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iabetic Retinopathy remains the primary microvascular complication of diabetes and 
a leading cause of irreversible blindness globally. While deep learning models offer 
high diagnostic accuracy, their widespread clinical integration is profoundly limited 

by two fundamental, unresolved deficiencies in previous literature: the absence of 
comprehensive, fair comparative analysis across diverse architectures and the pervasive lack 
of transparent, quantifiable prediction confidence necessary for clinical acceptance. This study 
directly addresses these challenges by presenting a highly optimized and rigorous comparative 
evaluation of three powerful models: the high-capacity EfficientNetB0, the computationally 
efficient MobileNetV3Small, and a novel Custom Bayesian Neural Network (BNN) 
framework. Through robust methodology, all models achieved exceptional generalization, 
stabilizing with impressive final F1-Score > 0.91. The Custom BNN demonstrated clear 
superiority as the most reliable diagnostic tool, securing the highest Accuracy 0.9294 and F1-
score 0.9289 on the objective test set. Most significantly, this work delivers a breakthrough in 
safety assurance by integrating sophisticated Explainable AI (XAI) and probabilistic modeling: 
Grad-CAM and Local Interpretable Model-agnostic Explanations (LIME) confirmed 
anatomically grounded decision-making, while the BNN uniquely provides quantifiable 
uncertainty metrics, offering a crucial 95% confidence interval (CI) for every diagnosis. These 
results validate a new generation of high-performance models, led by a transparent BNN 
architecture, that are ready for implementation to deliver reliable, trusted, and efficient 
Diabetic Retinopathy screening solutions worldwide. 
Keywords: Diabetic Retinopathy, Deep Learning, Quantified Uncertainty, Explainable 
Artificial Intelligence (XAI), Bayesian Neural Network 
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Introduction: 
Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood 

glucose levels resulting from impaired insulin secretion, insulin action, or both. There are two 
primary forms: Type 1 diabetes [1], where the body fails to produce sufficient insulin, and 
Type 2 diabetes [2], the more common type involving insulin resistance and gradual β-cell 
dysfunction. Prolonged hyperglycemia damages both small (microvascular) and large 
(macrovascular) blood vessels, leading to complications such as neuropathy, nephropathy, 
cardiovascular disease, and diabetic retinopathy, a microvascular ocular disorder caused by 
retinal vessel damage. Diabetic Retinopathy begins with microaneurysms, hemorrhages, and 
lipid exudates, progressing to advanced stages such as non-proliferative and proliferative 
retinopathy, and clinically significant macular edema that can lead to vision loss. If not 
managed promptly, these changes can culminate in significant visual impairment. 

Over the past decade, research on automated Diabetic Retinopathy detection and 
classification has progressed significantly. The literature can be categorized into three phases: 
(i) classical machine learning and image processing techniques, (ii) deep learning approaches 
using convolutional neural networks (CNNs), and (iii) emerging hybrid and XAI frameworks 
integrating structured data and advanced architectures. Early studies relied on handcrafted 
feature extraction, but the emergence of deep learning has reshaped the field. Gulshan et al. 
[3] demonstrated that deep learning systems could achieve diagnostic performance comparable 
to human ophthalmologists, while Nadeem et al. [4] successfully applied CNNs for multi-stage 
grading and lesion segmentation. Similarly, studies employing transfer learning with pretrained 
models have validated the efficacy of deep feature extraction in handling complex retinal 
patterns [5], and data-augmentation strategies have been shown to robustly address issues of 
class imbalance [6]. 

Recent advances involving transformer-based models and hybrid CNN Transformer 
architectures have further improved both diagnostic precision and model interpretability [7]. 
Other approaches have extended prediction by incorporating structured electronic health 
record data [8]. Hybrid architectures, such as CNN combined with Gaussian Process models, 
have been proposed to introduce uncertainty estimation [9], while ensemble approaches have 
demonstrated significant performance gains on small datasets, though generalization remains 
a challenge [10]. Multiple systematic reviews [11] have highlighted persistent issues, including 
dataset bias, image quality variability, class imbalance, and the limited adoption of XAI 
methods. 

Despite substantial progress, two critical research gaps remain. First, there is a lack of 
comparative analyses evaluating multiple modeling paradigms, classical, deep, and hybrid, 
under consistent experimental settings. Most prior works focus on single architectures, leaving 
performance trade-offs unexplored. Second, XAI techniques are rarely integrated into 
Diabetic Retinopathy classification systems. While tools such as Shapley Additive exPlanations 
(SHAP), Grad-CAM, and LIME can enhance transparency and clinician trust, their application 
remains limited. Therefore, this study aims to address these gaps by conducting a comparative 
evaluation of three different models on a standardized dataset, followed by an XAI-based 
interpretation of model decisions to ensure both accuracy and interpretability in automated 
diabetic-retinopathy diagnosis. 

The primary objectives of this research are to bridge the gap between high-
performance deep learning and clinically trustworthy diagnostics. To achieve this, the study 
focuses on the following specific 
Objectives: 

To conduct a rigorous comparative evaluation of three distinct modeling paradigms, 
the high-capacity EfficientNetB0, the computationally efficient MobileNetV3Small, and a 
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novel Custom BNN, on a standardized, class-balanced dataset to assess performance trade-
offs in Diabetic Retinopathy detection.  

To integrate XAI techniques, specifically Grad-CAM and LIME, to visualize 
and validate the decision-making regions of the models, ensuring that predictions are based 
on relevant anatomical features (e.g., optic disc, lesions) rather than image artifacts.  

To implement and evaluate a probabilistic Bayesian framework that 
provides quantifiable uncertainty metrics (95% Confidence Intervals) alongside diagnostic 
predictions, thereby offering a measure of reliability essential for safe clinical adoption.  
Background: 

The growing prevalence of diabetes and its complications has been extensively 
documented by several international and national health organizations. According to the 
International Diabetes Federation (IDF, 2025), over 589 million adults worldwide currently 
live with diabetes, a number expected to reach 853 million by 2050, with the highest growth 
rates in low and middle-income countries [12]. The World Health Organization (WHO, 2023) 
also highlights diabetes as the ninth leading cause of death globally, responsible for 
approximately 6.7 million deaths annually [13]. The Centers for Disease Control and 
Prevention (CDC, 2024) reports that around 37.3 million people in the United States have 
diabetes, and nearly one in five of them remain undiagnosed [14]. Diabetic Retinopathy, a key 
microvascular complication of diabetes, has been analyzed in numerous epidemiological 
studies across the world. A large meta-analysis by Yau et al. (2012), incorporating data from 
35 studies and over 22,000 individuals, found the global prevalence of Diabetic Retinopathy 
among diabetics to be approximately 34.6% [15]. More recent studies, such as the one by Teo 
et al. (2021), refined these estimates to around 22.27% for any form of Diabetic Retinopathy, 
6.17% for vision-threatening Diabetic Retinopathy, and 4.07% for clinically significant 
macular edema [16]. Similarly, Lee et al. (2023) projected that the global burden of Diabetic 
Retinopathy will exceed 160 million people by 2045, compared to 103 million in 2020, due to 
rising diabetes prevalence and aging populations [16]. 

Region-specific studies confirm the variability of prevalence. In Pakistan, Memon et 
al. (2017) found that 28.8% of diabetic patients aged above 30 years had some degree of 
Diabetic Retinopathy [17], while Talat et al. (2022) reported that 57.7% of type 2 diabetics in 
Kharian were affected, with non-proliferative retinopathy in 52.8% and proliferative forms in 
49% of patients [18]. Furthermore, Asif et al. (2021) demonstrated that higher HbA1c levels 
and disease duration are major predictors of severity [19]. The Diabetes Control and 
Complications Trial (DCCT, 1993) established a direct link between long-term hyperglycemia 
and microvascular damage, including retinopathy, which was later confirmed by the UK 
Prospective Diabetes Study (UKPDS, 1998) [20]. Additional evidence from the GlobalData 
Epidemiology Forecast Report (2024) estimates that diagnosed cases of Diabetic Retinopathy 
in major markets will grow from 14.3 million in 2019 to 17.8 million by 2029 [21]. Collectively, 
these studies underscore a consistent trend: as the global diabetes burden grows, the number 
of patients at risk increases in parallel, highlighting the urgent need for accessible screening 
technologies. 
Literature Review: 

Automated systems used to detect diabetic retinopathy have progressed from more 
traditional types of image processing to more sophisticated forms of deep neural networks. 
Recent advances in this area can be organized by architectural categories. CNN-based models 
generally eliminate the need for manual features to develop the underlying model that is used 
in all current systems for the detection of diabetic retinopathy. A study conducted by 
Guefrachi et al. [22], based on the Kaggle DR database, evaluated multiple CNN-based 
architectures, including InceptionResNetV2 and DenseNet121, through the use of a stepwise 
training method where they first performed feature extraction and then fine-tuning. Using this 
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approach, the authors reported an overall best accuracy of 96.61% by using 
InceptionResNetV2. The authors, however, derived all their data from a single database, which 
can limit the confirmed generalizability of their results to a wide range of populations. To solve 
the issues with low-quality images, Abbasi et al. [23] created a DCNN that is a constrained 
adaptation of the conventional DCNN and utilized data from the Messidor database for the 
development of the network. They included both adaptive gamma correction and quantile-
based histogram equalization techniques to improve the quality of photographs with low 
contrast. Evaluating the model on both the RFMiD and the Kaggle DR databases, they 
reported a best accuracy of 95.88% using a VGGNet architecture. While their enhancement 
module provided a substantial benefit to the visual representation of the photographs they 
considered, the authors did suggest that potential for overfitting exists due to the limited size 
of their training database. 

In 2021, Akhtar et al. [24] proposed RSG-Net, a lightweight CNN that can perform 
high-speed inference with maximum efficiency. The study implemented a four-stage 
classification on images from the Messidor-1 Dataset and reported an accuracy of 99.36%, 
which is outstanding. However, the authors indicated that without widespread external 
validation, it may be very difficult to separate very subtle differences in disease progression 
between neighboring classifications. Additionally, Youldash et al. [25] and Bodapati et al. [5] 
also reported on the use of DenseNet architectures to classify images using the APTOS 
datasets and combined Kaggle/APTOS datasets, respectively. Both studies have demonstrated 
that their implementations were able to achieve high levels of binary classification accuracy 
(up to 98.1%) but have pointed out that multi-class grading is still quite challenging due to the 
significant class imbalance. 

In general, the standard method of examining the fundus of the eye is by means of 
taking photographs, while OCT and OCTA study the cross-sectional areas of the retina and 
provide important diagnostic information about macular edema. A review conducted by Abini 
and Priya [26] of approximately 500 deep learning-trained networks (including augmented 
CNNs) concluded that the maximum precision of an augmented CNN trained on OCTA 
datasets could be as high as 99.95%. However, one of the main limitations of using deep 
learning on OCTA data is the lack of standardization and large datasets, which limit the 
applicability of these data to clinical practice. To assist with this issue, Priya [27] used cGANs 
to artificially generate more than 3,000 OCTA images, training a CNN classifier that 
outperformed the ResNet and EfficientNet benchmarks, resulting in an AUC of 0.997. In 
addition, Rahat et al. [28] created a dual-modality system to analyze both fundus and OCT 
images and demonstrated 96.3% accuracy and a high degree of agreement (Cohen's Kappa 
0.89) with retinal specialists. While the performance levels of all three systems were very high, 
they all reiterated that the high cost and variable availability of OCT hardware significantly 
limit the scalability of any deep learning system trained with OCTA data in comparison to 
those trained with fundus images. 

Hybrid and Ensemble Model To overcome the limitations of single architectures, 
recent research has increasingly explored hybrid and ensemble frameworks that combine the 
strengths of multiple models. Mehmood et al. [29] proposed a dual-CNN hybrid model 
designed to improve severity classification accuracy. Their system utilized EfficientNet-B3 for 
the primary classification of five DR severity levels, while a parallel ResNet18 model served to 
verify the accuracy of these classifications. Tested on the APTOS 2019 dataset, this hybrid 
approach achieved a remarkable overall accuracy of 98.18%, effectively outperforming 
standalone models like Inception V3 and DenseNet121. The authors noted that this dual-
verification process significantly reduced the risk of misclassifying mild cases as proliferative, 
a common issue in single-model systems. Capsule Networks (CapsNets) have been combined 
with more typical CNN's by certain researchers to remedy pooling issues related to the 
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traditional type of architecture that leads to the loss of spatial hierarchy. An example of this is 
found in a work that Govindharaj et al [30] did in this area, in which they created the hybrid 
DRD–CN–DL approach that has incorporated U-Net++ for the optic disc segmentation and 
CNN for the classification parts. With CapsNet's ability to understand the relationship 
between pixels (the spatial relationship), they achieved an accuracy level of 96.6 percent. 
Kalyani et al. [31] built a highly optimised version of CapsNet that makes use of dynamic 
routing and was tested on the Messidor dataset, achieving an impressive 97.98 percent 
accuracy. This accuracy was achieved as a result of the network maintaining spatial information 
as opposed to traditional CNNs such as AlexNet, and they recognised that further validation 
is required before confirming across the various levels involved in five-stage classification 
tasks. 

In addition to Images, Hybrid approaches have also moved on to non-imaging-based 
data. For example, Li [32] in this study has demonstrated how combining structured EHR data 
with deep learning can offer significant advantages in terms of predictive capability. In this 
study, the authors combined HbA1c levels and insulin use along with serum creatinine 
measures with a machine learning classifier, XGBoost, resulting in an area under the curve 
(AUC) score of 0.90. This work illustrates the added benefits of using combined clinical and 
imaging data for enhanced prediction, as compared to using simply the image of the retina. 

While deep learning models have achieved high accuracy, they suffer from a critical 
safety flaw: they are deterministic "black boxes" that often fail to express doubt. Waboke et 
al. [33] noted that standard CNNs tend to be "overconfident," frequently assigning high 
probability scores even to erroneous predictions. This behavior poses a severe risk in clinical 
diagnostics, where a false negative with high confidence can lead to missed treatment. 
Although some theoretical attempts have been made to introduce uncertainty, such as hybrid 
CNNs with Gaussian Processes [9], these approaches are often computationally expensive and 
difficult to scale for real-time screening. The current literature reveals a distinct scarcity of 
practical, lightweight BNNs applied to Diabetic Retinopathy. Most existing studies focus solely 
on maximizing accuracy metrics (Accuracy/AUC) and neglect the "reliability" metrics 
(Confidence Intervals) that clinicians actually need to trust the AI. This study addresses this 
critical gap by implementing a custom BNN that offers quantifiable uncertainty without the 
heavy computational burden of traditional Gaussian ensembles. A pervasive limitation across 
the reviewed DR literature is the lack of transparency in model decision-making. While some 
recent studies have employed interpretability tools such as Li et al. [32] using SHAP for clinical 
risk factors, visual explanation methods like Grad-CAM and LIME are rarely integrated into 
the core evaluation pipeline of image-based CNN studies. Systematic reviews [33][34] have 
repeatedly highlighted this "black-box" problem as the primary barrier to clinical adoption. 
Furthermore, there is a notable absence of studies that simultaneously compare multiple 
architectures using both visual explainability and probabilistic uncertainty. Prior works 
typically focus on one or the other, preventing a holistic evaluation of model safety. This 
research fills this void by conducting a rigorous comparative study that not only evaluates 
performance accuracy but also validates anatomical correctness using Grad-CAM/LIME and 
quantifies diagnostic confidence, offering a complete framework for trusted clinical AI. 
Methodology: 

The experimental methodology adopts a systematic multi-stage pipeline, progressing 
from rigorous data preprocessing and architectural optimization to a comprehensive 
evaluation using both statistical metrics and explainable AI techniques. 
The overall pipeline of the proposed model is illustrated in Figure 1. 
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Figure 1. Intended Methodology. 

Dataset: 
The dataset used in this study, named Diagnosis of Diabetic Retinopathy [23], 

comprises a total of 2,838 retinal fundus images, captured under consistent imaging 
conditions. Among these, 1,408 images are labeled as exhibiting signs of Diabetic Retinopathy, 
while 1,430 images are categorized as No Diabetic Retinopathy, as shown in Table 1. This 
balanced distribution between the two classes ensures a fair representation of both affected 
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and unaffected cases, which is essential for minimizing model bias during training and 
evaluation. All images are high-resolution RGB fundus photographs, later converted to 
grayscale during preprocessing. The relatively even class split also supports effective learning 
of disease-specific visual patterns while maintaining robust generalization across both 
categories. The images are high resolution and of color (not black-and-white), suitable for 
automated deep-learning and image-processing tasks. The dataset is publicly available on 
Kaggle and can be used for research purposes. 

Table 1. Dataset. 

Class Count Total Records 

Diabetic Retinopathy 1408  

No Diabetic Retinopathy 1430  

  2838 

 
Figure 2. Dataset Samples. 

Figure 2 demonstrated the data's utility for a binary classification task in Diabetic 
Retinopathy detection, validating the study's foundational quality. Diabetic Retinopathy 
samples (Label 0) showed pathological signs such as hard exudates and likely hemorrhages, 
which were the primary visual cues for diagnosis. In contrast, No_Diabetic Retinopathy 
samples (Label 1) displayed a clear, healthy fundus with visible vessels, providing a strong 
baseline. This visual differentiation confirmed the feasibility of using both traditional 
computer vision and deep learning to train and evaluate the models as outlined in the 
methodology. 

 
Figure 3. Class Distribution. 

Figure 3 provides a count of the total images belonging to each binary class: No 
Diabetic Retinopathy and Diabetic Retinopathy. The bar heights are nearly identical, 
confirming that the dataset is highly balanced overall, with No_Diabetic Retinopathy having 
1,430 images and Diabetic Retinopathy having 1,408 images. This balanced split ensures fair 
representation and is crucial for minimizing model bias toward the more frequent class during 
training and evaluation. 
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Preprocessing: 

 
Figure 4. Preprocessing. 

As illustrated in Figure 4, several preprocessing steps were applied to the dataset to 
enhance image quality, maintain consistency, and optimize model performance. Initially, all 
retinal images were scaled and resized to a uniform dimension to maintain consistency across 
the dataset and optimize computational performance. Subsequently, normalization was 
applied to standardize pixel intensity values, improving model convergence and reducing the 
effect of lighting variations. The images were then converted from color to grayscale, 
preserving essential structural retinal features while reducing input dimensionality and 
computational cost. Next, label encoding was implemented to transform the categorical class 
labels (“Diabetic Retinopathy” and “No Diabetic Retinopathy”) into a numerical format, 
enabling compatibility with algorithms. The dataset was further subjected to batching and 
shuffling to improve training stability and prevent model bias by ensuring that each training 
iteration received a diverse set of samples. Finally, the data was split into training, validation, 
and testing subsets to evaluate model performance objectively and prevent overfitting. These 
preprocessing steps collectively ensured that the dataset was clean, balanced, and ready for 
deep learning model development. 

 
Figure 5. Train-Split Ratio. 

Figure 5 examines the balance of the Diabetic Retinopathy and No_Diabetic 
Retinopathy classes within each of the three partitions (train, valid, test). This visualization is 
important because maintaining balance in the splits prevents the model from being biased 
towards a specific class. Figure 5 also confirms that the near-perfect balance observed in the 
overall dataset was successfully maintained across the training, validation, and testing subsets, 
ensuring that the model's performance metrics (like accuracy and F1-score) can be reliably 
interpreted. 
EfficientNetB0: 
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EfficientNetB0 is a deep CNN designed to achieve high accuracy with fewer 
parameters and lower computational cost. It employs compound scaling, which uniformly 

scales network depth (d), width (w), and resolution (r) based on a scaling coefficient ∅: 

d = α∅ , w = β∅, r = γ∅  Eq (1) 

subject to the constraint α ⋅ β2.  γ2 ≈ 2. 
The architecture integrates Mobile Inverted Bottleneck Convolution (MBConv) 

blocks with Squeeze-and-Excitation (SE) optimization and uses the Swish activation function 

f (x) = x⋅ σ (x), where σ (x) is the sigmoid function. These components collectively enhance 
feature extraction and representation while maintaining efficiency. EfficientNetB0’s balanced 
design ensures optimal performance across accuracy, speed, and parameter usage, making it 
suitable for various image classification and medical imaging applications. 

 
Figure 6. EfficientNetB0-Architecture. 

EfficientNetB0 Architecture Explanation: 
The EfficientNetB0 architecture [35] begins with a standard convolution layer that 

extracts low-level image features from the input of size 224×224×3. The core of the network 
consists of a series of Mobile Inverted Bottleneck Convolution (MBConv) blocks, each 
designed to balance efficiency and accuracy. These MBConv blocks are configured with 
varying kernel sizes (3×3 and 5×5) and expansion factors to progressively capture complex 
spatial and channel relationships. 

As the network deepens, the spatial dimensions decrease while the number of channels 
increases, enabling hierarchical feature learning. Squeeze-and-Excitation (SE) modules are 
integrated within MBConv blocks to enhance channel-wise attention. The final stage includes 
a 1×1 convolution, followed by Global Average Pooling, a Fully Connected (FC) layer, and a 
Softmax classifier that produces the final output probabilities. Overall, the architecture from 
Figure 6 emphasizes compound scaling and depth-wise separable convolutions, allowing 
EfficientNetB0 to achieve high accuracy with minimal computational cost. 
Mobilenetv3-Small: 

MobileNetV3-Small is a lightweight CNN designed for efficient image classification 
on devices with limited computational resources. It combines depthwise separable 
convolutions with Squeeze-and-Excitation (SE) blocks and introduces an Efficient Non-linear 
Activation known as h-swish, defined as: 

f (x) = x. 
ReLU6(x+3)

6
    Eq (2) 
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The architecture also utilizes inverted residuals from MobileNetV2, where feature 
expansion is followed by depth-wise convolution and projection, ensuring high 
representational power with reduced parameters. MobileNetV3-Small employs a neural 
architecture search (NAS) to optimize the trade-off between accuracy and efficiency. Its 
compact structure, combined with SE attention and h-swish activation, allows improved 
accuracy with minimal computational cost, making it ideal for real-time and embedded vision 
applications. 

 
Figure 7. MobileNetV3-Small-Architecture. 

MobileNetV3-Small Architecture Explanation: 
The MobileNetV3-Small architecture [36] is a lightweight convolutional neural 

network optimized for mobile and embedded vision applications. It begins with an initial 3×3 
convolution layer that extracts basic spatial features from the input image. The network then 
employs multiple bottleneck (bneck) blocks, each consisting of depthwise separable 
convolutions and inverted residual connections to reduce computation while preserving 
important feature information. Some bottleneck blocks use 3×3, and others use 5×5 kernels 
to capture both local and slightly broader spatial dependencies. Squeeze-and-Excitation (SE) 
modules are integrated within select bottleneck layers to emphasize informative feature 
channels, as shown in Figure 7. 

After the feature extraction layers, a 1×1 convolution layer increases the channel depth 
before global average pooling aggregates spatial information. Finally, fully connected layers 
and a Softmax function generate the class probabilities for prediction. Overall, MobileNetV3-
Small achieves a strong balance between efficiency and accuracy, making it suitable for low-
power devices and real-time image classification tasks. 
Bayesian Neural Network: 

A Bayesian Neural Network (BNN) is an extension of the traditional neural network 
that incorporates probabilistic modeling to capture uncertainty in predictions. Instead of 
learning fixed weights, BNNs learn distributions over weights, allowing the model to quantify 
uncertainty in its outputs. The posterior distribution of the weights is estimated using Bayes’ 
theorem: 

P (W/D) = 
P (P/W) P(W)

P (D)
  Eq (3) 

where P(W∣D) is the posterior, P(D∣W) is the likelihood of the data given weights, 
P(W) is the prior, and P(D) is the evidence. During inference, predictions are obtained by 
integrating over all possible weight configurations: 

P (y∣x,D) = ∫ P (y|x, W) P (W|D ) dw  Eq (4) 
BNNs provide model confidence estimation, helping detect unreliable predictions, 

which is especially valuable in safety-critical domains such as medical diagnosis. 
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Figure 8. BNN-Architecture. 

BNN Architecture Explanation: 
The Bayesian Neural Network (BNN) architecture [37] introduces probabilistic 

reasoning into the traditional neural network framework to model uncertainty in predictions. 
Instead of assigning fixed values to weights, the BNN learns distributions over the weights, 
enabling the network to represent confidence levels in its outputs. In the shown architecture, 
the input layer receives features such as spatial and temporal variables (e.g., location x and time 
t). These inputs are passed through multiple hidden layers that learn latent representations. 
Each connection between neurons carries probabilistic weights denoted by parameters αi , 
representing model uncertainty. 

The output layer combines predictions from multiple learned distributions Mi along 
with model bias (β) and data noise (σ) to produce the final probabilistic prediction, as 
demonstrated in Figure 8. The loss function minimizes the difference between predicted and 
observed values while accounting for uncertainty. This probabilistic framework allows BNNs 
to estimate both the mean and the variance of predictions, making them highly valuable for 
tasks that require reliability and interpretability, such as medical or environmental modeling. 
Evaluation Matrix: 

To assess the performance of the proposed models, several evaluation metrics were 
employed, each providing a unique perspective on model effectiveness and reliability. 
Accuracy: 

Accuracy measures the overall correctness of the model by calculating the proportion 
of correctly predicted instances among all predictions. It reflects the model’s general 
performance but can be misleading in cases of class imbalance. 

Accuracy = 
TP+TN

TP+TN+FP+FN
  Eq(5) 

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = 
False Negatives. 
Precision: 

Precision quantifies the proportion of true positive predictions among all positive 
predictions made by the model. A high precision value indicates fewer false positives, which 
is crucial in medical diagnosis to reduce misclassification of healthy cases as diseased. 

Precision = 
TP

TP+FP
  Eq(6) 

Recall (Sensitivity): 
Recall, also known as sensitivity, measures the model’s ability to correctly identify 

actual positive cases. In the context of diabetic retinopathy, high recall ensures that most 
diseased images are correctly detected, minimizing false negatives. 
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Recall = 
TP

TP+FN
  Eq(7) 

F1-Score: 
The F1-score is the harmonic mean of precision and recall, providing a balanced metric 

when both false positives and false negatives carry significant consequences. It is particularly 
useful for imbalanced datasets. 

F1-Score = 2 ×
Precision × Recall

Precision + Recall
  Eq(8) 

Loss (Training and Validation): 
Loss represents the model’s prediction error during training and validation. It 

quantifies how well the model’s predicted outputs match the true labels. Lower training and 
validation loss values indicate better model learning and generalization. Typically, categorical 

cross-entropy loss is used for classification tasks, defined as: Where yᵢ is the true label and ŷᵢ 
is the predicted probability for class i. 

Loss = −
1

N
 ∑ yi log(yi

^)
N

i=1
  Eq(9) 

Confusion Matrix: 
The confusion matrix provides a comprehensive visualization of model predictions by 

showing the counts of true positives, true negatives, false positives, and false negatives. It helps 
identify patterns of misclassification and provides insight into which classes are being confused 
by the model. This matrix forms the foundation for calculating other metrics such as precision, 
recall, and F1-score. 
Results and Discussions: 

This section presents a comprehensive evaluation of the three implemented 
architectures, analyzing their training dynamics and quantitative performance metrics 
alongside qualitative insights derived from explainable AI visualizations. 

 
Figure 9. EfficientNetB0-Training. 

Figure 9 shows the performance curves of a well-generalized model, resolving the 
overfitting seen in the initial EfficientNetB0 trial. Training (blue) and validation (red) curves 
converge quickly and remain stable over 20 epochs. Loss drops to around 0.15 with minimal 
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gap, indicating strong generalization. Accuracy, AUC, Precision, and Recall all reach ~0.95, 
staying balanced between training and validation. High Precision and Recall confirm the 
model’s reliability for evaluation on the test set. 

 
Figure 10. EfficientNetB0-XAI-Results. 

Figure 10 shows the XAI result for EfficientNetB0 using Grad-CAM, addressing the 
transparency gap. The Original fundus image (left) appears healthy, suggesting a correct No 
Diabetic Retinopathy prediction. The Grad-CAM heatmap (right) highlights the optic disc and 
surrounding vasculature (red) and major vessels (yellow), indicating that the model bases its 
decision on overall retinal structure rather than distinct lesions. This focus aligns with the 
healthy image, confirming that the model’s high performance is grounded in relevant 
anatomical features. 

 
Figure 11. MobileNetV3-Small-Training. 

Figure 11 shows the performance curves for the optimized MobileNetV3Small model, 
validating its efficiency as a classifier. Training (blue) and validation (red) loss drop rapidly 
below 0.3 with minimal gap, indicating effective regularization and strong generalization. 
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Accuracy, AUC, Precision, and Recall rise quickly and stabilize, with validation Accuracy, 
Precision, and Recall around 0.92 and AUC around 0.94. These results demonstrate that 
MobileNetV3Small is a robust, reliable, and computationally efficient model for binary DR 
classification. 

 
Figure 12. MobiletNetV3-Small-XAI-Results. 

Figure 12 shows the XAI result for MobileNetV3Small using LIME. The Original 
Image (left) appears healthy, suggesting a No Diabetic Retinopathy prediction. The LIME 
output (right) highlights the optic disc and a large region of the healthy retina, indicating that 
the model bases its decision on the absence of pathology and characteristic healthy features. 
This confirms that MobileNetV3Small focuses on anatomically relevant areas, aligning with 
ophthalmologist evaluations and supporting clinical trust in its predictions. 

 
Figure 13. BNN-Training. 

The final training curves for the BNN model, Figure 13, show stable and successful 
optimization over 30 epochs. Training and validation loss converge rapidly to below 0.20 with 
minimal gap, indicating strong generalization and no overfitting. Accuracy, AUC, Precision, 
and Recall also rise quickly and stabilize by epoch 10, with validation Accuracy, Precision, and 
Recall around 0.93 and validation AUC near 0.95. Overall, the curves demonstrate a stable and 
reliable model, confirming the BNN architecture as an effective, high-performing solution for 
binary Diabetic Retinopathy classification. 
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Figure 14. BNN. 

Figure 14 offers strong quantified assurance useful for clinical decision-making. For a 
healthy image, the model predicts a very low Diabetic Retinopathy probability (mean 0.04) 
with low uncertainty (standard deviation ±0.02). The Probability Histogram and 95% CI 
further support this confidence, showing a tight interval of [0.01, 0.08], well below the 0.5 
decision threshold. These results confirm a stable and reliable No- Diabetic Retinopathy 
prediction, providing clinicians with clear, quantifiable evidence of model confidence. 

 
Figure 15. BNN-XAI-Results. 

Figure 15 shows the LIME explanation for a Diabetic Retinopathy-positive case, 
providing important evidence of model reliability. The Original Image (left) contains subtle 
pathological features, while the LIME output (right) highlights the yellow-outlined region the 
model uses for its positive prediction. The explanation focuses on a large central area of the 
retina, covering the macula and surrounding vasculature, while excluding the optic disc. This 
focus on the posterior pole is clinically appropriate, as early Diabetic Retinopathy signs such 
as microaneurysms and small hemorrhages typically appear in this region. The model, 
therefore, bases its decision on medically relevant structures, reinforcing clinician confidence 
in its interpretability and correctness. 

 
Figure 16. Models Test Performance. 

Figure 16 shows the final improved test scores, confirming that all three optimized 
models now perform at a high and competitive level. The Custom CNN (MC Dropout) 
achieves the best overall balance with the highest F1-Score (0.9289) and Accuracy (0.9294). 
EfficientNetB0 continues to provide the strongest discriminative power with the highest AUC 
(0.9700). Most notably, MobileNetV3Small shows substantial improvement, reaching stable 
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performance in the 92%–93% range, with an Accuracy of 0.9250 and an F1-score of 0.9220. 
Its stronger Precision (0.9150) indicates that previous classification bias has been resolved, 
positioning it as a viable, efficient, and competitive model alongside the other two. 

 
Figure 17. Confusion Matrix. 

Figure 17 illustrates the classification counts for each model on the test set. The 
Custom CNN (MC Dropout) shows the most balanced performance, with 103 True Positives 
and 111 True Negatives, and only 7 False Positives and 7 False Negatives, explaining its top 
Accuracy and F1-Score. EfficientNetB0 is also effective, with 101 True Positives and 110 True 
Negatives, though it has slightly more errors (12 FPs, 8 FNs). In contrast, MobileNetV3 Small 
shows significant bias: it correctly detects all DR cases (113 True Positives) but misclassifies 
103 healthy cases as diseased, resulting in low Precision and F1-Score, making it clinically 
unsuitable. 
Conclusion: 

This study successfully addressed two crucial gaps in the automated detection of 
Diabetic Retinopathy: the need for comprehensive comparative analysis and the integration 
of XAI for enhanced clinician trust. By rigorously training and optimizing three distinct 
modeling paradigms, EfficientNetB0, MobileNetV3Small, and a Custom CNN using Monte 
Carlo Dropout (BNN approach) study demonstrated that all three architectures could be 
tuned to achieve robust, well-generalized performance, with all final F1-Scores exceeding 0.91 
on the test set. Specifically, the Custom CNN (MC Dropout) emerged as the best overall 
solution, achieving the highest F1-Score (0.9289) and Accuracy (0.9294), confirming its 
superior balance between detecting true pathology and minimizing false alarms. Crucially, the 
optimization process transformed the lightweight MobileNetV3 Small from a severely 
overfitted model into a reliable performer, achieving a competitive Accuracy of 0.9250 and 
validating its potential for efficient deployment in resource-constrained medical environments. 

Beyond high performance, the successful implementation of XAI techniques provides 
the necessary transparency for real-world clinical adoption. Grad-CAM and LIME 
visualizations confirmed that all models were focusing their predictive power on anatomically 
relevant features of the fundus, such as the optic disc for healthy cases and the posterior pole 
for subtle lesions. Furthermore, the BNN-based Custom CNN provided quantifiable 
uncertainty metrics, offering a critical layer of reliability by bounding predictions within narrow 
confidence intervals, thus empowering clinicians to make highly confident diagnostic 
decisions. Moving forward, future work should focus on validating these optimized models 
on diverse, external datasets to assess generalizability and extending the BNN framework to 
predict the exact severity grades of DR, thereby advancing these AI solutions toward full 
clinical integration and helping to alleviate the growing global burden of preventable vision 
loss. 
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