03 1.0218e-04 3.12e-03 1.59e-03 --- 0.0524 

0.50 1
8⁄  0.0427 1.5101e-03 3.1976e-05 1.04e-03 4.84e-04 1.7173 0.0669 

0.50 1
16⁄  0.03915 4.5565e-04 8.1780e-06 4.06e-04 1.46e-04 1.7322 0.0917 

0.50 1
32⁄  0.03854 1.3491e-04 1.9550e-06 2.52e-04 4.34e-05 1.7460 0.1420 

Table 6. ∆𝑡 =
1

1000
, 𝜂 = 0.15, 𝑐 = 0.2, 𝑡 = 1 

𝛼 ℎ 𝑐 𝐿∞ [11] 𝐿2 [11] 𝐿∞ 𝐿2 ROC 𝑅𝑇(sec) 

0.50 1
4⁄  16 5.4935e-02 1.8224e-02 8.39e-05 4.96e-05 --- 0.4306 

0.50 1
8⁄  1.79 1.3643e-02 3.4518e-03 2.45e-05 9.89e-06 2.4479 0.9301 

0.50 1
16⁄  0.598 3.3125e-03 7.8340e-04 2.01e-05 1.62e-06 2.4891 1.9183 

0.50 1
32⁄  0.2018 8.0164e-04 2.5050e-05 2.77e-05 2.90e-07 2.4830 4.1079 

Table 7. 𝑁 = 1000, ∆𝑡 =
1

32
, 𝜂 = 0.15, 𝑐 = 0.2, 𝑡 = 1 

𝜒 𝛼 = 0.25 𝛼 = 0.5 𝛼 = 0.75 𝛼 = 0.95 
0.1 7.7069e-006 6.8124e-005 2.3609e-004 4.8442e-004 

0.2 6.4604e-005 8.3152e-005 4.1054e-004 8.9481e-004 

0.3 1.3171e-004 7.6427e-005 5.3774e-004 1.2204e-003 

0.4 1.8241e-004 6.6277e-005 6.1756e-004 1.4336e-003 

0.5 2.0114e-004 6.2055e-005 6.4555e-004 1.5093e-003 

0.6 1.8274e-004 6.6571e-005 6.1924e-004 1.4373e-003 

0.7 1.3221e-004 7.6909e-005 5.4037e-004 1.2262e-003 

0.8 6.5032e-005 8.3640e-005 4.1303e-004 9.0021e-004 

0.9 7.9323e-006 6.8423e-005 2.3753e-004 4.8753e-004 

Table 8. 𝑁 = 100, ∆𝑡 =
1

100
, 𝛼 = 0.5, 𝑐 = 0.02, 𝑡 = 1 

𝜒 𝜂 = 0.25 𝜂 = 0.5 𝜂 = 0.75 𝜂 = 0.95 
0.1 5.5279e-005 1.7380e-004 3.8309e-004 4.6193e-004 

0.2 7.6605e-005 2.6963e-004 6.5911e-004 8.1456e-004 

0.3 7.3528e-005 3.1499e-004 8.5071e-004 1.0866e-003 

0.4 6.5310e-005 3.3590e-004 9.7241e-004 1.2882e-003 

0.5 6.1656e-005 3.4331e-004 1.0227e-004 1.4018e-003 

0.6 6.5498e-005 3.3964e-004 9.9589e-004 1.3997e-003 

0.7 7.3883e-005 3.2109e-004 8.8797e-004 1.2610e-003 
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0.8 7.7022e-005 2.7576e-004 6.9513e-004 9.7974e-004 

0.9 5.5560e-005 1.7752e-004 4.0430e-004 5.5740e-004 

 
Figure 4. Plots of Exact and approximate solutions at 𝑡 = 1 for ∆𝑡 = 1

16⁄ , 𝑁 = 20, 𝛼 =

0.5, 𝜂 = 0.05 corresponding to Test Example-2 

 
Figure 5. Error in approximate solution at 𝑡 = 1 using ∆𝑡 = 1

16⁄ , 𝑁 = 16, 𝛼 = 0.5, 𝜂 =

0.05 corresponding to Test Example-2. 

 
Figure 6. 3D Surface plot of approximate solutions over the domain [0, 1] × [0, 1]for ∆𝑡 =

1
16⁄ , 𝑁 = 16, 𝛼 = 0.5, 𝜂 = 0.05 corresponding to Test Example-2 

Conclusion: 
This work presented a mesh-free numerical framework based on multiquadric radial 

basis functions for solving a nonlinear fractional partial integro-differential equation with a 
weakly singular kernel. The method combined a backward difference approximation for the 
Caputo derivative with RBF interpolation for the spatial and integral operators, which 
allowed the full scheme to be implemented without any need for structured meshes. 
Numerical experiments demonstrated that the proposed approach provides accurate 
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approximations for representative test problems. The computed solutions showed close 
agreement with the analytical solutions across the spatial domain, and the error norms 
confirmed the reliability and efficiency of the method for different fractional parameters and 
discretization settings. These findings indicate that the meshfree multiquadric RBF strategy is 
a useful computational tool for fractional models involving memory effects and 
nonlinearities. The approach can be extended to higher-dimensional problems and to other 
classes of fractional integro-differential equations in future studies. 
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