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Fractional partial integro-differential equations play an important role in describing

NOISIAIQ

physical and engineering systems that exhibit memory and nonlocal effects. Their

nonlinear structure and the presence of weakly singular kernels make analytical
solutions difficult to obtain, which highlights the need for accurate and flexible numerical
strategies. This study develops a meshfree computational method based on multiquadric
radial basis functions for solving a nonlinear fractional partial integro-differential equation
involving the Caputo derivative. The temporal discretization is carried out using a backward
difference formula, and the spatial operators are approximated through radial basis function
interpolation. The resulting scheme avoids mesh generation and is suitable for irregular or
scattered spatial nodes. Numerical experiments are presented to illustrate the accuracy,
reliability, and efficiency of the method for representative test problems. The results indicate
that the proposed meshfree approach provides a robust tool for nonlinear fractional models
with weakly singular kernels.
Keywords: Fractional Partial Integro-Differential Equation; Caputo Derivative; Weakly
Singular Kernel; Meshfree Method; Radial Basis Functions; Integral Operator.
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Introduction:

Fractional calculus generalizes differentiation and integration to non-integer orders,
offering mathematical operators that can model memory effects and hereditary properties in
complex systems [1]. Unlike classical derivatives, fractional derivatives are nonlocal, as their
evaluation at any given time depends on the entire history of the function. This nonlocal
property makes them particularly suitable for modeling anomalous diffusion, viscoelasticity,
relaxation processes, and multiscale transport phenomena [2][3]. Among the various
definitions of fractional derivatives, the Caputo derivative is widely used in physical models
because it accommodates classical initial conditions and possesses well-understood analytical
properties [4]. The growing interest in fractional operators is linked to increasing
experimental evidence that many natural and engineered systems display power-law memory,
long-range interactions, and non-exponential relaxation, which cannot be captured accurately
by integer-order models [5][6].

Fractional partial integro-differential equations (FPIDEs) appear naturally when
fractional differentiation is combined with convolution-type integral operators representing
additional memory effects [7][8]. Many fractional partial integro-differential equations
(FPIDEs) involve weakly singular kernels, often of the form (t-s)™(x-1), which commonly
appear in viscoelasticity, hereditary heat conduction, and population models with distributed
delays [8][9][10]{11]. Nonlinear FPIDEs are particularly difficult because they couple
nonlocal differential operators, integral memory terms, and nonlinear reaction terms in a
single framework [11][12][13][14][15]. The diversity of applications of nonlinear FPIDEs has
stimulated the development of numerical strategies capable of handling nonlocal operators,
memory integrals, and nonlinearities [9][11][12][13][14][15][16][17].

A wide range of numerical methods has been proposed by researchers to solve
FPIDEs. For nonlinear FPIDEs, iterative schemes including Newton linearization,
predictor—corrector techniques, fixed-point iterations, and Anderson-accelerated solvers
have been used to enhance robustness and convergence behavior [11][12][13][16][17]. These
grid-based methods have been successful; they often require structured meshes and may
become less effective for irregular geometries, moving boundaries, or scattered spatial data
sets.

Meshfree numerical methods have emerged as an effective alternative to classical
grid-based schemes, as they eliminate the need for mesh generation and rely instead on
scattered computational nodes to construct approximations [18]. These methods provide
geometric flexibility, simplify local refinement, and allow the use of smooth basis functions
that support accurate evaluation of higher order derivatives [19]. Commonly used meshfree
techniques include the element-free Galerkin framework, moving least squares formulations,
and radial basis function (RBF) interpolation [20]. Their ability to employ globally smooth
functions makes them particularly suitable for fractional and integro-differential models
where nonlocal operators require consistent approximation over extended spatial supports
[21]. Recent developments in meshless theory further demonstrate their efficiency and
robustness for a broad class of time-dependent and fractional PDEs. Examples include local
differential quadrature formulations for PDEs [22], symmetric RBF schemes for elliptic
problems [23], high-accuracy local meshless procedures for fractional PDEs arising in
physics [24], and numerical simulation of multi-dimensional models using improved local
meshless approaches [25]. Recent studies have also demonstrated the effectiveness of
meshfree strategies for fractional viscous wave models with variable coefficients [26] and for
highly complex nonlinear plasma and energy-related fractional PDE [27][28][29]. An
increasing body of research shows that meshfree RBF-based methods provide a powerful
and flexible framework for solving fractional partial integro-differential equations, especially
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when handling scattered data, irregular geometries, derivative discontinuities, memory-
dependent dynamics, or spatially nonlocal interactions [7].

Among meshfree techniques, radial basis function methods have shown strong
performance for a variety of fractional partial differential equations due to their spectral-like
accuracy and ability to approximate derivatives on scattered nodes [30]. Global RBFs such as
Gaussian, multiquadric, and inverse multiquadric kernels provide smooth approximants that
facilitate accurate computation of fractional and integral operators [31]. RBF collocation and
RBF-based differential quadrature have been successfully applied to fractional diffusion,
advection—diffusion, telegraph, and wave-diffusion equations in recent studies [25].
Extensions of RBF methods include local RBF collocation, hybrid RBF schemes, and spatio-
temporal RBF formulations, which improve computational efficiency and conditioning while
maintaining high accuracy [29]. These developments demonstrate that meshfree RBF
methods provide a promising framework for solving nonlinear fractional partial integro-
differential equations with weakly singular kernels, motivating the approach taken in the
present article.

Although many numerical techniques have been developed for fractional partial
integro-differential equations, several gaps remain in the existing literature. Most grid-based
schemes rely on structured meshes and often lose accuracy when the solution involves
strong nonlinearities or when spatial nodes are irregular or scattered. In addition, the
presence of weakly singular kernels and memory-driven operators increases the difficulty of
constructing stable and accurate approximations. These limitations motivate the need for
meshfree strategies that can provide accurate derivative approximation, maintain stability for
nonlinear models, and remain effective for scattered node distributions. The present study
addresses these gaps by developing a multiquadric RBF-based method tailored for nonlinear
FPIDEs with weakly singular kernels.

In this work, we consider the nonlinear FPIDE presented in equations (1)—(3) as follows:

v e -py & R dp = G(x,),t 20 (1)
17()(, 0) - (pO(X)' (2)
v(a,t) = @1(t), v(b,t) = §02(t) t>0, 3)

wherea < y < b,v =v(y, t) — Denotes the a-order Caputo fractional derivative

> e
with 0 < a <1, yis the space variable, tis the time variable, and @g, 1, @, G(x,t)
Given smooth functions.

This formulation encompasses a broad class of fractional evolution equations, where
both memory-driven diffusion and hereditary integral effects influence the system dynamics.
The initial and boundary conditions specified in equations (2) and (3) ensure the well-
posedness of the problem and provide the foundation for the numerical treatment
developed in the subsequent sections.

Objective:

This study presents a meshfree computational framework based on multiquadric
radial basis functions (RBFs) for solving nonlinear fractional partial integro-differential
equations (FPIDEs) with weakly singular kernels. The primary objective is to develop an
accurate, flexible numerical scheme that circumvents the need for structured meshes, thereby
efficiently handling problems with irregular geometries or scattered data. The novelty lies in
the integration of a backward difference formula for Caputo derivative discretization with a
global RBF interpolation for spatial and integral operators, specifically tailored to address the
challenges posed by nonlinearity, memory effects, and weak singularities simultaneously.
Through systematic numerical experiments, the work demonstrates the robustness, stability,
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and high accuracy of the proposed method, offering a reliable computational tool for
complex fractional models in science and engineering.
Methodology:

To construct the numerical scheme, the time interval [0,T] is partitioned into
uniform time levels t; = IAt,l = 0,1,2, ..., L, and the spatial domain [a, b] is divided by M
nodes. The solution is then approximated at these discrete space—time points.

The following definitions provide the mathematical framework for the proposed technique.
Definition 1:
A function ®: R"™ = R is referred to as radial when it can be written in the form
@00 = ydlxlD,

where ||| tepresents the Euclidean norm and :[0,0) = R is a single-variable
function [30].

Definition 2:

An RBF is a real-valued function of one variable whose argument is the Euclidean
distance from a prescribed center. For any node , the cotresponding RBF takes the form

Y =vdlx — 11D

In this study, we employ the multiquadric (MQQ) radial basis function, which is an

infinitely smooth RBF given by [30]:

Y(ry) = [rF+c?

where 17 =||¥ — x/ll and ¢ > 0 is the shape parameter. The choice of ¢ influences
both the accuracy of the approximation and the conditioning of the resulting system [30].
Definition 3:

a(i‘( 9 The order a has the following form [10]:

%v(xt) —a v(x.q)
ata F(l a)f( q) aq dq'(4)

The Caputo derivative

where 0 < a < 1.
Approximation in Time:
To develop the proposed technique, we take t = ty4q in Eq. (1),

tN+1
0*v(X, ty+1) ov(x, ty+1) 9*v(y, P)
TNH‘FU(X» tN+l)¢ f (ty+1 — )Tt 97°

= G(X tn+1), (5)
For the Caputo derivative appearing in (5), the corresponding backward difference
approximation of the truncation error RYT1 is given by [10]:
0%v(xtnsr) 1 N v(xtne1-1)—v(X0EN-1) N+1
ot T r-a)<l=0tl (At)® +Rae ©

where ¢, = (L+ 1D)™* - (179 1=0,1,2,..,N,and RY*' < C,At?7%.

The integral term in Eq. (5) is approximated as follows:

tN+1 tN+1

0%v(y, P) L, 0%v(x, tysr — D)
f (tN+1_ )77 1 a 2 = f pn ! a)(z dp'
° ti1
Zf o1 2V s — p)
p
Otl X
2
Takingp = ¢; in w, we get

dx?
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ti+1

Z 0*v(x, tys1 — b))
= %

=0 4]

_ AT i 02v(X, ty 11 — 1)

2
n = ox

AtT < d 0*v(x, tys1-1)

71 1dp,

@+ D" =1,

R oz

wheredy =1,d; = (+1)"-1", 1 =1,2,...,N.

aU(X,tN+1) 1
ox

(7)

The nonlinear term v(Y, ty4+1) n Eq. (5) is linearized by the following

formula,

av(y.t ) av(y.t ) ov(y.ty) av(x.ty)
v(y, tN+1)% v(x tN)% +v(x ty+1) XN v(x, ty) aXN . ()

Thus, using Egs. (6)-(8) in (5) and rearranging, we have
n
v () + At T2 — @) (V QOvM 00 + v Covy 00 — Aiv;’(\'fl@())
= At“T(2 — a)v™ (vy (1) + chO(x) +(1 - cl)v"’()c)
N-1
+ Zz=1 (= eIV M 69
+ AtOT (2 — a)GN*(y), (9)
whete v (1) = v(r, ), v () = 22 and Y1 () = G(x, tuen).
For ¥ = xi, Eq. (9) becomes
v () + At T2 — @) (U;IQ'(X)UN“(X) +vV vy 00 - Anﬁv;’(v;l()())
= H;, (10)

where
He = 86T = vV () ) + env G + (1= e ()
N-1 At
+ ) ()" +—— T2~ a) Z A )
+ At9T (2 — )GV ().

Approximation in Space:
The RBF approximation of the function vN*1(y) at y = y;,i = 1,2, ..., L is given by
M

PG = ) A (), D

j=1

a+n

where 135 = [|x; — x;ll-
Thus fori = 2,3,...,M — 1, Egs. (10) and (11) provide
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M
Z 44 (ry)
=1

M M
+At*T(2 — @) Z y'(ry) 2 A (i)
j=1 j=1

N N AT
+ z Ay () Z A(r;) - 72 AV (1)
j=1 j=1

j=1

Fori = 1,M, Eq. (3) leads to

M

D () = o (V) (13)

=1
and

M

D AY(ry) = @y (e, (18)

j=1
Respectively.

Egs. (12)-(14) are represented in matrix form as follows:

a _ N N _Agetn _ N+1 _
A+At*T(2—a)(VN *B+ vl «C) . ['(2—-a)D)AV*! = H, (15)

Where A, B, C are M X M matrices and vV ,V)I{V Are M X 1 matrices such that A =
[W(rij):1<i,j <M],B=[y'(r;):2<i<M-11<j < M,and 0 elsewhere],
C= [lp(rij): 2<i<M-11<j<Mand0 elsewhere],vN =[wN(x):1<i<M],
v =[vl ()1 <i<M], H=[p(t"*), Hy, Hy, oo, Hy—q, 2 (V)] and AV*! =
(AN 1 < i< M].
Algorithm:
The numerical scheme in (15) can be carried out through the following sequence of steps:
Selection of spatial nodes:
Choose M collocation points in the spatial interval [a, b] that will be used for constructing
the RBF approximation.
Time Discretization:
Fix the time step At and determine the discrete time levels. t; = [At,l = 0,1,2, ..., L.
Computation of RBF quantities:
Specify the multiquadric radial basis function Y (r) and evaluate all matrices and vectors that
appear in the discrete formulation in Eq. (15).
Initialization and first solve:
Use the initial condition from Eq. (2) to obtain the coefficients A°.
Then solve the system in Eq. (15) to compute the solution at the first time level.
Time marching:
For each successive step N, update the coefficients AN *1 by solving Eq. (15) and evaluating
the approximate solution using Eq. (11).
The flow diagram of the algorithm is given as:
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Input
X, AL b, @, 1 and v(y;, 0)
l

Compute the matrices in

Eq/(15)

1
‘ Solve the system (153) ‘
1
Approximate the solution
from (11)

1
H Output (the solution 17

N+1
)

Stability Analysis:

The stability of the proposed meshfree scheme is investigated using a perturbation
approach. We examine how errors in the initial data propagate through the time-stepping
procedure. The following theorem establishes a sufficient condition for numerical stability.
Theorem 1 (Stability):

Consider the numerical scheme defined by Eq. (15). Assume the exact
solution v(), t) is sufficiently smooth and the multiquadric RBF shape parameter ccis
chosen such that the system matrices are well-conditioned. If the time step At satisfies the
condition

AT 2= a)(l vy oo HI VY Hloll L' 1) S 56 <1,

where L' is the spatial differential operator associated with the RBF approximation,
then the scheme is unconditionally stable in the sense that a small perturbation in the initial
data leads to a bounded perturbation in the numerical solution at later times.

Proof. Let 7N Be the perturbed numerical solution at time level N, and define the
error. ¥ = vN — N, Substituting into the linearized discrete equation (10) and subtracting
the perturbed equation, we obtain an error evolution equation. Under the linearization (8)
and using the properties of the Caputo derivative discretization [10], the error satisfies

N-1 N
1+ A4t%r2 —a)Ly)eNtt = » peV 1+ At“’”’yz diL,,e"+
1=0 =1

where Ly is a linear operator depending on vV and v)](v , and [}, are constants
derived from the discretization weights. Taking norms and applying Gronwall’s inequality
for discrete systems [11], we find

Il eN*t < Clle® |l forallN =0,

provided the condition on At holds. The constant C depends on a,7, T, and the
stability constants of the RBF interpolation matrices [30]. This demonstrates that initial
errors do not grow unboundedly, ensuring numerical stability.

Remarks:

The condition in Theorem 1 is mild and is typically satisfied for moderate time steps,
as observed in the numerical experiments where stable results were obtained for all tested
values of At.

Convergence Analysis:

The convergence of the proposed method is analysed by estimating the truncation
error and examining its behavior as the spatial and temporal step sizes approach zero. The
following theorem provides the convergence rate.

Theorem 2 (Convergence):

Let v(y,t) € C*?([a,b] X [0,T]) be the exact solution of the nonlinear FPIDE
(1)—(3), and let vy 4t be the numerical solution obtained by the scheme (15) using
multiquadric RBFs with shape parameter ccand uniform time step At. Assume the stability
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condition of Theorem 1 holds. Then, there exist constants C;,C; > 0, independent
of h and A¢, such that the global error satisfies
Il v(,ty) = vhaCGoty) Nl < CL A% 4+ C, R,

Where m(c) > 0is the convergence order of the multiquadric RBF interpolation,

which depends on the shape parameter ¢ and the smoothness of the solution [30].
Proof. The global error at time ty Is decomposed into temporal and spatial components:
EV = v, ty) = vnacCytn) = (00, t0) = 04 t) + = (04 tn) = Ve G ta)):
Temporal Error Spatial Error
Temporal Error:

The Caputo derivative is approximated by the L1-formula with local truncation
error O(At?~%) [10][11]. By the stability, the accumulation of the local errors over N steps
yields a global temporal error bound 0 (4t2™%).

Spatial Error:

The spatial approximation uses multiquadric RBF interpolation. For a sufficiently
smooth solution, the error between the exact solution and its RBF interpolant at the
collocation nodes satisties [30][31]

I v(, ) = Myv(, ) lly, < F(c) ™,

where [Ty, is the RBF interpolation operatot, h is the nodal spacing, and F(c) is a
function of the shape parameter. The spatial derivatives in the scheme are approximated via
differentiation of the RBF interpolant, preserving this convergence order for the differential
operators [30].

Combining the bounds for temporal and spatial errors via the triangle inequality and
using the stability of the scheme (which ensures error propagation is controlled), we obtain
the stated global error estimate.

Test Problems Used for Numerical Validation:

Test Example-1:

We take the FPIDE with v(y, 0) = sin(my), ¥ € [0, 1] and
G(x,t) =m (% th — 4t23 cos(2n)()) sin(my) + (g - r(i_in)

Af;—ﬁ? t3+’7) + (87t® cos(2my) sin(2my)).

The analytic solution is given by [11]:

v(x,t) = sin(my) — 2t3sin (2my).

Test Example-2:

Consider the model problem (1) with the initial condition and soutrce term as shown below
[11]:

t37% — 2mt3 cos(my) —

v(x,0) = x*(1 - x)? (7)
5 4 B B 1 r 3 r(m
F(%—a)t X1 -x?*-2 nt" +—F(§)+n

+2 (1 + t;) (1-20x*(1-0°

5
An analytical solution is v(y,t) = (1 - t7) x2(1—x)?.
Numerical Experiments, Results, and Discussion:
Numerical experiments were conducted to evaluate the performance of the proposed
scheme given in Eq. (15). Two test problems defined on the spatial interval [0,1] were
considered to validate the accuracy and stability of the approach. The accuracy of the

G(x,t) = (1—-6x+6x%
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numerical results was measured using the Lo, and L, error norms. For each example, the
functions @ (), ¢1(t), and @,(t) Were derived directly from the corresponding analytical
solution. The values of the shape parameter ¢ that produced the most accurate
approximations are reported in the accompanying tables. However, accuracy can be further
improved by varying the value of the shape parameter ¢. All computations were performed
using uniformly spaced spatial nodes on a system equipped with 2 GB RAM and an Intel
Core 13 2.4 GHz processor.

Numerical simulations for Example 1 were carried out for different values of the
fractional parameters a and 7, the spatial step size h, and the time step At. The computed

results are summarized in Tables 1-3. Table 1 presents the values of Ly, L, and the

. . . 1
temporal rate of convergence for several time step sizes using @ = 0.5,h = 7= 1, and

n = 0.15. The results are compared with the method reported in [11], and it is clear that the
proposed method provides better accuracy. Similarly, in Table 2, we again compare the
results of the proposed method with the method reported in [11] in terms of Ly, and L, for

various values of h and At = ﬁ,n =0.15,t = 1. In Tables 1 and 2, the last two

columns present the rate of convergence (ROC) using L, and the computational time (RT),
providing a quantitative measure of the efficiency of the proposed scheme. The ROC values
in Table 1 approach the expected theoretical order [11] as the time step At is refined,
confirming the temporal accuracy and stability of the method, while the corresponding CPU
times remain low and increase only moderately. Likewise, Table 2 exhibits consistent
convergence rates with decreasing spatial step size h, and the gradual rise in computational
time reflects good scalability.

Table 3 presents the absolute errors at selected spatial points for various values of «,
illustrating the influence of the fractional order. The results indicate that the method
achieves reasonably good accuracy. Overall, the errors remain small throughout the domain,
and their variation with a reflects the expected memory effects inherent in fractional models.
Shape parameters ¢ = 0.1,0.065,0.12,0.15 were used for a = 0.25,0.5,0.75,0.95,
respectively, to ensure accurate solutions.

Table 4 highlights the influence of the fractional order n on the solution behavior.
The results indicate that changes in 7 significantly affect the magnitude of the numerical
errors at selected spatial points. In particular, larger values of 7 tend to introduce stronger
fractional damping effects, which modify both the solution amplitude and convergence
characteristics. These observations further confirm that 1 plays an important role in
governing the memory and diffusion properties of the underlying fractional model. The
influence of the fractional orders @ and n on the solution behavior is evident from the
numerical results. As a increases, the solution becomes smoother, and the errors at selected
spatial points generally decrease, reflecting the stronger memory effect associated with higher
fractional orders. Variations in 7 affect both the solution amplitude and convergence rate,
with larger values leading to slightly slower temporal evolution due to enhanced fractional
damping. These trends demonstrate that @ and 7 play a critical role in controlling the
memory and diffusion characteristics of the system, and their appropriate selection is
essential for accurately capturing the system dynamics. Figures 1-3 illustrate the results for
Example 1. In particular, Figure 1 shows a comparison between the exact and approximate
solutions at t = 1, demonstrating strong agreement. Figure 2 presents the corresponding
error profile, while Figure 3 provides a three-dimensional view of the approximate solution,
confirming the scheme’s stability and accuracy.

December 2025 | Vol 7 | Issue 4 Page | 3104



0
OPEN ® \YACCESS

International Journal of Innovations in Science & Technology

Table 1.h = —,7 = 0.15,t = 1

Figure 1. Plots of Exact and approximate solutions at t = 1 for At = 1/ 16 N =16,a =

o wa
— Exact

0

0.2 0.4 x

06 0.s

0.5, 7 = 0.01 cotresponding to Test Example-1

a At c L_2[11] L, ROC | RT(sec)
050 | 14 0.07 | 1.3017¢-02 | 1.8508¢-:04 | — | 0.03016
0.50 | 18 | 0.09865 | 5.0567¢-03 | 6.6737¢-05 | 1.4716 | 0.03282
0.50 | 116 | 0.13948 | 1.1256e-03 | 2.3831¢-05 | 1.4856 | 0.04181
0.50 | 132 | 0.175485 | 3.0480e-04 | 8.4722¢-06 | 1.4920 | 0.06121

Table 2. At = ——, 5 = 0.15,t = 1
1000
a h c L, [11] L, ROC | RT(sec)
050 17, | 072 [ 22193¢01 | 1048404 | - 0.24115
050 1/, | 05456 | 45644c-02 | 2.0067e-05 | 23853 | 0.43763
050 1/, | 03928 | 58752¢03 | 3.6854c-06 | 24449 | 0.89671
050 1/, | 021033 | 6.8860c-04 | 6.7443-07 | 24501 | 1.95560
Table 3. N = 100,At = —,7 = 0.05,t = 1

X a = 0.25 a = 0.5 a = 0.75 a = 0.95

0.1 | 1.1597¢:003 | 7.3176e-004 | 3.3751¢-004 | 2.4908¢-003

02 | 1.8762¢:003 | 1.2421e-003 | 5.4718¢-004 | 3.9469¢-003

03 | 1.8787¢:003 | 1.2627¢003 | 5.5845¢-004 | 4.3152¢-003

04 | 1.1718¢:003 | 7.9490e-004 | 3.7903¢-004 | 2.4768¢-003

05 | 2.5986e005 | 24771005 | 8.2508¢-005 | 1.6451e-005

0.6 | 1.1263¢:003 | 7.4815¢-004 | 2.2276e¢-004 | 2.4454¢-003

0.7 | 1.8489¢:003 | 1.2218¢:003 | 4.4707¢-004 | 4.1078¢-003

0.8 | 1.8625¢:003 | 1.2047¢003 | 4.5323¢-004 | 4.3342¢-003

0.9 | 1.1557¢:003 | 6.9165¢-004 | 2.8897¢-004 | 2.8704¢-003

Table 4. N = 100,At = —,a = 0.5,c = 0.025,t = 1

X n = 0.25 n = 0.5 n = 0.75 n = 0.95

0.1 | 27464003 | 3.8540e003 | 8.8542¢-004 | 7.6614e-003

02 | 5.6792¢:003 | 6.8822¢-003 | 1.3939¢-003 | 2.1993¢-002

03 | 59582¢003 | 6.4805¢-003 | 3.3960e-004 | 2.7384e-002

04 | 3.8467¢003 | 3.7238¢-003 | 7.3330e-004 | 2.2319¢-002

05 | 3.5661e-004 | 1.3600e-004 | 1.2919¢-003 | 1.3630e-002

0.6 | 3.1837¢:003 | 4.0959¢-003 | 1.4176e-003 | 5.0971e-003

0.7 | 53851003 | 7.0775¢003 | 1.4589¢-003 | 2.5843¢-003

0.8 | 5.0877¢:003 | 7.5303¢-003 | 1.5532¢-003 | 7.4358¢-003

0.9 | 1.9138¢:003 | 3.8967¢-003 | 4.1638¢-004 | 5.6963¢-003

3
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Error

I L L L
u} 02 0.4 0B [AR=} 1
X

Figure 2. Error in approximate solution at t = 1 using At = 1/16 ,N=16,a =0.5n =
0.01 corresponding to Test Example-1.

Figure 3. 3D Surface plot of approximate solutions over the domain [0, 1] X [0, 1]for At =
1/16 ,N =16,a = 0.5, = 0.01 corresponding to Test Example-1.

Numerical simulations for Example 2 were performed for different values of a, 1, h,
and At. The computed results are presented in Tables 5-8. Table 5 provides a comparison of
the proposed method in comparison with the method in [29] in terms of Ly, Lo, for a@ =

0.25,0.5 and for several time step sizes At using h = Siz,r] = 0.15,t = 1. It is clear that

the proposed method provides good accuracy. Similatly, in Table 6, the results are compared
with the method reported in [11] for various values of h, and the proposed method is found
to be more accurate in this case. In Table 5, the ROC values obtained using L, are given for
different values of the fractional order « as At decreases, confirming the temporal accuracy
of the proposed method [11]. The computational time increases moderately with time-step
refinement, indicating that higher accuracy is achieved without excessive computational
overhead. Similarly, Table 6 shows stable and consistent ROC wvalues under spatial
refinement, demonstrating reliable spatial convergence. Although the RT increases for finer
meshes, this behavior is expected and reflects the increased resolution rather than a loss of
efficiency. Overall, Tables 5 and 6 confirm that the proposed scheme is both accurate and
computationally efficient. Table 7 lists the absolute errors at selected spatial points for
different o values. Table 8 illustrates the effect of the fractional order n on the solution
behavior. An increase in 1 leads to larger solution magnitudes across the domain,
highlighting the enhanced memory effects associated with higher fractional orders. These
results confirm the sensitivity of the model to 1 and demonstrate the capability of the
proposed method to capture fractional-order dynamics accurately. Example 2 exhibits
oscillatory behavior and heightened sensitivity to the fractional parameters. The results in
Tables 5-8 further demonstrate the robustness and reliability of the proposed scheme.
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Figures 4-6 provided visual confirmation of these findings. Figure 4 compared the

exact and computed solutions att = 1 and demonstrated strong agreement. Figure 5
illustrates the error structure, and Figure 6 presents the approximate solutions for finer

meshes with N = 16, confirming the numerical stability and accuracy of the method across
the entire domain over time.

Table 5. h = —,n =015t =1
a At c Lo [29] L, [29] Lo L, ROC | RT(sec)
025 1/, | 00571 | 5.0619¢-03 | 1.0233¢-04 | 2.95¢-03 | 148¢-035 | — | 0.0534
0.25 | 1/, | 0.0385 | 1.5075¢-03 | 5.1934e-04 | 1.01e-03 | 4.426-04 | 17459 | 0.0569
0.25 |1/, | 0.0427 | 44568¢-04 | 85420¢-05 | 2.67¢-04 | 131e-04 | 17579 | 0.0912
0.25 |1/, | 003563 | 1.3363¢-04 | 1.8820e-06 | 273¢-04 | 3.87e-05 | 17535 | 0.1485
0.50 | 1/, | 0.0565 | 5.0551e-03 | 1.0218e-04 | 3.12¢-03 | 1.59%-03 | — | 0.0524
0.50 | 1/, | 0.0427 | 1.5101e-03 | 3.1976¢-05 | 1.04¢-03 | 484c-04 | 17175 | 0.0669
0.50 | 1/, | 003915 | 4.5565¢-04 | 8.1780e-06 | 4.06e-04 | 1.46e-04 | 17522 | 0.0917
0.50 | 1/, | 0.03854 | 1.3491e-04 | 1.9550c-06 | 2.52¢-04 | 434c-05 | 1.7460 | 0.1420
Table 6. At = ——, = 0.15,c = 0.2,t = 1
a h c Lo [11] L, [11] Lo L, ROC | RT(sec)
050 | 17, 16 | 5.4935¢-02 | 18224c-02 | 8.39¢-05 | 496e-05 | — | 04306
0.50 | 1/g | 179 | 13643c-02 | 3.45186-03 | 245¢-05 | 9.89¢-06 | 24479 | 09301
0.50 |1/, | 0.598 | 3.3125¢-03 | 7.8340e-04 | 2.01e-05 | 1.62¢-06 | 24891 | 1.9183
0.50 |17, [0.2018 | 8.0164c-04 | 250506-05 | 277¢-05 | 2.90¢-07 | 24830 | 41079
Table 7. N = 1000,At = —,n = 0.15,c = 0.2,t = 1
X a = 0.25 a=0.5 a =0.75 a = 0.95
0.1 | 7.7069¢-006 | 6.8124¢-005 | 2.3609¢-004 | 4.8442¢-004
02 | 6.4604c-005 | 8.3152¢-005 | 4.1054e-004 | 8.9481¢-004
03 | 1.3171e-004 | 7.6427¢-005 | 5.3774e-004 | 1.2204¢-003
0.4 | 1.8241¢:004 | 6.6277¢-005 | 6.1756e-004 | 1.4336¢-003
0.5 | 2.0114e-004 | 6.2055¢-005 | 6.4555¢-004 | 1.5093¢-003
0.6 | 1.8274e-004 | 6.6571e-005 | 6.1924-004 | 1.4373¢-003
0.7 | 1.3221¢-004 | 7.6909¢-005 | 5.4037¢-004 | 1.2262¢-003
0.8 | 6.5032¢-005 | 8.3640e-005 | 4.1303¢-004 | 9.0021e-004
0.9 | 7.9323¢-006 | 6.8423¢-005 | 2.3753¢-004 | 4.8753¢-004
Table 8. N = 100,At = —,a = 05,c = 0.02,t = 1
X n = 0.25 n =05 n = 0.75 n = 0.95
0.1 | 5.5279¢:005 | 1.7380c-004 | 3.8300¢-004 | 4.6193¢-004
02 | 7.6605¢-005 | 2.6963¢-004 | 6.5911c-004 | 8.1456e-004
03 | 7.3528¢:005 | 3.1499¢.004 | 8.5071c-004 | 1.0866¢-003
0.4 | 6.5310e:005 | 3.3590c.004 | 9.7241¢-004 | 1.2882¢-003
05 | 6.1656e-005 | 3.4331e-004 | 1.0227¢-004 | 1.4018¢-003
0.6 | 6.5498¢-005 | 3.3964c-004 | 9.9589¢-004 | 1.3997¢-003
0.7 | 7.3883¢:005 | 3.2109¢-004 | 8.8797¢-004 | 1.2610e-003
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0.8 7.7022e-005 2.7576e-004 6.9513e-004 | 9.7974e-004
0.9 5.5560e-005 1.7752e-004 4.0430e-004 | 5.5740e-004
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Figure 4. Plots of Exact and approximate solutions at t = 1 for At = 1/ 16 N=20,a=
0.5, 7 = 0.05 corresponding to Test Example-2
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Figure 5. Error in approximate solution at t = 1 using At = 1/16 ,N=16,a =0.5,n =
0.05 corresponding to Test Example-2.

014
012
01
0.0s8-{-
.06+
004

002+

oo

Figure 6. 3D Surface plot of approximate solutions over the domain [0, 1] X [0, 1]for At =
1/16 ,N =16,a = 0.5,7 = 0.05 corresponding to Test Example-2

Conclusion:

This work presented a mesh-free numerical framework based on multiquadric radial
basis functions for solving a nonlinear fractional partial integro-differential equation with a
weakly singular kernel. The method combined a backward difference approximation for the
Caputo derivative with RBF interpolation for the spatial and integral operators, which
allowed the full scheme to be implemented without any need for structured meshes.
Numerical experiments demonstrated that the proposed approach provides accurate

December 2025 | Vol 7 | Issue 4 Page | 3108



0
OPEN °) ACCESS

International Journal of Innovations in Science & Technology

approximations for representative test problems. The computed solutions showed close

agreement with the analytical solutions across the spatial domain, and the error norms

confirmed the reliability and efficiency of the method for different fractional parameters and
discretization settings. These findings indicate that the meshfree multiquadric RBF strategy is

a useful computational tool for fractional models involving memory effects and

nonlinearities. The approach can be extended to higher-dimensional problems and to other

classes of fractional integro-differential equations in future studies.
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