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a leading cause of irreversible blindness globally. While deep learning models offer

high diagnostic accuracy, their widespread clinical integration is profoundly limited
by two fundamental, unresolved deficiencies in previous literature: the absence of
comprehensive, fair comparative analysis across diverse architectures and the pervasive lack
of transparent, quantifiable prediction confidence necessary for clinical acceptance. This study
directly addresses these challenges by presenting a highly optimized and rigorous comparative
evaluation of three powerful models: the high-capacity EfficientNetBO, the computationally
efficient MobileNetV3Small, and a novel Custom Bayesian Neural Network (BNN)
framework. Through robust methodology, all models achieved exceptional generalization,
stabilizing with impressive final F1-Score > 0.91. The Custom BNN demonstrated clear
superiority as the most reliable diagnostic tool, securing the highest Accuracy 0.9294 and F1-
score 0.9289 on the objective test set. Most significantly, this work delivers a breakthrough in
safety assurance by integrating sophisticated Explainable AI (XAI) and probabilistic modeling:
Grad-CAM and Local Interpretable Model-agnostic Explanations (LIME) confirmed
anatomically grounded decision-making, while the BNN uniquely provides quantifiable
uncertainty metrics, offering a crucial 95% confidence interval (CI) for every diagnosis. These
results validate a new generation of high-performance models, led by a transparent BNN
architecture, that are ready for implementation to deliver reliable, trusted, and efficient
Diabetic Retinopathy screening solutions worldwide.
Keywords: Diabetic Retinopathy, Deep Learning, Quantified Uncertainty, Explainable
Artificial Intelligence (XAI) Bayesian Neural Network

D iabetic Retinopathy remains the primary microvascular complication of diabetes and
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Introduction:

Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood
glucose levels resulting from impaired insulin secretion, insulin action, or both. There are two
primary forms: Type 1 diabetes [1], where the body fails to produce sufficient insulin, and
Type 2 diabetes [2], the more common type involving insulin resistance and gradual 3-cell
dysfunction. Prolonged hyperglycemia damages both small (microvascular) and large
(macrovascular) blood vessels, leading to complications such as neuropathy, nephropathy,
cardiovascular disease, and diabetic retinopathy, a microvascular ocular disorder caused by
retinal vessel damage. Diabetic Retinopathy begins with microaneurysms, hemorrhages, and
lipid exudates, progressing to advanced stages such as non-proliferative and proliferative
retinopathy, and clinically significant macular edema that can lead to vision loss. If not
managed promptly, these changes can culminate in significant visual impairment.

Over the past decade, research on automated Diabetic Retinopathy detection and
classification has progressed significantly. The literature can be categorized into three phases:
(i) classical machine learning and image processing techniques, (ii) deep learning approaches
using convolutional neural networks (CNNs), and (iif) emerging hybrid and XAI frameworks
integrating structured data and advanced architectures. Early studies relied on handcrafted
feature extraction, but the emergence of deep learning has reshaped the field. Gulshan et al.
[3] demonstrated that deep learning systems could achieve diagnostic performance comparable
to human ophthalmologists, while Nadeem et al. [4] successfully applied CNNs for multi-stage
grading and lesion segmentation. Similarly, studies employing transfer learning with pretrained
models have validated the efficacy of deep feature extraction in handling complex retinal
patterns [5], and data-augmentation strategies have been shown to robustly address issues of
class imbalance [0].

Recent advances involving transformer-based models and hybrid CNN Transformer
architectures have further improved both diagnostic precision and model interpretability [7].
Other approaches have extended prediction by incorporating structured electronic health
record data [8]. Hybrid architectures, such as CNN combined with Gaussian Process models,
have been proposed to introduce uncertainty estimation [9], while ensemble approaches have
demonstrated significant performance gains on small datasets, though generalization remains
a challenge [10]. Multiple systematic reviews [11] have highlighted persistent issues, including
dataset bias, image quality variability, class imbalance, and the limited adoption of XAI
methods.

Despite substantial progress, two critical research gaps remain. First, there is a lack of
comparative analyses evaluating multiple modeling paradigms, classical, deep, and hybrid,
under consistent experimental settings. Most prior works focus on single architectures, leaving
performance trade-offs unexplored. Second, XAI techniques are rarely integrated into
Diabetic Retinopathy classification systems. While tools such as Shapley Additive exPlanations
(SHAP), Grad-CAM, and LIME can enhance transparency and clinician trust, their application
remains limited. Therefore, this study aims to address these gaps by conducting a comparative
evaluation of three different models on a standardized dataset, followed by an XAl-based
interpretation of model decisions to ensure both accuracy and interpretability in automated
diabetic-retinopathy diagnosis.

The primary objectives of this research are to bridge the gap between high-
performance deep learning and clinically trustworthy diagnostics. To achieve this, the study
focuses on the following specific
Objectives:

To conduct a rigorous comparative evaluation of three distinct modeling paradigms,
the high-capacity EfficientNetB0, the computationally efficient MobileNetV3Small, and a
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novel Custom BNN, on a standardized, class-balanced dataset to assess performance trade-
offs in Diabetic Retinopathy detection.

To integrate XAI techniques, specifically Grad-CAM and LIME, to visualize
and validate the decision-making regions of the models, ensuring that predictions are based
on relevant anatomical features (e.g., optic disc, lesions) rather than image artifacts.

To implement and evaluate a probabilistic Bayesian framework that
provides quantifiable uncertainty metrics (95% Confidence Intervals) alongside diagnostic
predictions, thereby offering a measure of reliability essential for safe clinical adoption.
Background:

The growing prevalence of diabetes and its complications has been extensively
documented by several international and national health organizations. According to the
International Diabetes Federation (IDF, 2025), over 589 million adults worldwide currently
live with diabetes, a number expected to reach 853 million by 2050, with the highest growth
rates in low and middle-income countries [12]. The World Health Organization (WHO, 2023)
also highlights diabetes as the ninth leading cause of death globally, responsible for
approximately 6.7 million deaths annually [13]. The Centers for Disease Control and
Prevention (CDC, 2024) reports that around 37.3 million people in the United States have
diabetes, and nearly one in five of them remain undiagnosed [14]. Diabetic Retinopathy, a key
microvascular complication of diabetes, has been analyzed in numerous epidemiological
studies across the world. A large meta-analysis by Yau et al. (2012), incorporating data from
35 studies and over 22,000 individuals, found the global prevalence of Diabetic Retinopathy
among diabetics to be approximately 34.6% [15]. More recent studies, such as the one by Teo
et al. (2021), refined these estimates to around 22.27% for any form of Diabetic Retinopathy,
6.17% for vision-threatening Diabetic Retinopathy, and 4.07% for clinically significant
macular edema [16]. Similatly, Lee et al. (2023) projected that the global burden of Diabetic
Retinopathy will exceed 160 million people by 2045, compared to 103 million in 2020, due to
rising diabetes prevalence and aging populations [16].

Region-specific studies confirm the variability of prevalence. In Pakistan, Memon et
al. (2017) found that 28.8% of diabetic patients aged above 30 years had some degree of
Diabetic Retinopathy [17], while Talat et al. (2022) reported that 57.7% of type 2 diabetics in
Kharian were affected, with non-proliferative retinopathy in 52.8% and proliferative forms in
49% of patients [18]. Furthermore, Asif et al. (2021) demonstrated that higher HbAlc levels
and disease duration are major predictors of severity [19]. The Diabetes Control and
Complications Trial (DCCT, 1993) established a direct link between long-term hyperglycemia
and microvascular damage, including retinopathy, which was later confirmed by the UK
Prospective Diabetes Study (UKPDS, 1998) [20]. Additional evidence from the GlobalData
Epidemiology Forecast Report (2024) estimates that diagnosed cases of Diabetic Retinopathy
in major markets will grow from 14.3 million in 2019 to 17.8 million by 2029 [21]. Collectively,
these studies underscore a consistent trend: as the global diabetes burden grows, the number
of patients at risk increases in parallel, highlighting the urgent need for accessible screening
technologies.

Literature Review:

Automated systems used to detect diabetic retinopathy have progressed from more
traditional types of image processing to more sophisticated forms of deep neural networks.
Recent advances in this area can be organized by architectural categories. CNN-based models
generally eliminate the need for manual features to develop the underlying model that is used
in all current systems for the detection of diabetic retinopathy. A study conducted by
Guefrachi et al. [22], based on the Kaggle DR database, evaluated multiple CNN-based
architectures, including InceptionResNetV2 and DenseNet121, through the use of a stepwise
training method where they first performed feature extraction and then fine-tuning. Using this
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approach, the authors reported an overall best accuracy of 96.61% by using
InceptionResNetV2. The authors, however, derived all their data from a single database, which
can limit the confirmed generalizability of their results to a wide range of populations. To solve
the issues with low-quality images, Abbasi et al. [23] created a DCNN that is a constrained
adaptation of the conventional DCNN and utilized data from the Messidor database for the
development of the network. They included both adaptive gamma correction and quantile-
based histogram equalization techniques to improve the quality of photographs with low
contrast. Evaluating the model on both the RFMiD and the Kaggle DR databases, they
reported a best accuracy of 95.88% using a VGGNet architecture. While their enhancement
module provided a substantial benefit to the visual representation of the photographs they
considered, the authors did suggest that potential for overfitting exists due to the limited size
of their training database.

In 2021, Akhtar et al. [24] proposed RSG-Net, a lightweight CNN that can perform
high-speed inference with maximum efficiency. The study implemented a four-stage
classification on images from the Messidor-1 Dataset and reported an accuracy of 99.36%,
which is outstanding. However, the authors indicated that without widespread external
validation, it may be very difficult to separate very subtle differences in disease progression
between neighboring classifications. Additionally, Youldash et al. [25] and Bodapati et al. [5]
also reported on the use of DenseNet architectures to classify images using the APTOS
datasets and combined Kaggle/ APTOS datasets, respectively. Both studies have demonstrated
that their implementations were able to achieve high levels of binary classification accuracy
(up to 98.1%) but have pointed out that multi-class grading is still quite challenging due to the
significant class imbalance.

In general, the standard method of examining the fundus of the eye is by means of
taking photographs, while OCT and OCTA study the cross-sectional areas of the retina and
provide important diagnostic information about macular edema. A review conducted by Abini
and Priya [26] of approximately 500 deep learning-trained networks (including augmented
CNNs) concluded that the maximum precision of an augmented CNN trained on OCTA
datasets could be as high as 99.95%. However, one of the main limitations of using deep
learning on OCTA data is the lack of standardization and large datasets, which limit the
applicability of these data to clinical practice. To assist with this issue, Priya [27] used cGANs
to artificially generate more than 3,000 OCTA images, training a CNN classifier that
outperformed the ResNet and EfficientNet benchmarks, resulting in an AUC of 0.997. In
addition, Rahat et al. [28] created a dual-modality system to analyze both fundus and OCT
images and demonstrated 96.3% accuracy and a high degree of agreement (Cohen's Kappa
0.89) with retinal specialists. While the performance levels of all three systems were very high,
they all reiterated that the high cost and variable availability of OCT hardware significantly
limit the scalability of any deep learning system trained with OCTA data in comparison to
those trained with fundus images.

Hybrid and Ensemble Model To overcome the limitations of single architectures,
recent research has increasingly explored hybrid and ensemble frameworks that combine the
strengths of multiple models. Mehmood et al. [29] proposed a dual-CNN hybrid model
designed to improve severity classification accuracy. Their system utilized EfficientNet-B3 for
the primary classification of five DR severity levels, while a parallel ResNet18 model served to
verify the accuracy of these classifications. Tested on the APTOS 2019 dataset, this hybrid
approach achieved a remarkable overall accuracy of 98.18%, effectively outperforming
standalone models like Inception V3 and DenseNetl121. The authors noted that this dual-
verification process significantly reduced the risk of misclassifying mild cases as proliferative,
a common issue in single-model systems. Capsule Networks (CapsNets) have been combined
with more typical CNN's by certain researchers to remedy pooling issues related to the
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traditional type of architecture that leads to the loss of spatial hierarchy. An example of this is
found in a work that Govindharaj et al [30] did in this area, in which they created the hybrid
DRD-CN-DL approach that has incorporated U-Net++ for the optic disc segmentation and
CNN for the classification parts. With CapsNet's ability to understand the relationship
between pixels (the spatial relationship), they achieved an accuracy level of 96.6 percent.
Kalyani et al. [31] built a highly optimised version of CapsNet that makes use of dynamic
routing and was tested on the Messidor dataset, achieving an impressive 97.98 percent
accuracy. This accuracy was achieved as a result of the network maintaining spatial information
as opposed to traditional CNNs such as AlexNet, and they recognised that further validation
is required before confirming across the various levels involved in five-stage classification
tasks.

In addition to Images, Hybrid approaches have also moved on to non-imaging-based
data. For example, Li [32] in this study has demonstrated how combining structured EHR data
with deep learning can offer significant advantages in terms of predictive capability. In this
study, the authors combined HbAlc levels and insulin use along with serum creatinine
measures with a machine learning classifier, XGBoost, resulting in an area under the curve
(AUC) score of 0.90. This work illustrates the added benefits of using combined clinical and
imaging data for enhanced prediction, as compared to using simply the image of the retina.

While deep learning models have achieved high accuracy, they suffer from a critical
safety flaw: they are deterministic "black boxes" that often fail to express doubt. Waboke et
al. [33] noted that standard CNNs tend to be "overconfident," frequently assigning high
probability scores even to erroneous predictions. This behavior poses a severe risk in clinical
diagnostics, where a false negative with high confidence can lead to missed treatment.
Although some theoretical attempts have been made to introduce uncertainty, such as hybrid
CNNs with Gaussian Processes [9], these approaches are often computationally expensive and
difficult to scale for real-time screening. The current literature reveals a distinct scarcity of
practical, lightweight BNNs applied to Diabetic Retinopathy. Most existing studies focus solely
on maximizing accuracy metrics (Accuracy/AUC) and neglect the "reliability" metrics
(Confidence Intervals) that clinicians actually need to trust the Al This study addresses this
critical gap by implementing a custom BNN that offers quantifiable uncertainty without the
heavy computational burden of traditional Gaussian ensembles. A pervasive limitation across
the reviewed DR literature is the lack of transparency in model decision-making. While some
recent studies have employed interpretability tools such as Li et al. [32] using SHAP for clinical
risk factors, visual explanation methods like Grad-CAM and LIME are rarely integrated into
the core evaluation pipeline of image-based CNN studies. Systematic reviews [33][34]| have
repeatedly highlighted this "black-box" problem as the primary barrier to clinical adoption.
Furthermore, there is a notable absence of studies that simultaneously compare multiple
architectures using both visual explainability and probabilistic uncertainty. Prior works
typically focus on one or the other, preventing a holistic evaluation of model safety. This
research fills this void by conducting a rigorous comparative study that not only evaluates
petformance accuracy but also validates anatomical correctness using Grad-CAM/LIME and
quantifies diagnostic confidence, offering a complete framework for trusted clinical Al
Methodology:

The experimental methodology adopts a systematic multi-stage pipeline, progressing
from rigorous data preprocessing and architectural optimization to a comprehensive
evaluation using both statistical metrics and explainable Al techniques.

The overall pipeline of the proposed model is illustrated in Figure 1.
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Figure 1. Intended Methodology.
Dataset:

The dataset used in this study, named Diagnosis of Diabetic Retinopathy [23],
comprises a total of 2,838 retinal fundus images, captured under consistent imaging
conditions. Among these, 1,408 images are labeled as exhibiting signs of Diabetic Retinopathy,
while 1,430 images are categorized as No Diabetic Retinopathy, as shown in Table 1. This
balanced distribution between the two classes ensures a fair representation of both affected
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and unaffected cases, which is essential for minimizing model bias during training and
evaluation. All images are high-resolution RGB fundus photographs, later converted to
grayscale during preprocessing. The relatively even class split also supports effective learning
of disease-specific visual patterns while maintaining robust generalization across both
categories. The images are high resolution and of color (not black-and-white), suitable for
automated deep-learning and image-processing tasks. The dataset is publicly available on
Kaggle and can be used for research purposes.
Table 1. Dataset.

Class Count | Total Records
Diabetic Retinopathy 1408
No Diabetic Retinopathy | 1430

2838

Sample Images from Training Data

DR Sample 1 (Label 0) No_DR Sample 1 (Label 1)

No_DR Sample 2 (Label 1)

DR Sample 2 (Label 0)

oy

Figure 2. Dataset Samples.

Figure 2 demonstrated the data's utility for a binary classification task in Diabetic
Retinopathy detection, validating the study's foundational quality. Diabetic Retinopathy
samples (Label 0) showed pathological signs such as hard exudates and likely hemorrhages,
which were the primary visual cues for diagnosis. In contrast, No_Diabetic Retinopathy
samples (Label 1) displayed a clear, healthy fundus with visible vessels, providing a strong
baseline. This visual differentiation confirmed the feasibility of using both traditional
computer vision and deep learning to train and evaluate the models as outlined in the
methodology.

Overall Class Distribution

1400 A

1200 -

1000 A

800 1

Count

600 A

400 A

200 1

No_DR DR
Class

Figure 3. Class Distribution.

Figure 3 provides a count of the total images belonging to each binary class: No
Diabetic Retinopathy and Diabetic Retinopathy. The bar heights are nearly identical,
confirming that the dataset is highly balanced overall, with No_Diabetic Retinopathy having
1,430 images and Diabetic Retinopathy having 1,408 images. This balanced split ensures fair
representation and is crucial for minimizing model bias toward the more frequent class during
training and evaluation.
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As illustrated in Fjgure 4, several preprocessing steps were applied to the dataset to
enhance image quality, maintain consistency, and optimize model performance. Initially, all
retinal images were scaled and resized to a uniform dimension to maintain consistency across
the dataset and optimize computational performance. Subsequently, normalization was
applied to standardize pixel intensity values, improving model convergence and reducing the
effect of lighting variations. The images were then converted from color to grayscale,
preserving essential structural retinal features while reducing input dimensionality and
computational cost. Next, label encoding was implemented to transform the categorical class
labels (“Diabetic Retinopathy” and “No Diabetic Retinopathy”) into a numerical format,
enabling compatibility with algorithms. The dataset was further subjected to batching and
shuffling to improve training stability and prevent model bias by ensuring that each training
iteration received a diverse set of samples. Finally, the data was split into training, validation,
and testing subsets to evaluate model performance objectively and prevent overfitting. These
preprocessing steps collectively ensured that the dataset was clean, balanced, and ready for
deep learning model development.

Class Distribution per Split

1000 4

800 A

600

Image Count

400 A

200 A

train valid test
Dataset Split

Figure 5. Train-Split Ratio.

Figure 5 examines the balance of the Diabetic Retinopathy and No_Diabetic
Retinopathy classes within each of the three partitions (train, valid, test). This visualization is
important because maintaining balance in the splits prevents the model from being biased
towards a specific class. Figure 5 also confirms that the near-perfect balance observed in the
overall dataset was successfully maintained across the training, validation, and testing subsets,
ensuring that the model's performance metrics (like accuracy and Fl-score) can be reliably
interpreted.

EfficientNetBO0:
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EfficientNetBO is a deep CNN designed to achieve high accuracy with fewer
parameters and lower computational cost. It employs compound scaling, which uniformly
scales network depth (d), width (w), and resolution (r) based on a scaling coefficient @:

d=a®,w=p2%r=y? Eq(1)
subject to the constraint o - % Y% = 2.

The architecture integrates Mobile Inverted Bottleneck Convolution (MBConv)
blocks with Squeeze-and-Excitation (SE) optimization and uses the Swish activation function
f (x) = x* 0 (x), where o (x) is the sigmoid function. These components collectively enhance
feature extraction and representation while maintaining efficiency. EfficientNetB0’s balanced
design ensures optimal performance across accuracy, speed, and parameter usage, making it
suitable for various image classification and medical imaging applications.

! Input: 224 x 224 x 3

i 14 x 14 x 112
| MBConv6,5x5 |
112 > 112 x 32 *7><7><192
MBConvl.&onD [ MBConve.s x5
112 < 112 < 16 s
MBConve, 3 < 3 W 7 <7 <192
56 < 56 x 24 [ MBConve.s =5
MBConve, 3 < 3 TF 5192

56 =< 56 x 24

| MBConve, 5 < 5 I
W 28 < 28 x 40

I MBConve, 5 x 5

28 x 28 < 40

MBConv6, 3 x 3

28 < 28 x 80

MBConv6, 3 x 3

28 x< 28 x< 80

MBConv6, 3 < 3

28 x< 28 < 80
| MBConve, 5 < 5

w14 < 14 < 112
I MBConvé, 5 x 5

W14 < 14 < 112
[ MBConve.5 x5

MBConveé, 5 < 5

7 x7x192

MBConvé, 3 x< 3

7 x 7 x 320

Conv, 1 < 1

7 x 7 x 1280

Global Average
Pooling2D

1 < 1280

FC,

Figure 6. EfficientNetBO-Architecture.
EfficientNetB0 Architecture Explanation:

The EfficientNetB0 architecture [35] begins with a standard convolution layer that
extracts low-level image features from the input of size 224X224X3. The core of the network
consists of a series of Mobile Inverted Bottleneck Convolution (MBConv) blocks, each
designed to balance efficiency and accuracy. These MBConv blocks are configured with
varying kernel sizes (3X3 and 5%5) and expansion factors to progressively capture complex
spatial and channel relationships.

As the network deepens, the spatial dimensions decrease while the number of channels
increases, enabling hierarchical feature learning. Squeeze-and-Excitation (SE) modules are
integrated within MBConv blocks to enhance channel-wise attention. The final stage includes
a 1X1 convolution, followed by Global Average Pooling, a Fully Connected (FC) layer, and a
Softmax classifier that produces the final output probabilities. Overall, the architecture from
Figure 6 emphasizes compound scaling and depth-wise separable convolutions, allowing
EfficientNetBO to achieve high accuracy with minimal computational cost.
Mobilenetv3-Small:

MobileNetV3-Small is a lightweight CNN designed for efficient image classification
on devices with limited computational resources. It combines depthwise separable
convolutions with Squeeze-and-Excitation (SE) blocks and introduces an Efficient Non-linear
Activation known as h-swish, defined as:

f(X) _ ReLU6(x+3)

Eq (2
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The architecture also utilizes inverted residuals from MobileNetV2, where feature
expansion is followed by depth-wise convolution and projection, ensuring high
representational power with reduced parameters. MobileNetV3-Small employs a neural
architecture search (NAS) to optimize the trade-off between accuracy and efficiency. Its
compact structure, combined with SE attention and h-swish activation, allows improved
accuracy with minimal computational cost, making it ideal for real-time and embedded vision
applications.

/ /
J /s /y |
/ ¥ ¥
A5 A
) (T4 U 2
» ¥
Al beck2(3x3)  bneck3(3x3)

/ 16
16 bineck](3x3)

puv2d(3x3)

Figure 7. MobileNetV3-Small-Architecture.
MobileNetV3-Small Architecture Explanation:

The MobileNetV3-Small architecture [36] is a lightweight convolutional neural
network optimized for mobile and embedded vision applications. It begins with an initial 3X3
convolution layer that extracts basic spatial features from the input image. The network then
employs multiple bottleneck (bneck) blocks, each consisting of depthwise separable
convolutions and inverted residual connections to reduce computation while preserving
important feature information. Some bottleneck blocks use 3X3, and others use 5X5 kernels
to capture both local and slightly broader spatial dependencies. Squeeze-and-Excitation (SE)
modules are integrated within select bottleneck layers to emphasize informative feature
channels, as shown in Figure 7.

After the feature extraction layers, a 1X1 convolution layer increases the channel depth
before global average pooling aggregates spatial information. Finally, fully connected layers
and a Softmax function generate the class probabilities for prediction. Overall, MobileNetV3-
Small achieves a strong balance between efficiency and accuracy, making it suitable for low-
power devices and real-time image classification tasks.

Bayesian Neural Network:

A Bayesian Neural Network (BNN) is an extension of the traditional neural network
that incorporates probabilistic modeling to capture uncertainty in predictions. Instead of
learning fixed weights, BNNs learn distributions over weights, allowing the model to quantify
uncertainty in its outputs. The posterior distribution of the weights is estimated using Bayes’

theorem:
P (P/W) P(W
P (/D) = LD q (3

where P(W|D) is the posterior, P(ID|W) is the likelihood of the data given weights,
P(W) is the prior, and P(D) is the evidence. During inference, predictions are obtained by
integrating over all possible weight configurations:
P (yIxD) =[P (y|x, W) P (W|D) dw Eq 4

BNNs provide model confidence estimation, helping detect unreliable predictions,
which is especially valuable in safety-critical domains such as medical diagnosis.
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Figure 8. BNN-Architecture.
BNN Architecture Explanation:

The Bayesian Neural Network (BNN) architecture [37] introduces probabilistic
reasoning into the traditional neural network framework to model uncertainty in predictions.
Instead of assigning fixed values to weights, the BNN learns distributions over the weights,
enabling the network to represent confidence levels in its outputs. In the shown architecture,
the input layer receives features such as spatial and temporal variables (e.g., location x and time
t). These inputs are passed through multiple hidden layers that learn latent representations.
Each connection between neurons carries probabilistic weights denoted by parameters ai ,
representing model uncertainty.

The output layer combines predictions from multiple learned distributions Mi along
with model bias (8) and data noise (o) to produce the final probabilistic prediction, as
demonstrated in Figure 8. The loss function minimizes the difference between predicted and
observed values while accounting for uncertainty. This probabilistic framework allows BNNs
to estimate both the mean and the variance of predictions, making them highly valuable for
tasks that require reliability and interpretability, such as medical or environmental modeling.
Evaluation Matrix:

To assess the performance of the proposed models, several evaluation metrics were
employed, each providing a unique perspective on model effectiveness and reliability.
Accuracy:

Accuracy measures the overall correctness of the model by calculating the proportion
of correctly predicted instances among all predictions. It reflects the model’s general

performance but can be misleading in cases of class imbalance.
TP+TN

TP+TN+FP+FN Eq<5)
Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN =

False Negatives.
Precision:

Precision quantifies the proportion of true positive predictions among all positive
predictions made by the model. A high precision value indicates fewer false positives, which
is crucial in medical diagnosis to reduce misclassification of healthy cases as diseased.

Accuracy =

.. TP
Precision = ———— Eq(0)
Recall (Sensitivity):
Recall, also known as sensitivity, measures the model’s ability to correctly identify
actual positive cases. In the context of diabetic retinopathy, high recall ensures that most
diseased images are correctly detected, minimizing false negatives.
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~ TP
Recall = . Eq(7)

F1-Score:
The F1-score is the harmonic mean of precision and recall, providing a balanced metric
when both false positives and false negatives carry significant consequences. It is particularly

useful for imbalanced datasets.
Precision X Recall

F1-Score = 2 X Eq(8)

Precision + Recall

Loss (Training and Validation):

Loss represents the model’s prediction error during training and validation. It
quantifies how well the model’s predicted outputs match the true labels. Lower training and
validation loss values indicate better model learning and generalization. Typically, categorical
cross-entropy loss is used for classification tasks, defined as: Where y; is the true label and ¥;
is the predicted probability for class 1.

Loss=—= Y yilog(y;) Eq(9)
Confusion Matrix:

The confusion matrix provides a comprehensive visualization of model predictions by
showing the counts of true positives, true negatives, false positives, and false negatives. It helps
identify patterns of misclassification and provides insight into which classes are being confused
by the model. This matrix forms the foundation for calculating other metrics such as precision,
recall, and F1-score.

Results and Discussions:

This section presents a comprehensive evaluation of the three implemented
architectures, analyzing their training dynamics and quantitative performance metrics
alongside qualitative insights derived from explainable Al visualizations.

Training and Validation Loss Training and Validation Accuracy

“Epocns pochs
Training and Validation AUC N Training and Validation Precision

Epochs Epochs
Training and Validation Recall

Epocr

Figure 9. EfficientNetBO-Training.
Figure 9 shows the performance curves of a well-generalized model, resolving the
overfitting seen in the initial EfficientNetBO trial. Training (blue) and validation (red) curves
converge quickly and remain stable over 20 epochs. Loss drops to around 0.15 with minimal
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gap, indicating strong generalization. Accuracy, AUC, Precision, and Recall all reach ~0.95,
staying balanced between training and validation. High Precision and Recall confirm the

model’s reliability for evaluation on the test set.
Original

Grad-CAM

50 100 150 200 0 50 100

Figure 10. EfficientNetB0-XAI-Results.

Figure 10 shows the XAI result for EfficientNetB0 using Grad-CAM, addressing the
transparency gap. The Original fundus image (left) appears healthy, suggesting a correct No
Diabetic Retinopathy prediction. The Grad-CAM heatmap (right) highlights the optic disc and
surrounding vasculature (red) and major vessels (yellow), indicating that the model bases its
decision on overall retinal structure rather than distinct lesions. This focus aligns with the
healthy image, confirming that the model’s high performance is grounded in relevant
anatomical features.
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Figure 11. MobileNetV3-Small-Training.
Figure 11 shows the performance curves for the optimized MobileNetV3Small model,
validating its efficiency as a classifier. Training (blue) and validation (red) loss drop rapidly
below 0.3 with minimal gap, indicating effective regularization and strong generalization.
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Accuracy, AUC, Precision, and Recall rise quickly and stabilize, with validation Accuracy,
Precision, and Recall around 0.92 and AUC around 0.94. These results demonstrate that
MobileNetV3Small is a robust, reliable, and computationally efficient model for binary DR
classification.

Original Image LIME Explanation
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Figure 12. MobiletNetV3-Small-XAI-Results.

Figure 12 shows the XAI result for MobileNetV3Small using LIME. The Original

Image (left) appears healthy, suggesting a No Diabetic Retinopathy prediction. The LIME
output (right) highlights the optic disc and a large region of the healthy retina, indicating that
the model bases its decision on the absence of pathology and characteristic healthy features.
This confirms that MobileNetV3Small focuses on anatomically relevant areas, aligning with
ophthalmologist evaluations and supporting clinical trust in its predictions.

Training and validation Accuracy (ACCURACY)

Training and validation Loss (LOSS)
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Figure 13. BNN-Training.

The final training curves for the BNN model, Figure 13, show stable and successful
optimization over 30 epochs. Training and validation loss converge rapidly to below 0.20 with
minimal gap, indicating strong generalization and no overfitting. Accuracy, AUC, Precision,
and Recall also rise quickly and stabilize by epoch 10, with validation Accuracy, Precision, and
Recall around 0.93 and validation AUC near 0.95. Overall, the curves demonstrate a stable and
reliable model, confirming the BNN architecture as an effective, high-performing solution for
binary Diabetic Retinopathy classification.
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Figure 14. BNN.

Figure 14 offers strong quantified assurance useful for clinical decision-making. For a
healthy image, the model predicts a very low Diabetic Retinopathy probability (mean 0.04)
with low uncertainty (standard deviation +0.02). The Probability Histogram and 95% CI
further support this confidence, showing a tight interval of [0.01, 0.08], well below the 0.5
decision threshold. These results confirm a stable and reliable No- Diabetic Retinopathy
prediction, providing clinicians with clear, quantifiable evidence of model confidence.

Original Image

LIME Explanation (Positive Evidence)
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Figure 15. BNN-XAI-Results.

Figure 15 shows the LIME explanation for a Diabetic Retinopathy-positive case,
providing important evidence of model reliability. The Original Image (left) contains subtle
pathological features, while the LIME output (right) highlights the yellow-outlined region the
model uses for its positive prediction. The explanation focuses on a large central area of the
retina, covering the macula and surrounding vasculature, while excluding the optic disc. This
focus on the posterior pole is clinically appropriate, as early Diabetic Retinopathy signs such
as microaneurysms and small hemorrhages typically appear in this region. The model,
therefore, bases its decision on medically relevant structures, reinforcing clinician confidence
in its interpretability and correctness.
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Figure 16. Models Test Performance.
Figure 16 shows the final improved test scores, confirming that all three optimized
models now perform at a high and competitive level. The Custom CNN (MC Dropout)
achieves the best overall balance with the highest F1-Score (0.9289) and Accuracy (0.9294).
EfficientNetB0 continues to provide the strongest discriminative power with the highest AUC
(0.9700). Most notably, MobileNetV3Small shows substantial improvement, reaching stable
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performance in the 92%-93% range, with an Accuracy of 0.9250 and an F1-score of 0.9220.
Its stronger Precision (0.9150) indicates that previous classification bias has been resolved,
positioning it as a viable, efficient, and competitive model alongside the other two.

EfficientNet B0 MobileNetV3 Small Custom CNN (MC Dropout)

recicted Label - Predicted Labe B Predicted Label

Figure 17. Confusion Matrix.

Figure 17 illustrates the classification counts for each model on the test set. The
Custom CNN (MC Dropout) shows the most balanced performance, with 103 True Positives
and 111 True Negatives, and only 7 False Positives and 7 False Negatives, explaining its top
Accuracy and F1-Score. EfficientNetBO is also effective, with 101 True Positives and 110 True
Negatives, though it has slightly more errors (12 FPs, 8 FNs). In contrast, MobileNetV3 Small
shows significant bias: it correctly detects all DR cases (113 True Positives) but misclassifies
103 healthy cases as diseased, resulting in low Precision and F1-Score, making it clinically
unsuitable.

Conclusion:

This study successfully addressed two crucial gaps in the automated detection of
Diabetic Retinopathy: the need for comprehensive comparative analysis and the integration
of XAI for enhanced clinician trust. By rigorously training and optimizing three distinct
modeling paradigms, EfficientNetB0, MobileNetV3Small, and a Custom CNN using Monte
Carlo Dropout (BNN approach) study demonstrated that all three architectures could be
tuned to achieve robust, well-generalized performance, with all final F1-Scores exceeding 0.91
on the test set. Specifically, the Custom CNN (MC Dropout) emerged as the best overall
solution, achieving the highest F1-Score (0.9289) and Accuracy (0.9294), confirming its
superior balance between detecting true pathology and minimizing false alarms. Crucially, the
optimization process transformed the lightweight MobileNetV3 Small from a severely
overfitted model into a reliable performer, achieving a competitive Accuracy of 0.9250 and
validating its potential for efficient deployment in resource-constrained medical environments.

Beyond high performance, the successful implementation of XAl techniques provides
the necessary transparency for real-world clinical adoption. Grad-CAM and LIME
visualizations confirmed that all models were focusing their predictive power on anatomically
relevant features of the fundus, such as the optic disc for healthy cases and the posterior pole
for subtle lesions. Furthermore, the BNN-based Custom CNN provided quantifiable
uncertainty metrics, offering a critical layer of reliability by bounding predictions within narrow
confidence intervals, thus empowering clinicians to make highly confident diagnostic
decisions. Moving forward, future work should focus on validating these optimized models
on diverse, external datasets to assess generalizability and extending the BNN framework to
predict the exact severity grades of DR, thereby advancing these Al solutions toward full
clinical integration and helping to alleviate the growing global burden of preventable vision
loss.
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