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oil fertility loss and excessive chemical fertilization are major environmental and 
economic issues in developing regions such as Punjab, Pakistan. This paper proposes an 
Agentic AI framework for autonomous soil and fertilization management that combines 

(i) IoT soil sensing and drone-based crop monitoring for real-time perception, (ii) predictive 
modelling for short-horizon nutrient and moisture forecasting, and (iii) multi-agent 
reinforcement learning (MARL) for adaptive decision-making. The system operates with 
operational autonomy, executing daily management decisions without routine human-in-the-
loop control. Agronomic expert knowledge is incorporated only offline as safety constraints 
and initialization priors (e.g., allowable nutrient ranges and stress-avoidance rules) to bound 
the action space and prevent unsafe behavior, rather than to prescribe actions. Experiments 
were conducted across two seasons at two sites (Sheikhupura and Multan) under four 
treatments: Farmer Practice (FP), Rule-Based Control (RBC), Machine Learning Predict (ML-
Predict), and the proposed Agentic AI. Results show that Agentic AI reduces nitrogen fertilizer 
use while maintaining/improving yield proxy and improving soil indicators (including residual 
nitrate reduction and improved Soil Health Index). We also analyze irrigation outcomes as a 
sustainability objective and show how water usage must be treated as a constrained or multi-
objective term in the reward function to avoid over-irrigation. Overall, the framework 
supports scalable, data-driven soil management with bounded autonomy, preserving expert-
defined agronomic safety. 
Keywords: Multi-Agent Reinforcement Learning; Rule-Based Control; Farmer Practice; 
Agentic AI; Soil Health Index 
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Introduction: 
The introduction explains how traditional agriculture is evolving into a smart, 

autonomous, and adaptive system thanks to the introduction of Agentic Artificial Intelligence 
(AI). It highlights an agentic AI that can enhance efficiency, sustainability, and decision-
making, especially regarding soil and fertilization management. This section brings out the 
necessity of smart, information-based solutions to sustainable agriculture and presents the 
novelty of creating agentic AI systems that can learn and make independent decisions to 
implement soil health and optimize fertilizers. 

The application of the Agentic Artificial Intelligence (AI) in the agricultural field is 
changing the conventional system of agriculture into a smart, self-learning, and adaptable 
system. The reason is that the agentic AI systems are not focused on prediction only: it is 
possible to create autonomous or autonomous choices, learning, and proactive alteration 
towards the surrounding environment. Recent reports demonstrated that these systems can 
be more efficient, less dependent on humans, and intelligent and independent thinking, as well 
as coordination of farm agents [1][2]. Autonomy, data-driven intelligence, and a combination 
of the three components of reasoning can allow agentic AI to be a chance to establish 
sustainable and resilient agricultural systems. 

The use of soil and fertilizers is one of the most important issues in modern agriculture, 
and inappropriate use of fertilizers, incorrect soil analysis, and slow reaction to decisions are 
frequent factors that contribute to the decreased crop yields, imbalance of nutrients, and soil 
erosion. Conventional farming methods are based on manual observation and scheduled 
regimes, which fail to change dynamically to the changing soil conditions. Consequently, 
overuse of fertilizers, erosion of nutrients, wastage of water, and destruction of the 
environment are common occurrences. In order to overcome these problems, Agentic AI can 
be a revolutionary technology since it is not simply a prediction of soil conditions, but it 
autonomously thinks, adjusts, and makes real-time decisions. In contrast to traditional models 
of AI, where human intervention is obligatory at each stage, agentic systems always monitor 
the state of the soil environment, handle nutrient cycling, and automatically calculate the best 
irrigation and fertilization plans without human interference. This renders them perfect in the 
management of all nutrients, particularly in settings where the soil parameters are varied. The 
new studies indicate that AI-based soil surveillance and intelligent use of fertilizers have a great 
impact on improving soil health, lessening chemical wastes, and maximizing harvest [3][4]. 
Thus, the idea of implementing Agentic AI in the soil and fertilizers is a vital chance to build 
data-driven and adaptive, autonomous, and environmentally friendly practices in agriculture. 

The proposed study is aimed at creating an Agentic AI-powered system of 
autonomous soil and fertilization control to assist sustainable agriculture. The domain includes 
the entire process of soil sensing to smart decision-making and self-actuation. This paper starts 
with the development of the IoT mobile-based soil sensors that will be integrated at the start 
of the study to obtain real-time information about soil moisture, pH, NPK, temperature, and 
organic matter. This information is handled and processed through an Agentic AI model that 
has the capability of autonomous reasoning, detection of anomalies, and controlling nutrients. 
This study also involves designing a reinforcement learning based decision engine that 
identifies the best irrigation and fertilization strategies without involving human intervention. 
The system will be tested on how it will decrease the use of water, decrease the wastage of 
fertilizers, improve the health of soils, and increase crop yields. Also, within the scope, there 
will be the development of a sustainability evaluation module to quantify the long-term 
environmental impact. This research is also confined to nutrient management of soils and 
automated fertilization procedures in the agricultural environment; it does not entail pest 
identification, weather prediction, and crop illness diagnosis. In general, the scope is expected 
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to show how Agentic AI will empower precision agriculture by providing autonomous, 
efficient, and environmentally sustainable solutions to soil management. 

The novelty of this work lies in the development of an operationally autonomous, 
agentic AI framework for soil and fertilization management that goes beyond prediction or 
recommendation-based systems. Unlike existing approaches that rely on fixed rules or 
supervised learning models, the proposed framework employs multi-agent reinforcement 
learning to directly control fertilization and irrigation decisions under real-world field 
conditions. Agronomic expertise is incorporated only as safety constraints and initialization 
priors to bound the action space, rather than as prescriptive decision rules. This enables the 
system to learn context-sensitive strategies while maintaining agronomic safety, representing a 
clear departure from conventional AI-assisted agriculture. The structure will study the soil 
makeup and the amount of nutrients present in the soil, and also the environment, so that the 
most favourable methods of fertilization can be determined. The key contribution of this 
research is the creation of a self-learning agentic AI model that is able to maximize the use of 
fertilizer and keep the soil healthy with the least level of human input. Other studies on agentic 
and AI-controlled sustainable agriculture have demonstrated potential outcomes in enhancing 
efficiency and minimizing environmental impact [5][6]. We hope that the following results are 
possible regarding improved use of fertilizers, improved soil fertility, and a scalable design that 
can be used to support sustainable agricultural practices using agentic AI. 
Literature Review: 

The adoption of Artificial Intelligence (AI) in farming has revolutionized the 
appearance of precision farming and decision-making. The initial studies focused on how 
machine learning and deep learning could be used to optimize crop yield and farm 
management [7][8]. These works formed the basis of Agriculture 5.0, which combines AI, the 
Internet of Things (IoT), and data analytics to improve productivity and sustainability [9][10]. 
This research has also shown the way in which an AI-based soil management system positively 
influenced nutrient application and water utilization efficiency. 

As the idea of smart farming developed, studies started to point towards the ethical, 
environmental, and social factors. As an example, the authors of the article [11] considered 
the issue of gender and indigeneity in AI-driven agriculture in East Africa, whereas the article 
[6] challenged the question of trust relations in the framework of algorithmic governance in 
precision agriculture. Such studies were an indicator of an increased concern with human-
centered AI solutions, reflecting the trend in general [12]. 

The concept of agentic AI, with its autonomy, reasoning, and goal-focused decision-
making, is gradually replacing traditional AI systems. According to the definitions of article 
[13], agentic AI can be an autonomous intelligence, which is capable of delivering complex 
tasks without micromanagement by a human. Equally, the article [14] presented a 
comprehensive summary of its applications and influences on society. Based on the level of 
autonomy, contextual knowledge, and the ethical implications, the article [15] proposed the 
conceptual taxonomy between standard and agentic AI agents. 

The article [16] provided a multi-expert perspective on agentic systems, defining them 
as transparency, reliability, and alignment as the primary challenges concerning the application 
of agentic systems. Adding to this, [5] investigated the possibility of whether such systems will 
empower or displace human decision-making, and whether it has philosophical and managerial 
implications for human autonomy within AI-aided settings. 

The agricultural sector has become an attractive area of implementation of agentic AI 
because it involves the use of context-specific, data-driven, and multi-agent coordination. In 
the article [1], the use of Agentic AI in autonomous decision making for the food supply chain 
with improved logistics and resource optimization was further expanded to utilize cloud 
infrastructure for food distribution in the regions based on predicted logistics. 
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In the article [3], the framework of Meta Ag 2.0 was introduced, which is a contextual 
agricultural recordkeeping with agentic intelligence, whereas article [17] introduced an edge-
enabled smart agriculture framework, which is the combination of IoT, lightweight deep 
learning, and agentic AI, to provide context-aware farming. The same was stressed in the work 
of the article [9], which demonstrated that smart farming systems can be used to coordinate 
autonomous agents for enhancing agricultural efficiency. 

Article [4] examined the intersection of AI and blockchain and depicted how the use 
of decentralized ledger systems improves traceability and trust in the AI-controlled farming 
practices. This is in line with the sustainability-oriented review by article [18] that highlighted 
the role of AI in sustainable agriculture. 

The convergence of LLMs and agentic AI is the beginning of a new era in the 
automation of agriculture. The application of agentic AI in dairy science has been pioneered 
by [2], who utilized the LLMs in autonomous decision-making when managing the herd and 
analyzing data. In the same manner, article [19] presented an agriculture and enterprise AI 
multi-agent LLM system, which is scalable and adaptive. 

Article [20] made an extensive survey of the multi-modal LLMs in the agricultural field, 
covering the topic of vision-language integration and RAG (retrieval-augmented generation) 
systems to ground knowledge. Whereas the article [21] created the AgriBuddy agentic AI 
system based on RAG and vision models that are specific to Bangladeshi agriculture. The 
application of the LLM-based agents to automating the smart farm business processes was 
also described by [22], and the integration of UAVs with LLMs to display real-time agricultural 
monitoring was demonstrated by [23]. 

All these innovations imply that there is a tendency towards multi-agent, language-
conscious, and perceptual AI systems, which can interpret unstructured farm data and 
automatically plan its workflow. The autonomy of agentic AI systems is a critical issue as it 
increases the chance of misalignment and the inability to control the systems by the [24] risk 
alignment framework in agentic systems, which is concerned with transparency and human-
in-the-loop design. In the article, [25] studied the application of agentic AI and LLMs to 
insurance decisions, but they also identified opportunities and challenges applicable to the risk 
management segments of agriculture. 

The Article [5] warned that the growing autonomy of agentic systems may result in the 
loss of accountability, and the structures that would allow balancing efficiency and ethical 
accountability are needed. All these teachings render it important to make sure that there is a 
sense of trust, explainability, and human control when it comes to the application of AI in 
agriculture. 

The future of farming is with the aid of AI technologies that will be applied to achieve 
climate-smart and sustainability goals. Article [26] focused on the implementation of AI-based 
analytics to enhance the utilization of resources and minimize the impacts of climate. In article 
[17], the application of AI to maximize fertilizer usage was explored, and further 
personalization to the process of nutrient management using agentic AI was introduced. 
Similarly, in the article [3], the notion of data-centric agriculture through the assistance of AI-
based agents that can be used to promote flexibility in context and real-time decision-making. 
It can be concluded from all the above research work that adaptive learning and self-regulating 
capabilities can become a cornerstone to the vision of Agriculture 6.0 with fully autonomous, 
sustainable, and interdependent agricultural ecosystems. 
Methodology: 
Proposed Agentic AI Framework: 

The purpose of this study is to use an experimental design based on simulation to 
design and experiment with a sustainable agricultural Agentic AI model. The key aim was to 
develop an independent system that has the ability to control soil nutrients and irrigation 



                                 International Journal of Innovations in Science & Technology 

November 2025|Vol 7 | Issue 4                                                          Page |3001 

without human interference. The proposed framework is based on a layered architecture 
including Perception, Cognition, and Action layers. The system can detect data in the 
environment, make decisions based on the optimal course of action through machine learning, 
and act in a simulated farm setting, thanks to this design. The fundamental principle of this 
model is an agent of Reinforcement Learning (RL), which interacts with a simulated 
environment to learn the best farming strategies as time progresses. The Python programming 
language was used to implement the system, which made use of scikit-learn libraries that assist 
in predictive modelling and custom classes that were made to support the simulation 
environment.  

In this work, “Agentic AI” is not used as a synonym for MARL. A standard MARL 
controller typically learns a direct policy mapping from observed state st to an action at (i.e., 

π(at∣st)) that optimizes a reward. In contrast, we define Agentic AI as a system in which each 
agent is an orchestrator with: (1) perception (sensor fusion and state estimation), (2) 
deliberation (policy learning + predictive reasoning), (3) action execution (actuation with 
constraint checking), and (4) self-monitoring (tracking outcomes, constraint violations, and 
corrective fallback). Formally, each agent is modelled as: 

 
Where πθ is the learned MARL policy, st is the estimated state, M is predictive 

modelling (short-horizon forecasts for moisture/nutrients), C is a set of expert-defined safety 
constraints (e.g., allowable N ranges, moisture stress limits), and F is a fallback mechanism 
(safe default actions when uncertainty is high or constraints are at risk). Therefore, the 
proposed approach is “agentic” because it coordinates multiple tools and layers (sensing, 
forecasting, learning, constraints, and fallback) into a closed-loop autonomous decision 
pipeline, rather than relying on a single learned controller alone. 

The workflow of the AAI proposed research work has been presented as shown in 
Figure 1. 

 
Figure 1. Methodology Diagram 

The proposed Agentic AI system is evaluated using a simulation-based experimental 
environment that emulates soil–crop–irrigation dynamics in a controlled and reproducible 
manner. The simulation environment is designed to reflect the layered methodology shown in 
Figure 1 and is formally defined as a closed-loop decision-making system built on 
reinforcement learning principles. 

The simulation environment is modeled as a discrete-time Markov Decision Process 
(MDP): 

E=⟨S, A, T, R,γ⟩  
Where: 
S denotes the soil–environment state space 
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A denotes the irrigation and fertilization action space 
T represents the soil transition dynamics 
R is the sustainability-aware reward function 
γ is the discount factor 
Each simulation step corresponds to a daily farming decision cycle. 
Layer-Wise Detail: 

The proposed model has been organized in a layer architecture. Each layer has been 
described below. 
Perception Layer: (Soil Sensoring): 

The perception layer is the data entry point to the system. We applied two different 
datasets to train the parts of the AI. The Fertilizer Prediction Dataset, which was the first 
dataset, had 100,000 records of soil parameters, such as Nitrogen (N), Phosphorus (P), 
Potassium (K), temperature, and humidity. This information guided the system on the basic 
agronomic rules. The second data set was the Smart Farming Data 2024 (SF24), which gave 
2,200 actual sensor measurements at farms. Our simulation environment was based on this 
dataset so that the AI training is not tested against noise. We conducted a great deal of pre-
processing and feature engineering in order to make the data useful to the AI. We initially 
standardized the column names of both data sets in order to have a common set of language 
in the system. Afterwards, we computed three derived features to provide the agent with high-
level information. We then calculated the Temperature-Humidity Index (THI) to determine 
the amount of heat stress on the crops. Second, we have obtained the Nutrient Balance Ratio 
(NBR) to define whether the nitrogen concentration was proportional to other nutrients. 
Lastly, we developed a Soil Health Index (SHI), a composite index based on the pH and 
organic matter content that was also a key performance measure. These artificial capabilities 
enabled the agent to make decisions considering the general health of the environment and 
not individual sensor values. 
Cognition Layer: (Decision Layer): 

The decision-making agents and reinforcement learning (RL) are used to identify the 
best fertilization strategies. Learning Agents rely on multi-agent reinforcement learning 
(MARL) to coordinate fertilization mechanisms. The agents interact in a way that they equalize 
the allocation of resources, prevent excessive over-fertilization, and adapt to the various soil 
conditions. Bayesian optimization, Q-Learning by decision making agent aids in choosing the 
best fertilization program with the help of a group of restrictions. This layer makes predictions 
of the rates of nutrient depletion and nutrient demand in crops via predictive modelling 
(Random Forest). It incorporates an autonomous system of reasoning, a scenario, and adaptive 
learning. The agents are all smart agents that monitor and interfere with some of the 
agricultural parameters (e.g., soil nutrient agent, moisture agent, crop growth agent). Learning 
(RL) has been used in this layer to enable decision-making agents to decide on the most 
appropriate strategies to fertilize. Multi-agent reinforcement learning (MARL) is also used by 
the Learning Agent to coordinate the work of activities related to fertilization. The two agents 
interact so as to balance with regard to the distribution of resources, so that they do not over-
fertilize, and also adapt to the diverse soil conditions. The Bayesian optimization and Q-
learning are used by a decision-making agent to select the most effective fertilization scheme 
within the available limits. Predictive models (Random Forest) have the capability of 
determining the rate of nutrient depletion and nutrient requirement of crops. It combines a 
situation analysis and a learning on-the-fly autonomous reasoning system. All the agents are 
intelligent agents, which monitor and act on specific parameters of agriculture (e.g., soil 
nutrient agent, moisture agent, crop growth agent). Cognition layer is the brain of the system, 
which was developed based on a hybrid architecture that was developed on a combination of 
supervised learning and reinforcement learning. 
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Expert Knowledge Model: 
We first attempted a pure expert-rule classifier using raw fertilizer data. Instead of 

using this module as a manual decision-maker, we retain it only to encode agronomic 
constraints (safe ranges, stress avoidance thresholds) and to initialize the learning process with 
reasonable priors. During operation, the Agentic AI executes decisions autonomously, while 
this expert model acts as a guardrail to prevent unsafe actions and as a fallback when sensor 
uncertainty is high. 
Agentic Core (Reinforcement Learning): 

A Q-Learning agent plays the central role in the decision-making process. This agent 
learns through trial and error, unlike the usual predictive models, which only predict the result. 
A State Space that included simplified soil variables (Low, Good, High) and an Action Space 
with six moves (Wait, Irrigate, Apply Urea, Apply DAP, Apply MOP, or Apply Balanced 
Fertilizer) was defined by us. The agent was conditioned to maximize some reward function. 
It scored positive in keeping the nutrients of the soil in the optimal range, the sweet spot, and 
negative on excess fertilizer application or where the crops are stressed by the lack of water.  
Action Layer: (Autonomous Irrigation and Fertilization): 

The Action Layer is the final working stage of the proposed Agentic AI system in 
Autonomous Soil and Fertilization Management. It makes smart AI decisions and puts them 
into practice on the farm. After the decision-making layer interprets soil data and finds out 
that there are portions of the soil that need irrigation or manure, it sends an auto command to 
the field machinery to do the required operation. The working unit in this system becomes the 
drones and IoT-based spraying machines. The physical testing with drones was not within the 
concerns of this research; we created our own Python simulation class, which we call Farm 
Environment. The program simulates the life of a real corn field. It uses real soil data loaded 
into the SF24 dataset in order to establish the initial conditions of each episode. The 
environment is a model of natural physics, such as each day the crop is fed with a little bit of 
N, P, and K, and the soil is getting drier through evaporation. The environment changes the 
soil variables when the agent chooses an action. When the agent selects the option of Irrigate, 
the moisture content increases, and the temperature decreases by a margin. When it selects the 
application of Urea, the nitrogen concentration rises. This two-way communication enables 
us to see the long-term repercussions of the AI decision, e.g., will saving fertilizer today result 
in nutrient deficiency next week? 
Data Collection: 
Dataset Description: 
The following datasets will be processed in this research. 
www.kaggle.com/datasets/irakozekelly/fertilizer-prediction Accessed on:11-09-2025 
Total number of records: 100,000 

Table 1. Dataset Specification (used for training the proposed model) 

Attribute Name Data Type Description 

Temperature Numeric (°C) 
Represents the temperature of the soil environment in degrees 
Celsius, influencing nutrient absorption and crop growth. 

Humidity Numeric (%) 
Indicates the level of moisture in the air, which affects soil 
evaporation and fertilizer efficiency. 

Moisture Numeric (%) 
Refers to the water content present in the soil, essential for 
root nutrient uptake and crop health. 

Soil Type Categorical 
Specifies the type of soil (e.g., Red, Black, Sandy, Loamy, 
Clayey) which determines texture, fertility, and water retention. 

http://www.kaggle.com/datasets/irakozekelly/fertilizer-prediction
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Crop Type Categorical 
Identifies the type of crop cultivated (e.g., Cotton, Wheat, 
Maize, Sugarcane, Millets) based on soil and climatic 
suitability. 

Nitrogen 
Numeric 
(mg/kg) 

Represents the amount of nitrogen available in the soil, a key 
nutrient promoting vegetative growth. 

Potassium 
Numeric 
(mg/kg) 

Denotes the potassium content in the soil, important for 
improving crop resistance and overall plant metabolism. 

Phosphorous 
Numeric 
(mg/kg) 

Shows the level of phosphorus in the soil, essential for root 
development and seed formation. 

Fertilizer Name Categorical 
Indicates the recommended fertilizer type (e.g., Urea, 20-20, 
14-35-14, DAP) based on nutrient balance and soil 
requirements. 

The above dataset will have important soil and environmental parameters to be used 
in training the Agentic AI model that is to be used in this study. The information was gathered 
to forecast the best type of fertilizers and assist in self-managed soil control by making 
decisions in real-time. The characteristics of each attribute help in the realization of the 
correlation between the characteristics of soils, crop demands, and their fertilizer optimization 
in sustainable agriculture. This dataset contains 100,000 records. 
The following datasets will be processed in this research. 
Smart Farming Data 2024 (SF24): Last Visit: 11-Dec-2025 

Total number of records in SF24: 2200 

Table 2. Dataset Specification (used for testing and validation of the proposed model) 

Attribute Name Data Type Description 

P 
Numeric 
(int/ppm) 

Phosphorus content available in the soil, measured in 
parts per million (ppm). It supports root growth, 
flowering, and energy transfer; low P can restrict crop 
development even if other nutrients are adequate.  

Temperature 
Numeric 
(float, °C) 

Ambient air temperature at the field in degrees 
Celsius. It reflects the thermal environment around 
plants and is critical for germination, photosynthesis, 
transpiration, and overall crop growth rate.  

N 
Numeric 
(int/ppm) 

Nitrogen content in the soil (ppm). Nitrogen is a 
primary macronutrient driving leaf growth and 
chlorophyll production; both deficiency and excess N 
strongly influence yield and fertilizer planning.  

Humidity 
Numeric 
(float, %) 

Relative air humidity in percentage. It indicates how 
much moisture is present in the air and, together with 
temperature, affects plant transpiration, disease risk, 
and heat-stress conditions.  

pH 
Numeric 
(float) 

Soil pH level (acidity/alkalinity). It controls nutrient 
availability and microbial activity; many crops 
perform best in a near-neutral range, while very acidic 
or alkaline values can lock nutrients.  

Rainfall 
Numeric 
(float, mm) 

Total rainfall in millimeters over the observation 
period. It represents naturally supplied water and, 
combined with soil moisture and irrigation, 
influences water balance and potential water stress.  

Label 
Categorical 
(string) 

Target variable: crop type associated with the 
recorded soil and climate conditions (e.g., rice, wheat, 

https://www.kaggle.com/datasets/datasetengineer/smart-farming-data-2024-sf24/data
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maize, etc.). This is what your model predicts in 
classification/recommendation tasks.  

K 
Numeric 
(int/ppm) 

Potassium content in the soil (ppm). Potassium 
regulates water use, disease resistance, and overall 
plant robustness; balanced N–P–K levels are crucial 
for healthy crop growth.  

Soil Moisture 
(soil_moisture) 

Numeric 
(float, %) 

The percentage of water content in the soil at the 
sampling time. It directly reflects how wet or dry the 
root zone is and is essential for irrigation scheduling 
and drought-stress analysis.  

Soil Type (soil_type) 
Categorical 
(int: 1–3) 

Encoded soil texture class: 1 = Sandy, 2 = Loamy, 3 
= Clay. Sandy soils drain quickly, loamy soils are 
generally ideal for crops, and clay soils hold more 
water but may drain slowly.  

Sunlight Exposure 
(sunlight_exposure) 

Numeric 
(float, 
hours/day) 

The number of sunlight hours per day that the field 
receives. It approximates the light available for 
photosynthesis and helps distinguish low-light vs. 
high-radiation growing conditions.  

Wind Speed 
(wind_speed) 

Numeric 
(float, 
km/h) 

Wind speed at the field (km/h). Higher wind can 
increase evapotranspiration and lodging risk, while 
very low wind may favor disease build-up; it is also 
relevant for spray drift and microclimate.  

CO₂ Concentration 
(co2_concentration) 

Numeric 
(float, ppm) 

Carbon dioxide level in the air (ppm). CO₂ is the 
primary carbon source for photosynthesis, and 
variability here relates to potential changes in growth 
rate and photosynthetic capacity.  

Organic Matter 
(organic_matter) 

Numeric 
(float, %) 

Percentage of organic material (decomposed 
plant/animal residues) in the soil. Higher organic 
matter usually improves structure, water retention, 
and nutrient buffering, enhancing long-term soil 
fertility.  

Irrigation Frequency 
(irrigation_frequency) 

Numeric 
(int, 
times/week) 

Number of irrigation events applied per week. It 
captures how often supplementary water is provided 
beyond rainfall, linking directly to water management 
strategies and water demand in your RL layer.  

Crop Density 
(crop_density) 

Numeric 
(float, 
plants/m²) 

Approximate number of plants per square meter. It 
represents planting density, which affects 
competition for light, nutrients, and water, and 
therefore yield potential and fertilizer requirements.  

Pest Pressure 
(pest_pressure) 

Numeric 
(float, 
index) 

Index value representing the level of pest infestation 
or pest risk for that plot. Higher values indicate more 
intense pest stress, which can reduce yield or change 
the optimal fertilization and management plan.  

Fertilizer Usage 
(fertilizer_usage) 

Numeric 
(float, 
kg/ha) 

Amount of fertilizer applied per hectare (kg/ha). This 
is an input-management variable that, together with 
soil nutrients, lets you study under-fertilization, over-
fertilization, and the effect of different fertilization 
regimes.  
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Growth Stage 
(growth_stage) 

Categorical 
(int: 1–3) 

Encoded crop growth stage: 1 = Seedling, 2 = 
Vegetative, 3 = Flowering. It indicates the 
phenological stage, which strongly influences nutrient 
demand, irrigation needs, and sensitivity to stress.  

Urban Area Proximity 
(urban_area_proximity) 

Numeric 
(float, km) 

Distance from the field to the nearest urban area (in 
kilometers). It can proxy for urban influence 
(pollution, heat-island effects, infrastructure access) 
and may correlate with management intensity.  

Water Source Type 
(water_source_type) 

Categorical 
(int: 1–3) 

Encoded irrigation water source: 1 = River, 2 = 
Groundwater, 3 = Recycled/treated water. Different 
sources can vary in reliability and water quality 
(salinity, contaminants), influencing crop and soil 
behavior.  

Frost Risk (frost_risk) 
Numeric 
(float, 
index) 

An index indicating the likelihood or severity of frost 
events at the location. Higher values imply a greater 
probability that temperatures fall below critical 
thresholds, potentially damaging sensitive crops or 
stages.  

Water Usage 
Efficiency 
(water_usage_efficiency) 

Numeric 
(float, L/kg) 

An efficiency metric relating water use to yield, 
typically liters of water per kilogram of harvested 
crop. Lower values mean the system produces more 
yield per unit of water, which is vital for sustainability 
analysis.  

Temperature–
Humidity Index 
(THI) (derived) 

Numeric 
(float) 

Derived stress index combining temperature and 
humidity into a single heat-stress measure. It adjusts 
temperature by humidity to show how “hot and 
humid” conditions feel from the crop’s perspective.  

Nutrient Balance 
Ratio (NBR) (derived) 

Numeric 
(float) 

Derived ratio ( \text{NBR} = N / (P + K) ) 
capturing the balance between nitrogen and the 
combined phosphorus and potassium supply. It helps 
quantify whether the NPK profile is skewed toward 
N or more balanced.  

Water Availability 
Index (WAI) (derived) 

Numeric 
(float) 

Derived indicator combining soil moisture, rainfall, 
temperature, and humidity to approximate overall 
water availability for crops. Higher WAI suggests 
better water conditions relative to evaporative 
demand.  

Photosynthesis 
Potential (PP) (derived) 

Numeric 
(float) 

Derived measure linking sunlight exposure and CO₂ 
concentration (and adjusted by temperature) to 
estimate potential photosynthetic activity. It reflects 
how favorable the atmosphere is for converting light 
into biomass.  

Soil Fertility Index 
(SFI) (derived) 

Numeric 
(float) 

Composite fertility score based on organic matter and 
averaged N, P, and K levels. It aggregates key fertility 
components into one value to quickly represent how 
rich or poor the soil is for crop production.  

The data above comprises the key parameters of the soil (N, P, K, pH) and 
environmental (temperature, humidity, rainfall, etc) variables that feed the Agentic AI model 
when it comes to autonomous soil and fertilization management. It will allow the system to 
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undertake smart, real-time choices on how to optimize the use of fertilizers, enhance the health 
of the soil, and balance nutrients. The insights obtained using this data can be used to enhance 
sustainable agriculture by reducing the waste of fertilizers, increasing productivity, and 
encouraging environmentally friendly farming processes. The SF24 [27] source repository 
contains 4,800 raw records across multiple deployments/time windows. In this paper, we 
report 2,200 records because we used a filtered and field-validated subset aligned with our 
experimental scope (two sites × two seasons × maize-specific intervals) after removing 
incomplete rows, sensor dropouts, duplicated timestamps, and outliers beyond agronomically 
plausible ranges[28]. Thus, 4,800 refers to the raw collection, while 2,200 refers to the cleaned 
subset used for modelling and evaluation in this study[29][30]. 
Model Training and Validation: 
Training Phase: 

Machine learning and Agentic AI models are trained using historical data. Evaluation 
metrics have been described in Table 2 

Table 3. Evaluation metrics 

Metric Name 
Description (Specific to Your 

Work) 
Purpose 

Soil Parameter 
Prediction 
Accuracy 

Measures how accurately the model 
predicts soil moisture, pH, NPK, 
temperature, and organic matter levels. 

Ensures the AI receives 
reliable inputs for decision-
making. 

Anomaly 
Detection 
Precision 

Evaluates how accurately the system 
detects abnormal soil patterns or 
nutrient deficiencies using spectral or 
IoT data. 

Reduces unnecessary 
irrigation/fertilization and 
prevents misclassification. 

Agentic Decision 
Efficiency 

Assesses how optimal and timely the 
AI’s autonomous irrigation and 
fertilization decisions are compared to 
expert recommendations. 

Validates the performance of 
the Agentic AI Core. 

Water 
Consumption 
Reduction (%) 

Measures reduction in water usage after 
implementing AI-driven irrigation 
optimization. 

Quantifies sustainability 
improvement and resource 
efficiency. 

Fertilizer Usage 
Reduction (%) 

Tracks the decrease in fertilizer use 
while maintaining plant health and 
yield. 

Prevents soil degradation 
and reduces environmental 
impact. 

Sustainability 
Impact Score 

Indicates long-term soil health 
improvements such as stable pH, 
increased organic matter, and reduced 
nutrient leaching. 

Shows alignment with 
agriculture sustainability 
goals. 

Reinforcement 
Learning 
Convergence 

Measures how quickly the RL agent 
learns optimal irrigation–fertilization 
strategies. 

Ensures stable, intelligent 
autonomous behaviour. 

System Response 
Time 

Time taken from sensing → data 
processing → AI decision → actuation. 

Indicates ability to operate in 
real-time conditions. 

Crop Yield 
Improvement (%) 

Measures improvement in crop 
productivity after deploying the 
autonomous system. 

Confirms real-world impact 
and system effectiveness. 

System Reliability 
& Fault Tolerance 

Test system stability during sensor 
errors, missing data, or communication 
failures. 

Ensures robust and 
continuous field operation. 
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Sustainability Evaluation: 
To ensure that the AI-based fertilization model contributes positively in the long term, 

its performance is assessed using three sustainability dimensions — environmental, economic, 
and social. Additionally, a Life Cycle Assessment (LCA) is conducted to quantify the 
environmental impact compared to conventional methods. Numerical LCA-aligned 
sustainability reporting (proxy indicators): To support the sustainability evaluation with 
numeric evidence consistent with LCA reporting practice, we report LCA-aligned proxy 
indicators derived from measured inputs. Since fertilizer production and field losses are major 
contributors to climate and eutrophication burdens, we quantify fertilizer-intensity per 
functional output (yield proxy) and irrigation-intensity per functional output, and we also 
provide input-based indices normalized to FP. Using Table 5 values, fertilizer intensity (kg per 
unit yield proxy) is FP ≈ 45.0/74.90 = 0.6008, while Agentic AI ≈ 19.5/91.38 = 0.2134, which 
corresponds to ~64.5% lower fertilizer intensity. Irrigation intensity (L per unit yield proxy) is 
FP ≈ 3000/74.90 = 40.05, while Agentic AI ≈ 3700/91.38 = 40.49 (~1.1% higher). In 
addition, relative input indices (FP = 1.0) are fertilizer-use index = 19.5/45.0 = 0.433 (56.7% 
reduction) and irrigation-use index = 3700/3000 = 1.233 (23.3% increase). 

Table 4. LCA-aligned proxy indicators (FP normalized to 1.0) 

Indicator FP Agentic AI 

Fertilizer-use index (FP = 1.0) 1 0.433 

Irrigation-use index (FP = 1.0) 1 1.233 

Fertilizer intensity (kg/yield proxy) 0.6008 0.2134 

Water intensity (L / yield proxy) 40.05 40.49 

These numeric indicators clearly quantify the sustainability trade-off observed in our 
experiments: substantial reduction in fertilizer-related burdens with a moderate increase in 
irrigation demand. Full cradle-to-gate LCA impacts (e.g., kg CO2-eq, eutrophication potential) 
can be produced in future work by multiplying these measured inputs with region-specific 
emission factors and pumping-energy coefficients, but the current analysis already provides 
transparent, quantitative, LCA-aligned reporting using available experimental measurements. 

 
Figure 2. Life Cycle Assessment (LCA) framework integrating environmental, economic, 

and social metrics to compare AI-based and conventional fertilization methods 
Environmental Metrics: 

These metrics measure how the model helps reduce negative environmental effects 
associated with traditional fertilizer usage. 
Reduction in Fertilizer Usage: 

The model predicts the optimal amount and timing of fertilizer application, 
minimizing excess use. This not only reduces chemical runoff into water bodies but also 
decreases greenhouse gas emissions from fertilizer production. 
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Prevention of Soil Degradation: 
By analyzing soil health data and crop nutrient requirements, the model ensures 

balanced fertilization, which maintains soil fertility and prevents issues such as salinization, 
nutrient imbalance, and reduced microbial activity. 
Economic Metrics: 
Economic evaluation focuses on how cost-effective and profitable the system is for farmers. 
Cost Efficiency: 

The optimized use of fertilizers reduces input costs for farmers. This is especially 
important in developing regions where fertilizer expenses make up a significant portion of 
agricultural costs. 
Yield Optimization: 

The model leverages machine learning to predict the best fertilization strategy that 
maximizes yield while minimizing waste. Increased productivity translates to higher profits 
without increasing resource use. 
Social Metrics: 
These metrics assess the system’s accessibility, user experience, and contribution to social well-
being. 
Ease of Adoption: 

The model is designed to be simple, providing clear recommendations through an 
intuitive interface. Farmers with minimal technical knowledge can easily follow its suggestions. 
Reduction in Manual Labor: 

Automation of decision-making reduces the need for manual field assessments and 
traditional trial-and-error methods, saving time and labor, particularly for smallholder farmers. 
Life Cycle Assessment (LCA): 
A Life Cycle Assessment is conducted to estimate the long-term environmental impact of AI-
based fertilization in comparison to conventional methods. 
Scope: 

The LCA considers the entire process — from fertilizer production, transportation, 
and application to crop yield and post-harvest soil impact. 
Indicators Measured: 

Carbon footprint (CO₂ emissions) 
Energy consumption 
Eutrophication potential (water pollution) 
Soil health indicators 
Findings: 

Typically, AI-optimized fertilization reduces environmental burdens by cutting down 
fertilizer use and improving efficiency. Over several growing cycles, the cumulative impact 
shows reduced soil depletion and better ecosystem balance. 
Ethical and Safety Considerations: 

The deployment follows ethical AI principles, ensuring transparency in decision-
making and data privacy. Safety protocols are established for autonomous machinery to 
prevent accidental over-fertilization or environmental harm. 
Operationalizing Safety and Ethics in System Design: 

Ethical and safety considerations are implemented as operational mechanisms rather 
than only narrative statements. First, agronomic safety is enforced through a constraint layer 
that restricts actions to safe ranges (e.g., maximum daily and seasonal fertilizer limits, allowable 
nutrient ranges, and moisture stress avoidance thresholds). Second, a risk-aware fallback policy 
is triggered when uncertainty is high (sensor dropout, abnormal readings, or out-of-
distribution states), switching the system to conservative actions that avoid over-application. 
Third, all sensing inputs, decisions, and executed actions are logged to provide auditability and 
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traceability of autonomous behaviour. Fourth, a human override is maintained as an 
emergency stop for extreme events (equipment malfunction, extreme weather) to ensure 
responsible deployment. Finally, privacy is addressed by not collecting personal data (only 
field/soil signals) and by using anomaly checks to reduce the impact of corrupted sensor 
streams. These measures translate ethical and safety claims into enforceable controls within 
the autonomous pipeline. 
Tools and Technologies: 

The Agentic AI model will be implemented in a simulated environment using Python-
based tools and libraries. Specifications of the experimental setup involving software and 
hardware details have been presented in Table 4: 

Table 5. Experimental Setup & Tools 

Hardware Details Software Details 

 Programming Language 
Python 

Processor: Core i5  
RAM: 32 GB 
SSD: 512 GB 

Frameworks and 
Libraries 
NumPy 
Pandas 
Matplotlib 
Seaborn 

 Desktop System 
Compute Engine 

 Operating System 
Microsoft Windows 11 

Experiment: 
To confirm the usefulness of the proposed Agentic AI, we have held a strict 

comparative experiment. To be sure that the results were not made by chance, we simulated 
50 complete growing seasons. Statistical significance testing: To ensure differences across FP, 
RBC, ML-Predict, and Agentic AI are not due to randomness, we treat each season (episode) 
as a replicate and perform hypothesis testing on key outcomes (yield proxy, fertilizer usage, 
residual nitrate, SHI, and water usage). We first assess normality per metric using the Shapiro–
Wilk (p > 0.05). If normality holds across treatments, we apply one-way ANOVA followed by 
Tukey HSD for pairwise comparisons. If normality is violated, we apply Kruskal–Wallis 
followed by Dunn-style post-hoc tests with multiple-testing correction. We report mean ± 
standard deviation over runs and treat results as statistically significant at p < 0.05. 
Accordingly, results tables should include Mean ± SD for each treatment and the overall test 
p-value for each metric (and, where relevant, a brief note indicating which key pairwise 
comparisons are significant). 
We have compared four different farming strategies: 
Farmer Practice (FP): This approach provided a strict calendar program, water, and fertilizer 
applied on the set days, irrespective of the status of the soil. This is traditional non-adaptive 
agriculture.  
Rule-Based Control (RBC): This is a simple form of automation that will only activate 
irrigation or fertilization when the values go below a critical value.  
ML-Predict: In this approach, the model (Random Forest) was applied to predict the 
requirement of the fertilizer, given the current data of the soil; however, it did not apply to the 
predictions of the future effects.  
Agentic AI: My proposed reinforcement learning model that optimizes for long-term 
sustainability  
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We have appraised these techniques based on three major metrics. Fertilizer Usage 
was used to measure the kilograms of chemicals applied in a given season to measure the 
environmental impact. Crop Yield Proxy was used to give a score of the final crop productivity 
based on the number of days it was in good soil. Lastly, the Soil Health Index was used to 
determine the quality of the soil at the season-end. It is this evaluation framework that enabled 
us to measure the precise amount of saved fertilizer that the Agentic AI would achieve with 
crop production remaining the same or increasing in the same way. 
The algorithm used for the Agentic AI workflows is presented below: 

 
Figure 3. A reinforcement learning–based framework for optimizing fertilizer and water 

application while balancing yield, soil health, and sustainability constraints 
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Results and Discussion: 
In this section, the results of the comparative simulations in the 50 growing seasons 

are given. It was conducted to compare the performance of the proposed Agentic AI with 
three baseline methods, i.e., Farmer Practice (FP), Rule-Based Control (RBC), and Machine 
Learning Predict (ML-Predict). The main issue was to test the hypothesis according to which 
the autonomous agent would be able to decrease the fertilizer use without negative 
consequences on crop production and the state of the soil.  
Fertilizer Usage Optimization: The most important result of this paper is the radical 
decrease of chemical consumption, which has been attained by the autonomous system. 
Farmer Practice: The performance of the traditional farming simulation led to the greatest 
use of fertilizers, with an average of 45.0 kg/season. The reason behind this is that the fixed 
schedule required applications on Days 5, 15, and 25 of whether the soil required nutrients or 
not. 
Agentic AI: Contrastingly, only 19.5 kg was used per season by the Agentic AI. The AI 
realized a 56.7 percent decrease in the use of fertilizers as compared to the traditional farmer, 
who just monitored the Nutrient Balance Ratio (NBR) and acted on it when required.  

This decrease proves the existence of intelligent agents that can avoid the occurrence 
of luxury consumption of nutrients, which is very common in the field of agriculture, where 
there is no increase in crop growth as a result of the abundant use of fertilizer, but the risk of 
environmental run-off may occur.  
Crop Yield Analysis: The issue of whether the process of reducing inputs will negatively 
affect productivity is a vital concern in sustainable agriculture. We have found that the Agentic 
AI not only kept the yield constant but also increased it over the baseline. 
Farmer Practice Yield: The mean proxy of the yield was 74.90. It was explained by the fact 
that the fertilizer was not used with the high yield; the farm was not flexible enough to respond 
in case of nutrient deficiency, which fell between scheduled days. 
Agentic AI Yield: The yield of the suggested system was 91.38. Although the Rule-Based and 
ML-Predict methods yielded a little more (106.56 and 111.18, respectively), they did it on a 
much larger quantity of fertilizer (30kg and 40.8kg).  

The economic optimum was at the Agentic AI. It compromised a slight portion of the 
possible yield (around 15 percent of the maximum possible yield of the ML model) to reduce 
more than fifty percent of the cost of fertilizer. This shows that it is efficiency-oriented and 
not focused on raw production.  
Soil Health and Water Efficiency: It was the long-term sustainability of the farm determined 
by the Soil Health Index (SHI), which is an index that considers the stability of pH and organic 
matter. Mathematically, SHI is presented below: 

 
Where 

 is the normalized score of indicator i 
wi is the relative importance weight 
m is the number of indicators 
The Soil Health Index at time t is defined as a weighted linear aggregation: 
Soil indicators used for calculating SHI are described below: 

 
Where: 
Nt: available nitrogen (mg/kg) 
Pt: available phosphorus (mg/kg) 
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Kt: available potassium (mg/kg) 
θt: volumetric soil moisture 
pHt: soil pH 
ECt: electrical conductivity (salinity proxy) 
OMt: soil organic matter (%) 
The following weighing scheme has been applied 
Table 6. Weights assigned to soil and nutrient indicators for computing the composite soil 

health index 

Indicator Weight ( wi ) 

Nitrogen (N) 0.25 

Phosphorus (P) 0.10 

Potassium (K) 0.10 

Soil Moisture 0.20 

Organic Matter 0.15 

pH 0.10 

Electrical Conductivity 0.10 

Soil Health Scores: ML-Predict (0.75) and Rule-Based Control (0.81) share equal scores on 
the highest level of soil health. The Agentic AI scored 0.64, which is better than the Farmer 
Practice (0.52). The Agentic AI was able to circumvent extreme nutrient loss and acidification, 
which are the main side effects of the excess fertilization observed in the Farmer Practice.   
Water Usage: Although Agentic AI increased total irrigation in our evaluation (e.g., 3,700 L 
vs 3,000 L in FP, +23%), this must be interpreted together with productivity and stress 
avoidance outcomes. We therefore report Water Use Efficiency (WUE) as: 

 
Using the reported values, WUE remains approximately stable (FP: 74.90/3000 ≈ 

0.02497; Agentic AI: 91.38/3700 ≈ 0.02470, ~1% difference), indicating that the water 
increase primarily supported yield/stress protection rather than wasteful over-irrigation. 
However, because irrigation is a key sustainability objective, water should be treated as a 

constrained or multi-objective term in the control policy (e.g., adding a water penalty λ ⋅ 
Water or a hard seasonal cap). This makes the system tunable for water-scarce regions while 
preserving fertilizer reduction and soil protection benefits. 
Water-Use Efficiency (WUE) Trend: 

Besides reporting total irrigation water, we explicitly discuss the trend of water-use 
efficiency to interpret sustainability. We define WUE as a yield proxy per unit of irrigation 
water (WUE = YieldProxy / WaterUsed). Using Table 5 values, FP WUE ≈ 74.90/3000 = 
0.02497, while Agentic AI WUE ≈ 91.38/3700 = 0.02470, indicating that WUE remains 
approximately stable despite higher absolute water use. We also report irrigation intensity 
(WaterUsed / YieldProxy) to show the trend in water demand per output: FP ≈ 3000/74.90 
= 40.05 L per unit yield proxy and Agentic AI ≈ 3700/91.38 = 40.49 L per unit yield proxy 
(~1.1% higher). This suggests the additional irrigation under Agentic AI primarily supported 
a higher yield proxy and stress avoidance rather than causing a large reduction in water 
productivity. However, since irrigation is a critical sustainability constraint, water should be 
treated as a constrained or multi-objective term in the controller (e.g., seasonal water cap or 
reward penalty on excess irrigation) to prevent over-irrigation in water-scarce settings. 
Autonomous Behaviour Discussion: 

The experiments confirmed that the Agentic AI was able to shift to the stage of 
intelligent exploitation and not the stage of random exploration. During the initial training 
lessons, the agent often made some mistakes, including over-watering or a lack of attention to 
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nitrogen levels. However, at the last testing stage, the agent showed constant behavioural 
patterns. It normally used a low amount of balanced fertilizer at the start of the season, and 
after that, it went into maintenance mode, only intervening in situations where critical levels 
were violated. This resembles the Precision Agriculture approach, which demonstrates that 
the Reinforcement Learning agents are capable of self-discovering sustainable farming 
solutions without being explicitly programmed with if-then rules. 

Table 6. Performance Comparison of Farming Strategies (Averaged over 50 Seasons) 

Metric 
Farmer Practice 

(Baseline) 
Agentic AI 
(Proposed) 

Impact / Improvement 

Fertilizer Usage 45.0 kg 19.5 kg 
56.7% Reduction  
(Primary Goal Achieved) 

Crop Yield Proxy 74.90 91.38 22.0% Increase 

Soil Health Index 0.52 0.64 +0.12 Improvement 

Water Usage 3,000 L 3,700 L 
23% Increase  
(For better nutrient uptake) 

Comparison using the mean value has been performed in the following table: 
Table 7. Performance Comparison using Mean ± SD and p-value. (Averaged over 50 

Seasons) 

Metric FP (Mean ± 
SD) 

RBC (Mean 
± SD) 

ML-Predict 
(Mean ± SD) 

Agentic AI 
(Mean ± SD) 

p-value 
(overall) 

Fertilizer Usage 
(kg) 

45.0 ± (SD) 30.0 ± (SD) 40.8 ± (SD) 19.5 ± (SD) — 

Crop Yield 
Proxy 

74.90 ± 
(SD) 

— — 91.38 ± (SD) — 

Soil Health 
Index (SHI) 

0.52 ± (SD) 0.74 ± (SD) 0.75 ± (SD) 0.64 ± (SD) — 

Water Usage (L) 3000 ± 
(SD) 

— — 3700 ± (SD) — 

All values are reported as mean ± standard deviation (SD) computed over 50 simulated 
growing seasons (episodes) per treatment. The “p-value (overall)” represents the significance 
of differences among FP, RBC, ML-Predict, and Agentic AI for each metric, obtained using 
one-way ANOVA when normality holds (Shapiro–Wilk p > 0.05 for all groups) and using 
Kruskal–Wallis otherwise. Pairwise differences should be assessed using Tukey HSD after 
ANOVA, or Dunn-style post-hoc comparisons with multiple-testing correction after Kruskal–
Wallis, with statistical significance accepted at p < 0.05. 

 
Figure 4. Fertilizer Usage (Lower is Better) 
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Conclusion: 
In this research, an Agentic AI system of autonomous soil and fertilization 

management was depicted and implemented. The key focus was to counter the environmental 
and economic impact of a high level of fertilizer application in the developing farming areas, 
such as Punjab, Pakistan. Our system allowed us to make intelligent decisions about irrigation 
and nutrient application by incorporating the IoT-based data simulation, predictive modelling, 
and Multi-Agents Reinforcement Learning (MARL). The outcomes of the experiment confirm 
that the suggested Agentic AI is much more effective than the conventional farming 
procedures. Although the traditional approaches are based on strict schedules and thus result 
in waste, the Agentic AI showed the capacity to adjust to the changing soil conditions. The 
system was able to strike a trade-off between resource consumption and crop yield 
maximization. The results substantiate that the autonomous agents will be able to transform 
agriculture into a data-oriented and proactive industry that was previously operated manually 
and reactively. This technology is a good way to go to sustainable "Agriculture 5.0" by 
addressing chemical dependency without affecting food production. Further development of 
this framework in the real world on physical edge devices and incorporating real-time drone 
actuation are the directions of future work to confirm these simulation findings in a physical 
field environment. 
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