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he computation of M-Polynomial indices for Erlotinib, a tyrosine kinase receptor 
inhibitor and the most widely recognized anti-cancer drug for the treatment of patients 
with NSCLC and advanced pancreatic cancer, is the main focus of this study. In order 

to efficiently calculate these M-polynomial indices, we used a graph-based method that renders 
use of the edge partitioning technique based on adjacent matrices and vertex degrees. Using 
Python software, we applied numerous regression models, such as Linear Regression (LR), 
Elastic Net Regression (ENR), Lasso Regression (LR), Ridge Regression (RR), and Support 
Vector Regression (SVR), to develop Quantitative Structure-Property Relationships (QSPR). 
Based on the M polynomial indices, these models were utilized to forecast the physical 
properties such as melting point, enthalpy of vaporization, molar refractivity, molar volume, 
and polarizability, molecular weight, molecular mass, surface area, and chemical hardness of 
NSCLC medications. According to our research, the M-polynomial indices predict these 
physical attributes with remarkable accuracy, providing crucial information on structural traits 
that maximize anticancer effectiveness. Additionally, we suggested predictive models for every 
physical attribute examined, proving the value of the M-polynomial index in comprehending 
molecular behaviour and directing the creation of innovative therapeutic medicines. This study 
not only facilitates the accurate prediction of physical properties for known NSCLC drugs but 
also holds the potential to accelerate the novel drug discovery and development, 
uncharacterized anti-cancer compounds, thus contributing to the advancement of cancer 
therapeutics. 
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Introduction: 
Lung cancer continues to pose a major global health challenge due to its high mortality 

rate and complex biological characteristics. Among its primary subtypes, non-small cell lung 
cancer (NSCLC) accounts for approximately 85% of all diagnosed cases and frequently 
necessitates carefully structured and targeted therapeutic interventions. In recent years, 
mathematical chemistry has emerged as a powerful tool for studying the structural 
characteristics of chemical compounds. One of the central approaches in this field involves 
the use of topological indices, which translate molecular structure into numerical values that 
reflect various physical and chemical attributes. Among these indices, the M- polynomial 
framework has attracted considerable attention because it provides a generalized 
representation from which several degree-based topological indices can be derived. These 
indices often show strong correlations with key physicochemical properties such as boiling 
point, stability, entropy, molar volume, and biological activity. 

Given the increasing complexity of modern anticancer agents, particularly those used 
in NSCLC treatment, a mathematical modeling approach can offer deeper insights into 
structure-property relationships. Modeling drug molecules as graphs and deriving their M-
polynomials enables the prediction of various physical properties, reducing dependence on 
purely experimental methods. These models help lower overall research costs while also 
facilitating early-stage processes such as drug design, candidate screening, and molecular 
optimization. Compared with traditional experimental or computational approaches, the M-
polynomial framework provides a faster and more efficient way to characterize drug molecules. 
Experimental measurements can be time-consuming and costly, while many computational 
methods require intensive resources. In contrast, M-polynomial indices capture essential 
structural information through simple graph-based calculations, enabling rapid property 
estimation and streamlined analysis [1]. 

Erlotinib is an oral, low-molecular-weight quinazoline derivative that competes with 
adenosine triphosphate (APT) for binding in the tyrosine kinase domain of the receptor, 
thereby selectively and reversibly reducing the tyrosine kinase activity of EGFR [2]. Erlotinib 
exhibits approximately 93% protein binding following absorption. Its primary metabolic 
pathway involves CYP3A4-mediated biotransformation via the cytochrome P450 system. The 
drug has an elimination half-life of 36 hours and is predominantly excreted in faeces. In long-
term daily administration, the established maximum tolerated dose of erlotinib is 150 mg per 
day. Diarrhea and skin rash are the dose-limiting adverse effects. As a single-agent treatment, 
erlotinib has been shown to have antitumor efficacy in patients with advanced ovarian cancer, 
head and neck cancer, and non-small cell lung cancer (NSCLC) who have received extensive 
pretreatment [3] 

Erlotinib therapy as a single agent was evaluated in advanced (NSCLC)non-small cell 
lung cancer patients who had not responded to the best supportive care after one or two 
standard chemotherapy regimens in a large (731 patient) multicentre randomized phase III 
clinical trial (BR21 research). These patients were treated for metastatic non-small cell lung 
cancer (NSCLC) with either one standard chemotherapy regimen (for 50% of patients) or two 
chemotherapy regimens (50% of patients) [4]. Almost all patients received treatment with a 
platinum-based medication. The response rate (RR) for the erlotinib group was 8.9%, 
compared to less than 1% in the placebo group (P ¡0.001). The median response times were 
3.7 months and 7.9 months, respectively. The overall survival (OS) for the erlotinib regimen 
was 6.7 months, compared to 4.7 months for the placebo arm [P ¡ 0.001, hazard ratio (HR) = 
0.7]. The progression-free survival (PFS) was 1.8 months for the placebo group and 2.2 
months for the erlotinib group (P ¡ 0.001, HR = 0.70). Five percent of patients discontinued 
erlotinib due to toxicity [5]. 
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The present work focuses on the mathematical modelling of selected NSCLC drug 
molecules using the M-polynomial technique. This study formulates molecular graph 
representations, computes the respective M-polynomials, and evaluates their associated 
topological indices. Furthermore, it investigates how these indices correlate with 
experimentally reported physical properties. The findings aim to highlight the effectiveness of 
M-polynomial-based modelling as a predictive tool for anticancer drug analysis and to provide 
a foundation for future computational drug-design strategies. 
Objective of the Study: 

Accurate prediction of the physical properties of NSCLC drugs—such as Erlotinib—
remains a major challenge in the drug development process. Traditional methods for 
determining topological indices are often slow, error-prone, and computationally demanding. 
Such constraints are an impediment to the effective design and optimization of anticancer 
drugs. Hence, an automated and efficient method to calculate M-polynomial indices is 
necessary so that more reliable and quicker prediction of the physical properties required to 
predict drug efficacy and development can be made. 

Novelty of the Statement: 
This study presents the application of M-polynomial indices to forecast the physical 

characteristics of anticancer drugs, namely Erlotinib, which presents a new method of 
computation. 
Literature Review: 

In 1878, James J. Sylvester [1] coined the term ”graph”. Graph theory, a subfield of 
math- ematics is fast growing field of the modern era. Furthermore, graph theory has 
applications in a wide range of fields, including chemistry, statistical mechanics, biology, 
physics, computer science, optimization theory, and operations research [6]. One of the most 
important sub- fields in Mathematical Chemistry is Chemical Graph Theory, which was first 
established by Alexander Balaban [6], Haruo Hosoya [7], Milan Randi [5], and Ante Graovac 
[8]. Undirected linked molecular graphs’ topological indices offer insight into chemical 
compounds’ physicochemical properties and biological activities. QSPR and QSAR are two 
essential techniques used in cheminformatics to forecast the physicochemical characteristics 
of molecules. These approaches make a substantial contribution to the study of topological 
indices [9]. The vertices (atoms) and edges (covalent bonds) of a molecular graph, a topological 
representation of a molecule, provide a mathematical framework for the analysis of molecular 
structures. The analysis of molecular characteristics and activities is made possible by this 
graph-theoretic method [10]. The M-polynomial technique has been used in recent 
developments in chemical graph theory to investigate a variety of chemical structures. M-
polynomials for a variety of indices have been derived by numerous researchers. Zagreb values 
for infinite dendrimer nanostars and M-polynomials for benzene rings contained in P-type 
surfaces and polyhex nanotubes are among the initial uses. Additionally, M-polynomial (MPI) 
forms for certain nanostructures have been widely accepted [11]. 

The M-polynomial, a recent advancement in polynomial theory, has the potential to 
transform the fields of degree-based topological indices. This flexible mathematical framework 
allows precise evaluation of more than ten degree-related indices, thereby creating fresh 
opportunities for scholarly exploration. Research on the M-polynomial has progressed rapidly 
in recent years. Notably, the work of Kwun et al. [12] has been instrumental, as they formulated 
M-polynomial expressions for a range of nanotube structures, demonstrating their significant 
value in modern scientific investigations.  

Methodology: 
The methodology section details the procedures used to calculate M-Polynomial 

Indices (MPI) and to assess their relationship with the molecular and physical characteristics 
of chemical compounds. Let G = (V, E) be a simple and connected graph, where V represents 
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the number of vertices and E represents the set of edges. In this graph theory, a vertex 
corresponds to an individual entity, and an edge signifies a link between a pair of vertices. For 

any vertex u ∈ V, the degree of u, represented as du, refers to the number of edges incident 
to u; equivalently, it is the number of immediate neighbors of that vertex. The degree of a 
vertex is a fundamental parameter used to study the structural properties of a graph. 

Following Kwun [12], the M-polynomial of the graph G is illustrated as: 

 
where |N (p, q)| denotes the count of all edges uv ∈ E for which the endpoint degrees 

meet the condition (du, dv) = (p, q) with p ≤ q. In other words, every edges are recorded 
according to the degrees of its adjacent vertices, and the expression sums over all such degree-
classified edges in the graph. The symbols x and y serve as formal variables that represent this 
degree-dependent edge distribution. Wiener [13] introduced the number of paths as the earliest 
topological index in 1947. The Wiener index has numerous uses within the field of chemistry. 
Subsequently, Milan Randic put forward the idea of what is now known as the Randic index 
[5]: 

 
Bollobs and Amic et al [14] developed the inverse and general Randi index, defined as: 

 
Nikolic proposed a modified version of the M2 index as mM2(G) and defined it as: 

 
In 2011, Fath-Tabar introduced the concept of the M3 index: 

 
The Symmetric Division (SDD) index and Augmented Zagreb (AZI) index are defined as: 

 
The inverse sum I index was analyzed as a fundamental characteristic of octane and is 

precisely described as: 

 
The Harmonic index H is defined as: 

 
Many polynomials have been proposed, including Tutte, matching, Schultz, Hosoya 

[7], and Zhang-Zhang polynomials. This study focuses on the M-polynomial and shows how 
it may be used to calculate degree-based indices. The Hosoya polynomial for distance-based 
indices is similar to the function. The M-polynomial is derived as follows, based on the works 
of Munir et al. [15]: 
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This shows the mathematical form of the M-polynomial indices. Moreover, it 

highlights the utility of the M-polynomial in deriving degree-based indices and provides a 
comprehensive framework for using this method in chemical graph theory. 

Computation of M-Polynomial: 

To begin, we evaluated the M-polynomial indices for the anticancer medication 
erlotinib in order to examine their usefulness in forecasting its physical characteristics. The 
process is described in the steps below. 

The molecular configuration of erlotinib is transformed into a graph model, in which 
atoms are nodes and chemical bonds are represented as edges. 

The edges and nodes of this graph are categorized according to their respective 
vertex degrees. 

By utilizing the edge distribution derived from vertex degrees, the corresponding M- 
polynomial(MP) is formulated. 

The computed M-polynomial indices are illustrated through graphical plots generated 
using the software MATLAB. 

Algorithm for M-Polynomial Indices Computation: 

We used a Python-written algorithm to compute M-polynomial indices of a given 
molecular graph in an automated manner. The algorithm used the graph's adjacency matrix, 
which was made with Python. The degree of every vertex was determined by an algorithm, 
and the M-polygon was built by counting how many edges there were between the vertices 
with different degrees. M-polynomial indices were calculated for 13 NSCLC drugs. The 
molecular SMILES representations and physicochemical properties were retrieved from 
PubChem and ChemSpider [5]. Any entries with missing or incomplete values were removed 
prior to analysis to ensure data consistency. Statistical analysis of M-polynomial indices. To 
evaluate the utility of M-polynomial indices as descriptors of molecular structure, a statistical 
analysis was performed on a selected subset of NSCLC drugs. Specifically, only a defined set 
of NSCLC medications was included, and for each compound, the molecular graph of its 
chemical structure was generated using the same methodology previously applied to Erlotinib. 
The adjacency matrix for each molecular graph was computed using a Python-based approach, 
utilizing the RDKit library for molecular structure processing and Network X for graph 
representation. The indices of the M-polymorphic of every drug were determined by the 
Python-based algorithm that was specifically created to perform this calculation. Such physical 
properties of these drugs as molecular weight (MW), boiling point (BP), melting point (MP), 
and solubility were obtained in favourable open public databases, such as ChemSpider and 
PubChem. All computational steps, including adjacency matrix construction, symbolic M-
polynomial formulation, derivative-based index extraction, and statistical correlation analysis, 
were executed using Python. A fully documented version of the Python code used in this study 
is provided in Supplementary File S1, enabling complete reproducibility of the methodology. 

The objective of our statistical modelling is to identify the correlation between M-
polynomial indices and physical properties through the application of various machine 
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learning regression models, including Linear regression (LR), Ridge regression (RR), Lasso 
regression (LR), Elastic Net regression (ER), and Support Vector regression (SVR). The 
models are measured by applying common evaluation measures, including the Mean Squared 
Error (MSE) and the coefficient of determination (R2). It is a unique methodological strategy 
that creates new molecular descriptors and empirical validation of these descriptors using 
statistical modeling. Linear Regression, Ridge Regression, Lasso Regression, ElasticNet 
Regression, and Support Vector Regression (SVR) were chosen for a better outcome due to 
their complementary strengths and capacity to capture the relationship between M-polynomial 
indices and physicochemical properties. The Linear Regression is the simple interpretive 
baseline model, whereas Ridge and Lasso help manage multi-collinearity. The ElasticNet 
method is useful when the predictors are correlated, and we want variable selection. SVR was 
added in order to capture non-linear patterns that cannot usually be captured by linear models 
[8]. 

Results: 

This study computes the degree-based M-polynomial indices of Erlotinib. We utilize 
the edge partitioning method to compute the indices. A molecular graph is being constructed 
from the chemical structure of Erlotinib for the purpose of edge partitioning. 

Theorem 1. Let G be the molecular graph of erlotinib. Then the M-polynomial is given by: 
M (Gt; x, y) = t(3xy2 + 10x2y2 + 15x2y3 + 3x3y3) + (x2y + x2y3). 

The chemical structure and molecular graph of Erlotinib are shown in the figure-1,2 

 
Figure 1. Chemical structure. 

 
Figure 2. Molecular graph. 

Proof. A molecular graph (Gt) is a graphical representation of this molecule in which 
chemical bonds are shown by edges and atoms by vertices. The number of chemical 
bonds that are attached to an atom is known as the degree (du) of a vertex (u) in Gt. 
Using common valency standards, this information is obtained directly from the 
molecule structure. Let Gt be the molecular graph corresponding to the M-
polynomial. 

M (Gt; x, y) = t(3xy2 + 10x2y2 + 15x2y3 + 3x3y3) + (x2y + x2y3). 
We analyzed the vertex degrees and edge distribution as follows: 

Based on the molecular connectivity implied by M (Gt; x, y), the vertex 
degrees were distributed as:  
Degree 1 vertices: correspond to edges with x2 
terms in M (Gt), 
Degree 2 vertices: appear in edges with x 
Degree 3 vertices: appear in edges with x 
Degree 4 vertices: appear in edges with x 
We define the edge sets: 
terms, 

N (p, q) = {uv ∈ E(Gt) | du = p, dv = q, p ≤ q}. 

Then the edge counts are: 
|N (1, 2)| = 3t, 

|N (2, 2)| = 10t, 
|N (2, 3)| = 15t, 
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2 t 
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|N (3, 3)| = 3t, 

|N (2, 1)|single = 1, 
|N (2, 3)|single = 1. 

Total Vertices = 13t + 63 Total Edges = 31t + 2 
For t = 1: 
Number of Vertices: 13(1) + 63 = 76 
Number of Edges: 31(1) + 2 = 33 By definition, the M-polynomial is 

M (Gt; x, y) = |N (p, q)|xpyq. 

p≤q 
Substituting the edge counts gives 

M (Gt; x, y) = 3txy2 + 10tx2y2 + 15tx2y3 + 3tx3y3 + x2y + x2y3 = t(3xy2 + 10x2y2 + 

15x2y3 + 3x3y3) + (x2y + x2y3), 

which exactly matches the given polynomial. 

A molecular graph (G) is a molecular representation where atoms are shown 
by vertices and chemical bonds by edges. The number of chemical bonds (edges) that 
are attached to an atom (vertex) in H is its degree (de).  
Theorem 2. Let Gt be the graph of Erlotinib and the M-polynomial for the Erlotinib 
with a repeating factor t is: 

M (Gt; x, y) = t(3xy2 + 10x2y2 + 15x2y3 + 3x3y3) + (x2y + x2y3) 

Then 
Table 1. Analytical expressions of selected degree-based topological indices as functions of the 

parameter t. 

Index Value 

First Zagreb index (M1) 142 t + 8 

Second Zagreb index (M2) 163 t + 8 

Modified second Zagreb index (MM2) 955 t + 40 

Forgotten index (F) 874t + 44 

Redefine the third Zagreb index 
(ReZG3) 

3244t + 152 

Harmonic index (HM) 69t + 2.33 

Symmetric division index SDD 66t + 4.6667 

Inverse sum index (I) 7t + 0.533 

Proof. For a molecular graph Gt with M-polynomial M (Gt; x, y): 

M (G ) =

  

x
∂M 

+ y
∂M , M (G ) =

  

x
∂M 

· y
∂M 

Step-by-Step Calculation: 
Table 2. Coefficients and corresponding exponent values (p,q)(p, q)(p,q) of the polynomial 

terms in variables xxx and yyy 

Term c_pq p q 

3txy^2 3t 1 2 

10tx^2 y^2 10t 2 2 

15tx^2 y^3 15t 2 3 

3tx^3 y^3 3t 3 3 

x^2 y 1 2 1 

x^2 y^3 1 2 3 

First Zagreb Index (𝑀1): 
(M_1 (G_t)&=3t(1+2)+10t(2+2)+15t(2+3)+3t(3+3)+1(2+1)+1(2+3)@&=142t+8) 

 

x=y
=1 

x=y
=1 
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Second Zagreb Index (𝑀2): 

M_2 (G_t)=3t(1⋅2)+10t(2⋅2)+15t(2⋅3)+3t(3⋅3)+1(2⋅1)+1(2⋅3)=163t+8 
Modified Second Zagreb Index (MM2): 

MM2(G_t)=3t(1⋅2)^2+10t(2⋅2)^2+15t(2⋅3)^2+3t(3⋅3)^2+1(2⋅1)^2+1(2⋅3)^2=955t+40 
Forgotten Index (F): 

F(G_t)=∑c_pq (p^3+q^3)=874t+44 
Redefined Third Zagreb Index (ReZG3): 

ReZG3(G_t)=∑c_pq (p+q)^3=3244t+152 
Harmonic Index (HM): 

HM(G_t )=∑c_pq  2pq/(p+q)=69t+2.33 
Symmetric Division Degree Index (SDD): 

SDD(G_t)=∑c_pq  (p^2+q^2)/(p⋅q)=66t+4.6667 
Inverse Sum Index (I): 

I(G_t)=∑c_pq  1/(p+q)=7t+0.533 
Statistical Analysis: 

In order to assess the predictive contribution of the M-polynomial indices, we 
evaluated each model using the coefficient of determination (R), Mean Squared Error (MSE), 
and Pearson correlation (r), where higher R and r values, together with lower MSE, indicated 
indices with stronger predictive relevance for the physicochemical properties. 

Table 3. Statistical analysis for Boiling Point (BP) 

Model R Mean Squared Error Pearson R Property 

Linear Regression -5E+15 8.93E+16 0.97736 BP 

Ridge Regression -512737 9237256 0.96858 BP 

Lasso Regression -1125.32 20291.24 0.79718 BP 

ElasticNet Regression -1806.66 32566 0.9742 BP 

SVR -125.192 2273.418 0.743 BP 

As shown in Table 1, the regression models exhibited varying performance in 
predicting the target variable. Linear Regression demonstrated the poorest fit, with a very 
low R² and a high mean squared error (MSE). In contrast, Ridge Regression performed 
most effectively, showing a comparatively strong correlation. Lasso Regression, however, 
yielded suboptimal results, characterized by low R² and high MSE values.  ElasticNet did 
not work well with a negative correlation. Although it had a negative correlation, SVR 
reduces error to a minimal level, which means that it gave the highest accuracy of the 
prediction in this instance. 

Table 4. Statistical analysis for Enthalpy of Vaporization (EoV) 

Model R Mean Squared Error Pearson R Property 

Linear Regression -6.8E+15 1.93E+15 0.887356 EoV 

Ridge Regression -199351 56261.49 0.853831 EoV 

Lasso Regression -11418 3222.689 -0.96068 EoV 

ElasticNet Regression -13794.3 3893.336 -0.9556 EoV 

SVR -78.177 22.3455 -0.89279 EoV 

In the table 2, the Enthalpy of Vaporization (EoV) regression models demonstrated 
different performance. The R2, MSE, and Pearson R of Linear Regression were -
6.8E+15, 1.93E +15, 0.887356, respectively, meaning that it was fitting with an average 
correlation. Ridge Regression had a weaker correlation with an R2 of -199351, a MSE 
of 56261.49, and a Pearson R of 0.853831. The R2 of Lasso Regression was -11418, 
MSE = 3222.689, and the correlation was strong (Pearson = -0.96068). Similar results 
were also observed with ElasticNet Regression with R2 of -13794.3, MSE of 3893.336, 
and Pearson R of -0.9556. The MSE of SVR was lowest (22.3455) with a Pearson R of -
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0.89279, giving the best predictions, but with a negative correlation. 
Table 5. Statistical analysis for Flash Point (FP) 

Model R Mean Squared Error Pearson R Property 

Linear Regression -1.4E+16 2.51E+17 0.085324 FP 

Ridge Regression -235452 4316773 0.062658 FP 

Lasso Regression -1.8E+07 3.25E+08 0.082239 FP 

ElasticNet Regression -59914.5 1098484 0.024401 FP 

SVR -400.02 7352.253 -0.09192 FP 

The regression models for predicting Flash Point (FP) exhibited notably poor 

performance (Table 3). The R² value was −1.4 × 10¹⁶, the mean squared error (MSE) 

was 2.51 × 10¹⁷, and the Pearson correlation coefficient (R) was 0.0853, indicating a 
very poor fit and only a weak positive relationship between the predicted and 
observed values. Ridge Regression performed slightly better, with an R² of −235,452, 
an MSE of 4,316,773, and a Pearson correlation coefficient (R) of 0.0627; however, it 
still demonstrated very limited predictive capability Lasso Regression exhibited an R² 

of −1.8 × 10⁷, an MSE of 3.25 × 10⁸, and a Pearson correlation coefficient (R) of 
0.0822, indicating low predictive power. Similarly, ElasticNet Regression performed 
poorly, with an R² of −59,914.5, an MSE of 1,098,484, and a very low Pearson R of 
0.0244, reflecting minimal predictive capability. The lowest MSE of 7352.253 was 
obtained using SVR, although the Pearson R of -0.09192 was negative, which proves 
the least accurate prediction with a weak negative relationship. 

Table 6. Statistical analysis for Molar Refractivity (MR) 

Model R Mean Squared Error Pearson R Property 

Linear Regression -2.1E+13 3.87E+15 -0.244 MR 

Ridge Regression -6886.94 1242140 -0.2288 MR 

Lasso Regression -1281.65 231306.6 -0.2143 MR 

ElasticNet Regression -92.9515 16942.8 -0.1378 MR 

SVR -0.26862 228.777 0.96557 MR 

Regression equations of the MR demonstrated different results (Table-4). The R2 
of Linear Regression was -2.1E +13, MSE was 3.87E +15, and the Pearson R was -0.244, 
which showed that it was poorly fitted and was negatively correlated. Ridge Regression 
was a little higher with R2 = -6886.94, MSE = 1242140, and Pearson = -0.2288, which 
indicates a slightly weaker negative correlation. The R2 of Lasso Regression was -1281.65, 
MSE was 231306.6, and Pearson R was -0.2143, and the predictive ability was equally 
weak. ElasticNet Regression performed poorly with an R2 = -92.9515, MSE = 
16942.8, and Pearson R = -0.1378. The highest predictive accuracy and high positive 
Pearson R of 0.96557 showed that SVR had the best performance with an R 2 of -
0.26862, MSE of 228.777, and positive Pearson R.  

Table 7. Statistical analysis for Molar Volume (MV) 

Model R Mean Squared Error Pearson R Property 

Linear Regression -4.6E+13 5.38E+16 -0.68549 MV 

Ridge Regression -1251.32 1474696 0.730584 MV 

Lasso Regression -3.55675 5365.921 0.997262 MV 

ElasticNet Regression -26.4794 32359.11 0.926087 MV 

SVR -0.32559 1560.986 0.472211 MV 

Discussion: 
This section highlights the significant aspects and defining characteristics of the 

proposed model. 
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Regression models: 
Table 8. Regression Models 

Model R Mean Squared Error Pearson R Property 

Linear Regression -2.2E+12 8.95E+15 0.518305 PSA 

Ridge Regression -1267.1 5088759 -0.50099 PSA 

Lasso Regression 430.822 1732861 -0.50188 PSA 

ElasticNet Regression -62.0386 252968 -0.47456 PSA 

SVR -0.51494 6079.316 0.995896 PSA 

Linear Regression -1.4E+13 2.81E+14 -0.15554 HAC 

Ridge Regression -3462.83 71585.87 -0.13522 HAC 

Lasso Regression -5.95335 143.7027 0.553452 HAC 

ElasticNet Regression -9.89884 225.2428 0.456641 HAC 

SVR 0.052498 19.58171 0.938189 HAC 

Linear Regression -9.5E+12 1.31E+17 0.148763 C 

Ridge Regression -218.687 3020010 0.233267 C 

Lasso Regression -67.373 939916.4 0.231159 C 

ElasticNet Regression -6.3501 101041.1 0.278722 C 

SVR -1.53429 34838.66 0.984829 C 

The regression equations of the MV property demonstrated different performance 
(Table-6). Linear Regression did not fit well with a low R2 of -4.6E +13 and a large 
MSE of 5.38E +16, and a low negative correlation (Pearson R = -0.68549). Ridge 
Regression was more successful, as it has an R2 of -1251.32, MSE of 1474696, and a 
positive correlation is moderate (Pearson R = 0.730584). The overall results of Lasso 
Regression were the best with an R-Sq = -3.55675, a low MSE = 5365.921, and a very 
good positive correlation (Pearson R = 0.997262), showing that it is very accurate. 
Elastic Net Regression was also a good model with an R 2 of -26.4794, MSE of 
32359.11, and Pearson R of 0.926087. SVR has the lowest MSE (1560.986) but a lower 
Pearson R of 0.472211, which means that it has a lower predictive power. Overall, Lasso 
Regression demonstrated the most effective performance with this dataset. The regression 
models for the three properties—Polar Surface Area (PSA), Heavy Atom Count (HAC), and 
Complexity (C)—exhibited varying predictive capabilities (Table 7). For PSA, Linear 
Regression showed a moderate positive correlation (Pearson R = 0.5183); however, its 

predictive power was limited, as reflected by an R² of −2.2 × 10¹² and an MSE of 8.95 × 10¹⁵. 
Ridge Regression and Lasso Regression were weakly negatively correlated, with the 
latter being a little worse. ElasticNet Regression had the least R 2 of -62.0386 and a negative 
correlation. The most successful model was the SVR, which has the highest predictive power 
with the minimum possible error (MSE = 6079.316) and a high positive correlation 
(Pearson R = 0.995896). In the case of HAC, Linear Regression and Ridge Regression 
failed to perform well, and their negative correlation was poor. Lasso Regression had a 
stronger positive correlation (0.553452) but had a weak predictive power. The highest 
Pearson R of 0.938189 and a low MSE of 19.58171 prove that SVR gave the best 
results, and it implies that it has good predictive power. In the instance of Complexity 
(C), the performance of all the models except SVR was weak. The highest 
performance of SVR is reported as a high Pearson R of 0.984829 and low MSE 
(34838.66), which shows that it is effective in the prediction of this property. Generally, 
SVR has always demonstrated high predictive accuracy on all properties, especially 
PSA and HAC, with high correlations and minimum MSE. 
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Table 9. Regression Equations for Boiling Point (BP) 

Model Equation 

Linear Regression BP = 697.37 + (18465.7168)AZI + (429962.1793)M1 + 
(274244.4798)M2 + (−1448551.9618)mM2 
+(1497491.6541)H + (−11504.1322)ReZG3 + (−82989.8275)SDD 
+ (−2590690.9016)I + (−51297.7970)F 

Ridge Regression BP = 324.56 + (−8.0766)AZI + (19.3593)M1 + (5.4538)M2 + 
(−13.1955)mM2 
+(−4.3436)H + (2.1345)ReZG3 + (20.6202)SDD + (8.1577)I + 
(−13.1321)F 

Lasso Regression BP = 312.05 + (−1.0387)AZI + (7.9282)M1 + (0.6396)M2 + 
(0.0000)mM2 
+(−34.5877)H + (−0.1980)ReZG3 + (4.1902)SDD + (10.1673)I 
+ (−1.9813)F 

ElasticNet Regression BP = 307.83 + (−2.0348)AZI + (7.9989)M1 + (1.4271)M2 + 
(−1.1194)mM2 
+(−6.3037)H + (−0.2996)ReZG3 + (−0.8104)SDD + (6.0451)I 
+ (−1.1382)F 

Heat Map: 
The correlation heatmap (Figure 3) shows linear relationships between the 

topological indices and the studied physicochemical properties. Most of the indices showed a 
positive correlation with physicochemical variable indicating that the descriptors of M-

polynomial represent structural properties that affect molecular performance. AZI, M₁, M₂, 
ReZG₃, I, F, SDD, and HAC were mutually correlated with r ≥ 0.90. It indicates that these 
descriptors were coded for similar structural information. Many of the physical properties also 

correlated well with these indices (r > 0.85). On the other hand, mM₂ was the only descriptor 
that consistently had either weak or negative correlations with the other indices and with the 
physicochemical properties: correlation coefficients between approximately −0.45 and 0.10. 

The pattern suggests that mM₂ captured a structural feature that has not been tightly related 
to the measured traits. 

The boiling point (BP), enthalpy of vaporization (EoV), molar refractivity (MR), 
molar volume (MV), and polarizability (P) of the compounds are, however, almost all 
correlated (r ≥ 0.90), being dependent on size and electron delocalization. These properties 
also exhibited some connection with the main group of topological indices, with values 
generally varying from r = 0.85 to 0.98. Chemical hardness (C) and HAC correlate well with 
most indices (r ≥ 0.90), indicating that the chemical hardness (C) and the HAC were influenced 
by structural features represented by the descriptors. 
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Figure 3. Heatmap of all variables in the dataset. 

Conclusion: 
This study used edge-partitioning based on vertex degrees and adjacency matrices 

to successfully calculate the M-polynomial indices of erlotinib. Computational efficiency 
was greatly increased by a specially created Python script, which minimized human 
mistakes and cut processing times from days to minutes. The combination of machine 
learning models and graph- based indexes shows an effective approach for expediting the 
drug development process. The results set the stage for further research in computational 
drug design, namely in the creation of novel therapeutic molecules to combat NSCLC. 
References: 
[1] J. J. Sylvester, “On an Application of the New Atomic Theory to the Graphical 

Representation of the Invariants and Covariants of Binary Quantics, with Three 
Appendices,” Am. J. Math., vol. 1, no. 1, p. 64, 1878, doi: 10.2307/2369436. 

[2] A. A. Abdelgalil, H. M. Al-Kahtani, and F. I. Al-Jenoobi, “Erlotinib,” Profiles Drug Subst. 
Excipients Relat. Methodol., vol. 45, pp. 93–117, Jan. 2020, doi: 
10.1016/BS.PODRM.2019.10.004. 

[3] M. A. Bareschino, C. Schettino, T. Troiani, E. Martinelli, F. Morgillo, and F. Ciardiello, 
“Erlotinib in cancer treatment,” New Trends Clin. Oncol. - 9th Natl. GOIM Congr. 17-19 
June 2007, Potenza, Italy, vol. 18, pp. vi35–vi41, 2007, doi: 10.1093/annonc/mdm222. 

[4] U. Smrdel and V. Kovač, “Erlotinib in previously treated non-small-cell lung cancer,” 
Radiol. Oncol., vol. 40, no. 1, Jul. 2006, doi: 
10.1056/NEJMOA050753;PAGEGROUP:STRING:PUBLICATION. 

[5] “On history of the Randić index and emerging hostility toward chemical graph theory 
| Request PDF.” Accessed: Dec. 09, 2025. [Online]. Available: 
https://www.researchgate.net/publication/267081398_On_history_of_the_Randic_i
ndex_and_emerging_hostility_toward_chemical_graph_theory 

[6] E. Mohyedinbonab, M. Jamshidi, and Y. F. Jin, “A Review on Applications of Graph 
Theory in Network Analysis of Biological Processes,” Int. J. Intell. Comput. Med. Sci. Image 
Process., vol. 6, no. 1, pp. 27–43, 2014, doi: 
10.1080/1931308X.2014.938492;WGROUP:STRING:PUBLICATION. 

[7] H. Hosoya, “Topological Index. A Newly Proposed Quantity Characterizing the 



                              International Journal of Innovations in Science & Technology 

November 2025|Vol 07 | Issue 04                                                                Page |2912 

Topological Nature of Structural Isomers of Saturated Hydrocarbons,” Bull. Chem. Soc. 
Jpn., vol. 44, no. 9, pp. 2332–2339, Sep. 1971, doi: 10.1246/BCSJ.44.2332. 

[8] A. Graovac, I. Gutman, and N. Trinajstić, “Topological Approach to the Chemistry of 
Conjugated Molecules,” 1977, Accessed: Dec. 09, 2025. [Online]. Available: 
https://books.google.com/books/about/Topological_Approach_to_the_Chemistry_
of.html?id=Hq7rCAAAQBAJ 

[9] H. Parastar and R. Tauler, “Big (Bio)Chemical Data Mining Using Chemometric 
Methods: A Need for Chemists,” Angew. Chemie, vol. 134, no. 44, p. e201801134, Nov. 
2022, doi: 10.1002/ANGE.201801134. 

[10] S. Sorgun and K. Birgin, “Vertex-Edge-Weighted Molecular Graphs: A Study on 
Topological Indices and Their Relevance to Physicochemical Properties of Drugs Used 
in Cancer Treatment,” J. Chem. Inf. Model., vol. 65, no. 4, pp. 2093–2106, Feb. 2025, doi: 
10.1021/ACS.JCIM.4C02013. 

[11] H. Saeidi, H. Hassani, M. S. Dahaghin, and S. Mehrabi, “An optimal solution of lung 
cancer mathematical model using generalized Bessel polynomials,” Phys. Scr., vol. 99, 
no. 12, p. 125269, Nov. 2024, doi: 10.1088/1402-4896/AD9095. 

[12] Y. C. Kwun, M. Munir, W. Nazeer, S. Rafique, and S. M. Kang, “M-Polynomials and 
topological indices of V-Phenylenic Nanotubes and Nanotori,” Sci. Reports 2017 71, vol. 
7, no. 1, pp. 8756-, Aug. 2017, doi: 10.1038/s41598-017-08309-y. 

[13] H. Wiener, “Structural Determination of Paraffin Boiling Points,” J. Am. Chem. Soc., vol. 
69, no. 1, pp. 17–20, 2002, doi: 10.1021/JA01193A005. 

[14] D. Amić, D. Bešlo, B. Lučič, S. Nikolić, and N. Trinajstić, “The Vertex-Connectivity 
Index Revisited,” J. Chem. Inf. Comput. Sci., vol. 38, no. 5, pp. 819–822, 1998, doi: 
10.1021/CI980039B. 

[15] M. Munir, W. Nazeer, S. Rafique, and S. M. Kang, “M-Polynomial and Degree-Based 
Topological Indices of Polyhex Nanotubes,” Symmetry 2016, Vol. 8, Page 149, vol. 8, no. 
12, p. 149, Dec. 2016, doi: 10.3390/SYM8120149. 

 

Copyright © by authors and 50Sea. This work is licensed under 
Creative Commons Attribution 4.0 International License.  

 


