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economic issues in developing regions such as Punjab, Pakistan. This paper proposes an

Agentic Al framework for autonomous soil and fertilization management that combines
(i) IoT soil sensing and drone-based crop monitoring for real-time perception, (ii) predictive
modelling for short-horizon nutrient and moisture forecasting, and (i) multi-agent
reinforcement learning (MARL) for adaptive decision-making. The system operates with
operational autonomy, executing daily management decisions without routine human-in-the-
loop control. Agronomic expert knowledge is incorporated only offline as safety constraints
and initialization priors (e.g., allowable nutrient ranges and stress-avoidance rules) to bound
the action space and prevent unsafe behavior, rather than to prescribe actions. Experiments
were conducted across two seasons at two sites (Sheikhupura and Multan) under four
treatments: Farmer Practice (FP), Rule-Based Control (RBC), Machine Learning Predict (ML-
Predict), and the proposed Agentic Al. Results show that Agentic Al reduces nitrogen fertilizer
use while maintaining/improving yield proxy and improving soil indicators (including residual
nitrate reduction and improved Soil Health Index). We also analyze irrigation outcomes as a
sustainability objective and show how water usage must be treated as a constrained or multi-
objective term in the reward function to avoid over-irrigation. Overall, the framework
supports scalable, data-driven soil management with bounded autonomy, preserving expert-
defined agronomic safety.
Keywords: Multi-Agent Reinforcement Learning; Rule-Based Control; Farmer Practice;
Agentic Al; Soil Health Index
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Introduction:

The introduction explains how traditional agriculture is evolving into a smart,
autonomous, and adaptive system thanks to the introduction of Agentic Artificial Intelligence
(AI). It highlights an agentic Al that can enhance efficiency, sustainability, and decision-
making, especially regarding soil and fertilization management. This section brings out the
necessity of smart, information-based solutions to sustainable agriculture and presents the
novelty of creating agentic Al systems that can learn and make independent decisions to
implement soil health and optimize fertilizers.

The application of the Agentic Artificial Intelligence (Al) in the agricultural field is
changing the conventional system of agriculture into a smart, self-learning, and adaptable
system. The reason is that the agentic Al systems are not focused on prediction only: it is
possible to create autonomous or autonomous choices, learning, and proactive alteration
towards the surrounding environment. Recent reports demonstrated that these systems can
be more efficient, less dependent on humans, and intelligent and independent thinking, as well
as coordination of farm agents [1][2]. Autonomy, data-driven intelligence, and a combination
of the three components of reasoning can allow agentic Al to be a chance to establish
sustainable and resilient agricultural systems.

The use of soil and fertilizers is one of the most important issues in modern agriculture,
and inappropriate use of fertilizers, incorrect soil analysis, and slow reaction to decisions are
frequent factors that contribute to the decreased crop yields, imbalance of nutrients, and soil
erosion. Conventional farming methods are based on manual observation and scheduled
regimes, which fail to change dynamically to the changing soil conditions. Consequently,
overuse of fertilizers, erosion of nutrients, wastage of water, and destruction of the
environment are common occurrences. In order to overcome these problems, Agentic Al can
be a revolutionary technology since it is not simply a prediction of soil conditions, but it
autonomously thinks, adjusts, and makes real-time decisions. In contrast to traditional models
of Al, where human intervention is obligatory at each stage, agentic systems always monitor
the state of the soil environment, handle nutrient cycling, and automatically calculate the best
irrigation and fertilization plans without human interference. This renders them perfect in the
management of all nutrients, particularly in settings where the soil parameters are varied. The
new studies indicate that Al-based soil surveillance and intelligent use of fertilizers have a great
impact on improving soil health, lessening chemical wastes, and maximizing harvest [3][4].
Thus, the idea of implementing Agentic Al in the soil and fertilizers is a vital chance to build
data-driven and adaptive, autonomous, and environmentally friendly practices in agriculture.

The proposed study is aimed at creating an Agentic Al-powered system of
autonomous soil and fertilization control to assist sustainable agriculture. The domain includes
the entire process of soil sensing to smart decision-making and self-actuation. This paper starts
with the development of the IoT mobile-based soil sensors that will be integrated at the start
of the study to obtain real-time information about soil moisture, pH, NPK, temperature, and
organic matter. This information is handled and processed through an Agentic Al model that
has the capability of autonomous reasoning, detection of anomalies, and controlling nutrients.
This study also involves designing a reinforcement learning based decision engine that
identifies the best irrigation and fertilization strategies without involving human intervention.
The system will be tested on how it will decrease the use of water, decrease the wastage of
tertilizers, improve the health of soils, and increase crop yields. Also, within the scope, there
will be the development of a sustainability evaluation module to quantify the long-term
environmental impact. This research is also confined to nutrient management of soils and
automated fertilization procedures in the agricultural environment; it does not entail pest
identification, weather prediction, and crop illness diagnosis. In general, the scope is expected

November 2025 | Vol 7 | Issue 4 Page | 2998



OPEN (5 ) ACCESS

International Journal of Innovations in Science & Technology

to show how Agentic Al will empower precision agriculture by providing autonomous,
efficient, and environmentally sustainable solutions to soil management.

The novelty of this work lies in the development of an operationally autonomous,
agentic Al framework for soil and fertilization management that goes beyond prediction or
recommendation-based systems. Unlike existing approaches that rely on fixed rules or
supervised learning models, the proposed framework employs multi-agent reinforcement
learning to directly control fertilization and irrigation decisions under real-world field
conditions. Agronomic expertise is incorporated only as safety constraints and initialization
priors to bound the action space, rather than as prescriptive decision rules. This enables the
system to learn context-sensitive strategies while maintaining agronomic safety, representing a
clear departure from conventional Al-assisted agriculture. The structure will study the soil
makeup and the amount of nutrients present in the soil, and also the environment, so that the
most favourable methods of fertilization can be determined. The key contribution of this
research is the creation of a self-learning agentic AI model that is able to maximize the use of
fertilizer and keep the soil healthy with the least level of human input. Other studies on agentic
and Al-controlled sustainable agriculture have demonstrated potential outcomes in enhancing
efficiency and minimizing environmental impact [5][6]. We hope that the following results are
possible regarding improved use of fertilizers, improved soil fertility, and a scalable design that
can be used to support sustainable agricultural practices using agentic Al.

Literature Review:

The adoption of Artificial Intelligence (AI) in farming has revolutionized the
appearance of precision farming and decision-making. The initial studies focused on how
machine learning and deep learning could be used to optimize crop yield and farm
management [7][8]. These works formed the basis of Agriculture 5.0, which combines Al, the
Internet of Things (IoT), and data analytics to improve productivity and sustainability [9][10].
This research has also shown the way in which an Al-based soil management system positively
influenced nutrient application and water utilization efficiency.

As the idea of smart farming developed, studies started to point towards the ethical,
environmental, and social factors. As an example, the authors of the article [11] considered
the issue of gender and indigeneity in Al-driven agriculture in East Africa, whereas the article
[6] challenged the question of trust relations in the framework of algorithmic governance in
precision agriculture. Such studies were an indicator of an increased concern with human-
centered Al solutions, reflecting the trend in general [12].

The concept of agentic Al, with its autonomy, reasoning, and goal-focused decision-
making, is gradually replacing traditional Al systems. According to the definitions of article
[13], agentic Al can be an autonomous intelligence, which is capable of delivering complex
tasks without micromanagement by a human. Equally, the article [14] presented a
comprehensive summary of its applications and influences on society. Based on the level of
autonomy, contextual knowledge, and the ethical implications, the article [15] proposed the
conceptual taxonomy between standard and agentic Al agents.

The article [16] provided a multi-expert perspective on agentic systems, defining them
as transparency, reliability, and alignhment as the primary challenges concerning the application
of agentic systems. Adding to this, [5] investigated the possibility of whether such systems will
empower or displace human decision-making, and whether it has philosophical and managerial
implications for human autonomy within Al-aided settings.

The agricultural sector has become an attractive area of implementation of agentic Al
because it involves the use of context-specific, data-driven, and multi-agent coordination. In
the article [1], the use of Agentic Al in autonomous decision making for the food supply chain
with improved logistics and resource optimization was further expanded to utilize cloud
infrastructure for food distribution in the regions based on predicted logistics.
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In the article [3], the framework of Meta Ag 2.0 was introduced, which is a contextual
agricultural recordkeeping with agentic intelligence, whereas article [17] introduced an edge-
enabled smart agriculture framework, which is the combination of IoT, lightweight deep
learning, and agentic Al, to provide context-aware farming. The same was stressed in the work
of the article [9], which demonstrated that smart farming systems can be used to coordinate
autonomous agents for enhancing agricultural efficiency.

Article [4] examined the intersection of Al and blockchain and depicted how the use
of decentralized ledger systems improves traceability and trust in the Al-controlled farming
practices. This is in line with the sustainability-oriented review by article [18] that highlighted
the role of Al in sustainable agriculture.

The convergence of LLLMs and agentic Al is the beginning of a new era in the
automation of agriculture. The application of agentic Al in dairy science has been pioneered
by [2], who utilized the LLMs in autonomous decision-making when managing the herd and
analyzing data. In the same manner, article [19] presented an agriculture and enterprise Al
multi-agent LLLM system, which is scalable and adaptive.

Article [20] made an extensive survey of the multi-modal LLLMs in the agricultural field,
covering the topic of vision-language integration and RAG (retrieval-augmented generation)
systems to ground knowledge. Whereas the article [21] created the AgriBuddy agentic Al
system based on RAG and vision models that are specific to Bangladeshi agriculture. The
application of the LLLM-based agents to automating the smart farm business processes was
also described by [22], and the integration of UAVs with LLMs to display real-time agricultural
monitoring was demonstrated by [23].

All these innovations imply that there is a tendency towards multi-agent, language-
conscious, and perceptual Al systems, which can interpret unstructured farm data and
automatically plan its workflow. The autonomy of agentic Al systems is a critical issue as it
increases the chance of misalighment and the inability to control the systems by the [24] risk
alignment framework in agentic systems, which is concerned with transparency and human-
in-the-loop design. In the article, [25] studied the application of agentic Al and LLMs to
insurance decisions, but they also identified opportunities and challenges applicable to the risk
management segments of agriculture.

The Article [5] warned that the growing autonomy of agentic systems may result in the
loss of accountability, and the structures that would allow balancing efficiency and ethical
accountability are needed. All these teachings render it important to make sure that there is a
sense of trust, explainability, and human control when it comes to the application of Al in
agriculture.

The future of farming is with the aid of Al technologies that will be applied to achieve
climate-smart and sustainability goals. Article [20] focused on the implementation of Al-based
analytics to enhance the utilization of resources and minimize the impacts of climate. In article
[17], the application of Al to maximize fertilizer usage was explored, and further
personalization to the process of nutrient management using agentic Al was introduced.
Similarly, in the article [3], the notion of data-centric agriculture through the assistance of Al-
based agents that can be used to promote flexibility in context and real-time decision-making.
It can be concluded from all the above research work that adaptive learning and self-regulating
capabilities can become a cornerstone to the vision of Agriculture 6.0 with fully autonomous,
sustainable, and interdependent agricultural ecosystems.

Methodology:
Proposed Agentic Al Framework:

The purpose of this study is to use an experimental design based on simulation to
design and experiment with a sustainable agricultural Agentic AI model. The key aim was to
develop an independent system that has the ability to control soil nutrients and irrigation
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without human interference. The proposed framework is based on a layered architecture
including Perception, Cognition, and Action layers. The system can detect data in the
environment, make decisions based on the optimal course of action through machine learning,
and act in a simulated farm setting, thanks to this design. The fundamental principle of this
model is an agent of Reinforcement Learning (RL), which interacts with a simulated
environment to learn the best farming strategies as time progresses. The Python programming
language was used to implement the system, which made use of scikit-learn libraries that assist
in predictive modelling and custom classes that were made to support the simulation
environment.

In this work, “Agentic AI” is not used as a synonym for MARL. A standard MARL
controller typically learns a direct policy mapping from observed state s, to an action a, (i.e.,
n(ads;)) that optimizes a reward. In contrast, we define Agentic Al as a system in which each
agent is an orchestrator with: (1) perception (sensor fusion and state estimation), (2)
deliberation (policy learning + predictive reasoning), (3) action execution (actuation with
constraint checking), and (4) self-monitoring (tracking outcomes, constraint violations, and
corrective fallback). Formally, each agent is modelled as:

A = (‘JT[}, .§¢, M,C,F>

Where 7o is the learned MARL policy, s. is the estimated state, M is predictive
modelling (short-hotizon forecasts for moisture/nutrients), C is a set of expert-defined safety
constraints (e.g., allowable N ranges, moisture stress limits), and F is a fallback mechanism
(safe default actions when uncertainty is high or constraints are at risk). Therefore, the
proposed approach is “agentic” because it coordinates multiple tools and layers (sensing,
forecasting, learning, constraints, and fallback) into a closed-loop autonomous decision
pipeline, rather than relying on a single learned controller alone.

The workflow of the AAI proposed research work has been presented as shown in
Figure 1.

Soil Sensing Layer

SUSTAINABILITY

* loT sensors
EVALUATION
» Soil pH, NPK

» Moisture
» Temperature

—
s S MODEL TRAINING
rganic Matter AND VALIDATION

j— —

SOIL & AGENTIC Al
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DATA CONSIDERATIONS
« Reinforcement Learn
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AUTONOMOUS G
IRRIGATION & -4
FERTILIZATION

Figure 1. Methodology Diagram

The proposed Agentic Al system is evaluated using a simulation-based experimental
environment that emulates soil-crop—irrigation dynamics in a controlled and reproducible
manner. The simulation environment is designed to reflect the layered methodology shown in
Figure 1 and is formally defined as a closed-loop decision-making system built on
reinforcement learning principles.

The simulation environment is modeled as a discrete-time Markov Decision Process
(MDP):
E=(S, A, T, R,y)
Where:

S denotes the soil-environment state space
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A denotes the irrigation and fertilization action space

T represents the soil transition dynamics

R is the sustainability-aware reward function

y is the discount factor

Each simulation step corresponds to a daily farming decision cycle.
Layer-Wise Detail:

The proposed model has been organized in a layer architecture. Fach layer has been
described below.

Perception Layer: (Soil Sensoring):

The perception layer is the data entry point to the system. We applied two different
datasets to train the parts of the Al The Fertilizer Prediction Dataset, which was the first
dataset, had 100,000 records of soil parameters, such as Nitrogen (N), Phosphorus (P),
Potassium (K), temperature, and humidity. This information guided the system on the basic
agronomic rules. The second data set was the Smart Farming Data 2024 (SF24), which gave
2,200 actual sensor measurements at farms. Our simulation environment was based on this
dataset so that the Al training is not tested against noise. We conducted a great deal of pre-
processing and feature engineering in order to make the data useful to the Al We initially
standardized the column names of both data sets in order to have a common set of language
in the system. Afterwards, we computed three derived features to provide the agent with high-
level information. We then calculated the Temperature-Humidity Index (THI) to determine
the amount of heat stress on the crops. Second, we have obtained the Nutrient Balance Ratio
(NBR) to define whether the nitrogen concentration was proportional to other nutrients.
Lastly, we developed a Soil Health Index (SHI), a composite index based on the pH and
organic matter content that was also a key performance measure. These artificial capabilities
enabled the agent to make decisions considering the general health of the environment and
not individual sensor values.

Cognition Layer: (Decision Layer):

The decision-making agents and reinforcement learning (RL) are used to identify the
best fertilization strategies. Learning Agents rely on multi-agent reinforcement learning
(MARL) to coordinate fertilization mechanisms. The agents interact in a way that they equalize
the allocation of resources, prevent excessive over-fertilization, and adapt to the various soil
conditions. Bayesian optimization, Q-Learning by decision making agent aids in choosing the
best fertilization program with the help of a group of restrictions. This layer makes predictions
of the rates of nutrient depletion and nutrient demand in crops via predictive modelling
(Random Forest). It incorporates an autonomous system of reasoning, a scenario, and adaptive
learning. The agents are all smart agents that monitor and interfere with some of the
agricultural parameters (e.g., soil nutrient agent, moisture agent, crop growth agent). Learning
(RL) has been used in this layer to enable decision-making agents to decide on the most
appropriate strategies to fertilize. Multi-agent reinforcement learning (MARL) is also used by
the Learning Agent to coordinate the work of activities related to fertilization. The two agents
interact so as to balance with regard to the distribution of resources, so that they do not over-
fertilize, and also adapt to the diverse soil conditions. The Bayesian optimization and Q-
learning are used by a decision-making agent to select the most effective fertilization scheme
within the available limits. Predictive models (Random Forest) have the capability of
determining the rate of nutrient depletion and nutrient requirement of crops. It combines a
situation analysis and a learning on-the-fly autonomous reasoning system. All the agents are
intelligent agents, which monitor and act on specific parameters of agriculture (e.g., soil
nutrient agent, moisture agent, crop growth agent). Cognition layer is the brain of the system,
which was developed based on a hybrid architecture that was developed on a combination of
supervised learning and reinforcement learning.
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Expert Knowledge Model:

We first attempted a pure expert-rule classifier using raw fertilizer data. Instead of
using this module as a manual decision-maker, we retain it only to encode agronomic
constraints (safe ranges, stress avoidance thresholds) and to initialize the learning process with
reasonable priors. During operation, the Agentic Al executes decisions autonomously, while
this expert model acts as a guardrail to prevent unsafe actions and as a fallback when sensor
uncertainty is high.

Agentic Core (Reinforcement Learning):

A Q-Learning agent plays the central role in the decision-making process. This agent
learns through trial and error, unlike the usual predictive models, which only predict the result.
A State Space that included simplified soil variables (Low, Good, High) and an Action Space
with six moves (Wait, Irrigate, Apply Urea, Apply DAP, Apply MOP, or Apply Balanced
Fertilizer) was defined by us. The agent was conditioned to maximize some reward function.
It scored positive in keeping the nutrients of the soil in the optimal range, the sweet spot, and
negative on excess fertilizer application or where the crops are stressed by the lack of water.
Action Layer: (Autonomous Irrigation and Fertilization):

The Action Layer is the final working stage of the proposed Agentic Al system in
Autonomous Soil and Fertilization Management. It makes smart Al decisions and puts them
into practice on the farm. After the decision-making layer interprets soil data and finds out
that there are portions of the soil that need irrigation or manure, it sends an auto command to
the field machinery to do the required operation. The working unit in this system becomes the
drones and IoT-based spraying machines. The physical testing with drones was not within the
concerns of this research; we created our own Python simulation class, which we call Farm
Environment. The program simulates the life of a real corn field. It uses real soil data loaded
into the SF24 dataset in order to establish the initial conditions of each episode. The
environment is a model of natural physics, such as each day the crop is fed with a little bit of
N, P, and K, and the soil is getting drier through evaporation. The environment changes the
soil variables when the agent chooses an action. When the agent selects the option of Irrigate,
the moisture content increases, and the temperature decreases by a margin. When it selects the
application of Urea, the nitrogen concentration rises. This two-way communication enables
us to see the long-term repercussions of the Al decision, e.g., will saving fertilizer today result
in nutrient deficiency next week?

Data Collection:
Dataset Description:
The following datasets will be processed in this research.
www.kaggle.com/datasets/irakozekelly/fertilizer-prediction Accessed on:11-09-2025
Total number of records: 100,000

Table 1. Dataset Specification (used for training the proposed model)

Attribute Name | Data Type Description
. Represents the temperature of the soil environment in degrees
Temperature Numeric (°C) preset -perat . &
Celsius, influencing nutrient absorption and crop growth.
‘1 A Indicates the level of moisture in the air, which affects soil
Humidity Numeric (%) . . .
evaporation and fertilizer efficiency.
. . Refers to the water content present in the soil, essential for
Moisture Numeric (%) . p ’
root nutrient uptake and crop health.
. . Specifies the type of soil (e.g., Red, Black, Sandy, Loam
Soil Type Categorical p n¢ type of g, " ’ Y ok
Clayey) which determines texture, fertility, and water retention.
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Identifies the type of crop cultivated (e.g., Cotton, Wheat,

Crop Type Categorical Maize, Sugarcane, Millets) based on soil and climatic
suitability.
. Numeric Represents the amount of nitrogen available in the soil, a key
Nitrogen . . .
(mg/kg) nutrient promoting vegetative growth.
. Numeric Denotes the potassium content in the soil, important for
Potassium . . . .
(mg/kg) improving crop resistance and overall plant metabolism.
Numeric Shows the level of phosphorus in the soil, essential for root
Phosphorous .
(mg/kg) development and seed formation.
Indicates the recommended fertilizer type (e.g., Urea, 20-20,
Fertilizer Name | Categorical 14-35-14, DAP) based on nutrient balance and soil

requirements.

The above dataset will have important soil and environmental parameters to be used
in training the Agentic AI model that is to be used in this study. The information was gathered
to forecast the best type of fertilizers and assist in self-managed soil control by making
decisions in real-time. The characteristics of each attribute help in the realization of the
correlation between the characteristics of soils, crop demands, and their fertilizer optimization
in sustainable agriculture. This dataset contains 100,000 records.

The following datasets will be processed in this research.
Smart Farming Data 2024 (SF24): Last Visit: 11-Dec-2025
Total number of records in SF24: 2200

Table 2. Dataset Specification (used for testing and validation of the proposed model)

Attribute Name Data Type Description
Phosphorus content available in the soil, measured in
P Numeric parts per million (ppm). It supports root growth,
(int/ppm) flowering, and energy transfer; low P can restrict crop
development even if other nutrients are adequate.
Ambient air temperature at the field in degrees
Numeric Celsius. It reflects the thermal environment around
Temperature o . L .
(tloat, °C) plants and is critical for germination, photosynthesis,
transpiration, and overall crop growth rate.
Nitrogen content in the soil (ppm). Nitrogen is a
N Numeric primary macronutrient driving leaf growth and
(int/ppm) chlorophyll production; both deficiency and excess N
strongly influence yield and fertilizer planning.
Relative air humidity in percentage. It indicates how
Humidi Numeric much moisture is present in the air and, together with
umidity o . .
(tfloat, %) temperature, affects plant transpiration, disease risk,
and heat-stress conditions.
Soil pH level (acidity/alkalinity). It controls nutrient
H Numeric availability and microbial activity; many crops
P (float) perform best in a near-neutral range, while very acidic
or alkaline values can lock nutrients.
Total rainfall in millimeters over the observation
Rai Numeric period. It represents naturally supplied water and,
ainfall . . i : L
(float, mm) | combined with soil moisture and irrigation,
influences water balance and potential water stress.
Label Cat'egorical Target variable: crop type asso@gted with the
(string) recorded soil and climate conditions (e.g., rice, wheat,
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maize, etc.). This is what your model predicts in
classification/recommendation tasks.

Potassium content in the soil (ppm). Potassium

K Numeric regulates water use, disease resistance, and overall
(int/ppm) plant robustness; balanced N—P—K levels are crucial
for healthy crop growth.
The percentage of water content in the soil at the
Soil Moisture Numeric sampling time. It directly reflects how wet or dry the
(soil_moisture) (float, %) root zone is and is essential for irrigation scheduling
and drought-stress analysis.
Encoded soil texture class: 1 = Sandy, 2 = Loamy, 3
. . Categorical | = Clay. Sandy soils drain quickly, loamy soils are
Soil Type (soil_type) (int: 1-3) generally ideal for crops, and clay soils hold more
water but may drain slowly.
. The number of sunlight hours per day that the field
. Numeric . . . .
Sunlight Exposure receives. It approximates the light available for
. (float, . . Lo .
(sunlight_exposure) photosynthesis and helps distinguish low-light vs.
hours/day) . o ) .
high-radiation growing conditions.
. Wind speed at the field (km/h). Higher wind can
. Numeric . » o .
Wind Speed Aoat increase evapotranspiration and lodging risk, while
(wind_speed) (float, very low wind may favor disease build-up; it is also
km/h) : . .
relevant for spray drift and microclimate.
Carbon dioxide level in the air (ppm). CO3 is the
CO; Concentration Numeric primary carbon source for photosynthesis, and
(co2_concentration) (float, ppm) | variability here relates to potential changes in growth
rate and photosynthetic capacity.
Percentage of organic material (decomposed
Organic Matter Numeric plant/animal r.esldues) in the soil. Higher otganic
coanic matter Aoat. matter usually improves structure, water retention,
(organic_matter) (float, 7o) and nutrient buffering, enhancing long-term soil
fertility.
. Number of irrigation events applied per week. It
L Numeric . .
Irrigation Frequency (int captures how often supplementary water is provided
(irrigation_frequency) . beyond rainfall, linking directly to water management
times/week) : .
strategies and water demand in your RL layer.
. Approximate number of plants per square meter. It
. Numeric . . .
Crop Density (float represents planting density, which affects
(crop_density) o, competition for light, nutrients, and water, and
plants/m?) . . . .
therefore yield potential and fertilizer requirements.
. Index value representing the level of pest infestation
Numeric . . o
Pest Pressure (float o pest risk for that plot. Higher values indicate more
(pest_pressure) inc(l);lx’) intense pest stress, which can reduce yield or change
the optimal fertilization and management plan.
Amount of fertilizer applied per hectare (kg/ha). This
- Numeric is an input-management variable that, together with
Fertilizer Usage : . a0
(Fertilizer_usage) (float, soil nutrients, lets you study under-fertilization, over-
- kg/ha) fertilization, and the effect of different fertilization

regimes.
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Encoded crop growth stage: 1 = Seedling, 2 =

Growth Stage Categorical | Vegetative, 3 = Flowering. It indicates the
(growth_stage) (int: 1-3) phenological stage, which strongly influences nutrient
demand, irrigation needs, and sensitivity to stress.
Distance from the field to the nearest urban area (in
Urban Area Proximity | Numeric kilometers). It can proxy for urban influence
(urban_area_proximity) | (float, km) (pollution, heat-island effects, infrastructure access)
and may correlate with management intensity.
Encoded irrigation water source: 1 = River, 2 =
Water Source Type Categorical Groundwater, 3 = Reﬁylc)lid / trezted water. {i)ifferent
(water_source_typc) (int: 1-3) sources can vary in reliability and water quality
(salinity, contaminants), influencing crop and soil
behavior.
An index indicating the likelthood or severity of frost
Numeric events at the location. Higher values imply a greater
Frost Risk (frost_risk) | (float, probability that temperatures fall below critical
index) thresholds, potentially damaging sensitive crops or
stages.
An efficiency metric relating water use to yield,
Water Usage N . typically liters of water per kilogram of harvested
. umeric
Efficiency crop. Lower values mean the system produces more

(water_usage_efficiency)

(float, L./kg)

yield per unit of water, which is vital for sustainability
analysis.

Derived stress index combining temperature and

’II-‘IeurrI;EflIi‘:m;rrf(;ex Numeric humidity into a single heat-stress measure. It adjusts
(THI) | dZﬁpe J (float) temperature by humidity to show how “hot and
humid” conditions feel from the crop’s perspective.
Derived ratio ( \text{NBR} =N / (P + K))
. . capturing the balance between nitrogen and the
i;;ge&ﬁ;l)azj:;% J I;{;i)e He combined phosphorus and potassium supply. It helps
quantify whether the NPK profile is skewed toward
N or more balanced.
Derived indicator combining soil moisture, rainfall,
oo . temperature, and humidity to approximate overall
X?ltc: ?V‘(I/illa)lb(til.elrt*z’};e J) I(fll:)i)e He water availability for crops. Higher WAI suggests
better water conditions relative to evaporative
demand.
Derived measure linking sunlight exposure and CO,
Photosynthesis Numeric concentration (and adjusted by temperature) to
Potential (PP) (derived) | (float estimate potential photosynthetic activity. It reflects
how favorable the atmosphere is for converting light
into biomass.
Composite fertility score based on organic matter and
Soil Fertility Index Numeric averaged N, P, and K levels. It aggregates key fertility
(SFI) (derived) (float) components into one value to quickly represent how

rich or poor the soil is for crop production.

The data above comprises the key parameters of the soill (N, P, K, pH) and
environmental (temperature, humidity, rainfall, etc) variables that feed the Agentic AI model
when it comes to autonomous soil and fertilization management. It will allow the system to
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undertake smart, real-time choices on how to optimize the use of fertilizers, enhance the health
of the soil, and balance nutrients. The insights obtained using this data can be used to enhance
sustainable agriculture by reducing the waste of fertilizers, increasing productivity, and
encouraging environmentally friendly farming processes. The SF24 [27] source repository
contains 4,800 raw records across multiple deployments/time windows. In this paper, we
report 2,200 records because we used a filtered and field-validated subset aligned with our
experimental scope (two sites X two seasons X maize-specific intervals) after removing
incomplete rows, sensor dropouts, duplicated timestamps, and outliers beyond agronomically
plausible ranges[28]. Thus, 4,800 refers to the raw collection, while 2,200 refers to the cleaned

subset used for modelling and evaluation in this study[29][30].

Model Training and Validation:

Training Phase:

Machine learning and Agentic AI models are trained using historical data. Evaluation
metrics have been described in Table 2

Table 3. Evaluation metrics

Description (Specific to Your

IoT data.

Metric Name Purpose
Work) P
Soil Parameter | Measures how accurately the model | Ensures the Al receives
Prediction predicts soil moisture, pH, NPK, | reliable inputs for decision-
Accuracy temperature, and organic matter levels. | making.
Evaluates how accurately the system
Anomaly . Reduces unnecessary
) detects abnormal soil patterns or | . T
Detection ) . ) irrigation/fertilization — and
L. nutrient deficiencies using spectral or ) ) .

Precision prevents misclassification.

Agentic Decision

Assesses how optimal and timely the
AD’'s  autonomous irrigation and

Validates the performance of

Reduction (%)

optimization.

Efficiency fertilization decisions are compared to | the Agentic Al Core.

expert recommendations.
Water Measures reduction in water usage after | Quantifies sustainability
Consumption implementing ~ Al-driven  irrigation | improvement and resource

efficiency.

Fertilizer ~ Usage
Reduction (%)

Tracks the decrease in fertilizer use
while maintaining plant health and

Prevents soil degradation
and reduces environmental

yield. impact.
Indicates  long-term  soil  health . .
o . Shows  alignment  with
Sustainability improvements such as stable pH, . o
; ) agriculture sustainability
Impact Score increased organic matter, and reduced oals
nutrient leaching, gOAs:
Reinforcement Measures how quickly the RL agent ) .
. ) e o O Ensures stable, intelligent
Learning learns optimal irrigation—fertilization .
. autonomous behaviour.
Convergence strategies.

System Response
Time

Time taken from sensing — data
processing — Al decision — actuation.

Indicates ability to operate in
real-time conditions.

Crop Yield
Improvement (%)

Measures  improvement in
productivity — after  deploying
autonomous system.

crop
the

Confirms real-world impact
and system effectiveness.

System Reliability
& Fault Tolerance

Test system stability during sensor
errors, missing data, or communication
failures.

Ensures robust and
continuous field operation.
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Sustainability Evaluation:

To ensure that the Al-based fertilization model contributes positively in the long term,
its performance is assessed using three sustainability dimensions — environmental, economic,
and social. Additionally, a Life Cycle Assessment (LCA) is conducted to quantify the
environmental impact compared to conventional methods. Numerical LCA-aligned
sustainability reporting (proxy indicators): To support the sustainability evaluation with
numeric evidence consistent with LCA reporting practice, we report LCA-aligned proxy
indicators derived from measured inputs. Since fertilizer production and field losses are major
contributors to climate and eutrophication burdens, we quantify fertilizer-intensity per
functional output (yield proxy) and irrigation-intensity per functional output, and we also
provide input-based indices normalized to FP. Using Table 5 values, fertilizer intensity (kg per
unit yield proxy) is FP = 45.0/74.90 = 0.6008, while Agentic AT = 19.5/91.38 = 0.2134, which
corresponds to ~64.5% lower fertilizer intensity. Irrigation intensity (L per unit yield proxy) is
FP = 3000/74.90 = 40.05, while Agentic AT = 3700/91.38 = 40.49 (~1.1% higher). In
addition, relative input indices (FP = 1.0) are fertilizer-use index = 19.5/45.0 = 0.433 (56.7%
reduction) and irrigation-use index = 3700/3000 = 1.233 (23.3% increase).

Table 4. LCA-aligned proxy indicators (FP normalized to 1.0

Indicator FP | Agentic Al
Fertilizer-use index (FP = 1.0) 1 0.433
Irrigation-use index (FP = 1.0) 1 1.233

Fertilizer intensity (kg/vyield proxy) | 0.6008 0.2134
Water intensity (L / yield proxy) 40.05 40.49
These numeric indicators clearly quantify the sustainability trade-off observed in our
experiments: substantial reduction in fertilizer-related burdens with a moderate increase in
irrigation demand. Full cradle-to-gate LCA impacts (e.g., kg CO2-eq, eutrophication potential)
can be produced in future work by multiplying these measured inputs with region-specific
emission factors and pumping-energy coefficients, but the current analysis already provides
transparent, quantitative, LCA-aligned reporting using available experimental measurements.

ENVIRONMENTAL
METRICS

* Reduction in
fertilizer usage

= Reduction in soil
degradation

LIFE CYCLE
ASSESSMENT
(LCA)

¥\ Long-term environmental

-
4 '

ECONOMIC
)B METRICS
ll' « Cost-efficiency impact of Al-based

* Yield optimiza- fertilization vs.

L tion J conventional methods

@ SOCIAL

@ METRICS [~
« Ease of adoption

* Reduction in

manual labor

-
Figure 2. Life Cycle Assessment (LCA) framework integrating environmental, economic,

and social metrics to compare Al-based and conventional fertilization methods
Environmental Metrics:

These metrics measure how the model helps reduce negative environmental effects
associated with traditional fertilizer usage.
Reduction in Fertilizer Usage:

The model predicts the optimal amount and timing of fertilizer application,
minimizing excess use. This not only reduces chemical runoff into water bodies but also
decreases greenhouse gas emissions from fertilizer production.
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Prevention of Soil Degradation:

By analyzing soil health data and crop nutrient requirements, the model ensures
balanced fertilization, which maintains soil fertility and prevents issues such as salinization,
nutrient imbalance, and reduced microbial activity.

Economic Metrics:
Economic evaluation focuses on how cost-effective and profitable the system is for farmers.
Cost Efficiency:

The optimized use of fertilizers reduces input costs for farmers. This is especially
important in developing regions where fertilizer expenses make up a significant portion of
agricultural costs.

Yield Optimization:

The model leverages machine learning to predict the best fertilization strategy that
maximizes yield while minimizing waste. Increased productivity translates to higher profits
without increasing resource use.

Social Metrics:

These metrics assess the system’s accessibility, user experience, and contribution to social well-
being.

Ease of Adoption:

The model is designed to be simple, providing clear recommendations through an
intuitive interface. Farmers with minimal technical knowledge can easily follow its suggestions.
Reduction in Manual Labor:

Automation of decision-making reduces the need for manual field assessments and
traditional trial-and-error methods, saving time and labor, particularly for smallholder farmers.
Life Cycle Assessment (LCA):

A Life Cycle Assessment is conducted to estimate the long-term environmental impact of Al-
based fertilization in comparison to conventional methods.
Scope:

The LCA considers the entire process — from fertilizer production, transportation,
and application to crop yield and post-harvest soil impact.
Indicators Measured:

Carbon footprint (CO, emissions)
Energy consumption

Eutrophication potential (water pollution)
Soil health indicators

Findings:

Typically, Al-optimized fertilization reduces environmental burdens by cutting down
fertilizer use and improving efficiency. Over several growing cycles, the cumulative impact
shows reduced soil depletion and better ecosystem balance.

Ethical and Safety Considerations:

The deployment follows ethical Al principles, ensuring transparency in decision-
making and data privacy. Safety protocols are established for autonomous machinery to
prevent accidental over-fertilization or environmental harm.

Operationalizing Safety and Ethics in System Design:

Ethical and safety considerations are implemented as operational mechanisms rather
than only narrative statements. First, agronomic safety is enforced through a constraint layer
that restricts actions to safe ranges (e.g., maximum daily and seasonal fertilizer limits, allowable
nutrient ranges, and moisture stress avoidance thresholds). Second, a risk-aware fallback policy
is triggered when uncertainty is high (sensor dropout, abnormal readings, or out-of-
distribution states), switching the system to conservative actions that avoid over-application.
Third, all sensing inputs, decisions, and executed actions are logged to provide auditability and
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traceability of autonomous behaviour. Fourth, a human override is maintained as an
emergency stop for extreme events (equipment malfunction, extreme weather) to ensure
responsible deployment. Finally, privacy is addressed by not collecting personal data (only
field/soil signals) and by using anomaly checks to reduce the impact of corrupted sensor
streams. These measures translate ethical and safety claims into enforceable controls within
the autonomous pipeline.

Tools and Technologies:

The Agentic AI model will be implemented in a simulated environment using Python-
based tools and libraries. Specifications of the experimental setup involving software and
hardware details have been presented in Table 4:

Table 5. Experimental Setup & Tools
Hardware Details Software Details
Programming LLanguage
Python
Processor: Core i5 | Frameworks and
RAM: 32 GB Libraries
SSD: 512 GB NumPy
Pandas
Matplotlib
Seaborn
Desktop System
Compute Engine
Operating System
Microsoft Windows 11

Experiment:

To confirm the usefulness of the proposed Agentic Al, we have held a strict
comparative experiment. To be sure that the results were not made by chance, we simulated
50 complete growing seasons. Statistical significance testing: To ensure differences across FP,
RBC, ML-Predict, and Agentic Al are not due to randomness, we treat each season (episode)
as a replicate and perform hypothesis testing on key outcomes (yield proxy, fertilizer usage,
residual nitrate, SHI, and water usage). We first assess normality per metric using the Shapiro—
Wilk (p > 0.05). If normality holds across treatments, we apply one-way ANOVA followed by
Tukey HSD for pairwise comparisons. If normality is violated, we apply Kruskal—Wallis
followed by Dunn-style post-hoc tests with multiple-testing correction. We report mean *
standard deviation over runs and treat results as statistically significant at p < 0.05.
Accordingly, results tables should include Mean + SD for each treatment and the overall test
p-value for each metric (and, where relevant, a brief note indicating which key pairwise
comparisons are significant).

We have compared four different farming strategies:

Farmer Practice (FP): This approach provided a strict calendar program, water, and fertilizer
applied on the set days, irrespective of the status of the soil. This is traditional non-adaptive
agriculture.

Rule-Based Control (RBC): This is a simple form of automation that will only activate
irrigation or fertilization when the values go below a critical value.

ML-Predict: In this approach, the model (Random Forest) was applied to predict the
requirement of the fertilizer, given the current data of the soil; however, it did not apply to the
predictions of the future effects.

Agentic Al: My proposed reinforcement learning model that optimizes for long-term
sustainability
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We have appraised these techniques based on three major metrics. Fertilizer Usage
was used to measure the kilograms of chemicals applied in a given season to measure the
environmental impact. Crop Yield Proxy was used to give a score of the final crop productivity
based on the number of days it was in good soil. Lastly, the Soil Health Index was used to
determine the quality of the soil at the season-end. It is this evaluation framework that enabled
us to measure the precise amount of saved fertilizer that the Agentic AI would achieve with
crop production remaining the same or increasing in the same way.

The algorithm used for the Agentic Al workflows is presented below:

Algorithm 1:

Input:
- Episode length T (days per season)
- Number of episcdes E
- Discount factor y € (8,1)
- State variables: s = [N, P, K, 8, pH, EC, OM, Temp]
- Action bounds: f € [fmin, fmax], w € [wmin, wmax]
- Reward weights: a«, B, Al, A2
- Safety constraints C(-): agronomic and ethical constraints
- Predictive models Mp (nutrient/moisture predictors) (optional, trained/validated offline)

- RL algorithm parameters 6 (policy/value parameters), learning rate n

Output:
- Trained policy n®(als)

- Evaluation logs: yield proxy, SHI, water use, fertilizer use, violations

1: Initialize policy parameters 8 (random or prior-guided initialization)

2: Initialize replay buffer D (if off-policy) or rollout storage (if on-policy)
3: For episode e = 1 to E do

4: Reset simulated farm environment to initial soil conditions s@

5.: Initialize cumulative metrics:

6: totalReward « @

78 totalFertilizer « 0

8: totalWater < ©

9: totalViolations < @

1e: Compute SHI@ from s@ [> baseline soil health

Tidls For t = @ to T-1 do

ioe [ (Perception Layer)

13: Observe current state st from simulated sensors

14: Optionally compute predicted features:

15: &t+1 « Mp(st) [> short-horizon nutrient/moisture forecast

16: Construct agent input xt « concat(st, 3t+1) (if prediction is used)
17: [> (Cognition / Decision Layer)

18: Sample/select action at = (ft, wt) ~ mO(a|xt)

19: > (Ethical Safety Considerations / Constraint Handling)

20: If C(at, st) is violated then

21: Project action to nearest feasible action:

22: at < nc(at) [> enforce bounds and agronomic safety rules
23: totalViolations <« totalViolations + 1

24: End if

25: [ (Action Layer)

26: Execute at in simulated environment:

27: st+1l « T(st, at) + =t [> soil transition with stochasticity
28: > (Sustainability Evaluation)

29: Compute yield proxy change AYvieldt (model-based or simulator output)
30: Compute SHIt from st and SHIt+1 from st+l

3l ASHIt < SHIt+1 - SHIt

32: Compute reward:

33: rt « a-AVieldt + B-ASHIt — Al-ft — A2-wt

34: totalReward « totalReward + y*t - rt

35: totalFertilizer « totalFertilizer + ft

36: totalWater < totalWater + wt

37: [> (Feedback Loop / Learning Update)

38: Store transition (xt, at, rt, xt+l) into D or rollout storage

39: Update policy parameters 8 using chosen RL algorithm:

48: 6 < RL_Update(®, D or rollout storage, n)

41: Set st « st+l

42: End for

a3: I> Episode-level logging and validation

44 Compute end-of-episcde metrics:

45: ASHIepisode « SHIT — SHI@

16: YieldEpisode « Tt AYieldt (or simulator final yield proxy)

47: Log {e, totalReward, totalFertilizer, totalWater, totalViolations, ASHIepisode, YieldEpisod

48: End for

Figure 3. A reinforcement learning—based framework for optimizing fertilizer and water
application while balancing yield, soil health, and sustainability constraints
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Results and Discussion:
In this section, the results of the comparative simulations in the 50 growing seasons
are given. It was conducted to compare the performance of the proposed Agentic Al with
three baseline methods, i.e., Farmer Practice (FP), Rule-Based Control (RBC), and Machine
Learning Predict (ML-Predict). The main issue was to test the hypothesis according to which
the autonomous agent would be able to decrease the fertilizer use without negative
consequences on crop production and the state of the soil.
Fertilizer Usage Optimization: The most important result of this paper is the radical
decrease of chemical consumption, which has been attained by the autonomous system.
Farmer Practice: The performance of the traditional farming simulation led to the greatest
use of fertilizers, with an average of 45.0 kg/season. The reason behind this is that the fixed
schedule required applications on Days 5, 15, and 25 of whether the soil required nutrients or
not.
Agentic Al: Contrastingly, only 19.5 kg was used per season by the Agentic Al. The Al
realized a 56.7 percent decrease in the use of fertilizers as compared to the traditional farmer,
who just monitored the Nutrient Balance Ratio (NBR) and acted on it when required.

This decrease proves the existence of intelligent agents that can avoid the occurrence
of luxury consumption of nutrients, which is very common in the field of agriculture, where
there is no increase in crop growth as a result of the abundant use of fertilizer, but the risk of
environmental run-off may occur.

Crop Yield Analysis: The issue of whether the process of reducing inputs will negatively
affect productivity is a vital concern in sustainable agriculture. We have found that the Agentic
Al not only kept the yield constant but also increased it over the baseline.

Farmer Practice Yield: The mean proxy of the yield was 74.90. It was explained by the fact
that the fertilizer was not used with the high yield; the farm was not flexible enough to respond
in case of nutrient deficiency, which fell between scheduled days.

Agentic Al Yield: The yield of the suggested system was 91.38. Although the Rule-Based and
MI-Predict methods yielded a little more (106.56 and 111.18, respectively), they did it on a
much larger quantity of fertilizer (30kg and 40.8kg).

The economic optimum was at the Agentic Al It compromised a slight portion of the
possible yield (around 15 percent of the maximum possible yield of the ML. model) to reduce
more than fifty percent of the cost of fertilizer. This shows that it is efficiency-oriented and
not focused on raw production.

Soil Health and Water Efficiency: It was the long-term sustainability of the farm determined
by the Soil Health Index (SHI), which is an index that considers the stability of pH and organic
matter. Mathematically, SHI is presented below:

m

SHI, = _widi,
i=1

Where

Si.t is the normalized score of indicator i

wi is the relative importance weight

m is the number of indicators

The Soil Health Index at time t is defined as a weighted linear aggregation:

Soil indicators used for calculating SHI are described below:
8 = [M- P!s KL: H-’A th EC-h ()-ﬁ{f},]
Where:

N available nitrogen (mg/kg)
P:: available phosphorus (mg/kg)
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K available potassium (mg/kg)
0 volumetric soil moisture
pH:: soil pH
EC:: electrical conductivity (salinity proxy)
OM.:: soil organic matter (%)
The following weighing scheme has been applied

Table 6. Weights assigned to soil and nutrient indicators for computing the composite soil

health index
Indicator Weight (wi)
Nitrogen (N) 0.25
Phosphorus (P) 0.10
Potassium (K) 0.10
Soil Moisture 0.20
Organic Matter 0.15
pH 0.10
Electrical Conductivity 0.10

Soil Health Scores: ML-Predict (0.75) and Rule-Based Control (0.81) share equal scores on
the highest level of soil health. The Agentic Al scored 0.64, which is better than the Farmer
Practice (0.52). The Agentic Al was able to citcumvent extreme nutrient loss and acidification,
which are the main side effects of the excess fertilization observed in the Farmer Practice.

Water Usage: Although Agentic Al increased total irrigation in our evaluation (e.g., 3,700 L
vs 3,000 L in FP, +23%), this must be interpreted together with productivity and stress

avoidance outcomes. We therefore report Water Use Efficiency (WUE) as:
WUE — Yield (or yield proxy)

Total irrigation water

Using the reported values, WUE remains approximately stable (FP: 74.90/3000 =
0.02497; Agentic Al: 91.38/3700 = 0.02470, ~1% difference), indicating that the water
increase primarily supported yield/stress protection rather than wasteful ovet-irrigation.
However, because irrigation is a key sustainability objective, water should be treated as a
constrained or multi-objective term in the control policy (e.g., adding a water penalty A -
Water or a hard seasonal cap). This makes the system tunable for water-scarce regions while
preserving fertilizer reduction and soil protection benefits.

Water-Use Efficiency (WUE) Trend:

Besides reporting total irrigation water, we explicitly discuss the trend of water-use
efficiency to interpret sustainability. We define WUE as a yield proxy per unit of irrigation
water (WUE = YieldProxy / WatetUsed). Using Table 5 values, FP WUE = 74.90/3000 =
0.02497, while Agentic Al WUE = 91.38/3700 = 0.02470, indicating that WUE remains
approximately stable despite higher absolute water use. We also report irrigation intensity
(WatetUsed / YieldProxy) to show the trend in water demand per output: FP = 3000/74.90
= 40.05 L per unit yield proxy and Agentic AT = 3700/91.38 = 40.49 L per unit yield proxy
(~1.1% higher). This suggests the additional irrigation under Agentic Al primarily supported
a higher yield proxy and stress avoidance rather than causing a large reduction in water
productivity. However, since irrigation is a critical sustainability constraint, water should be
treated as a constrained or multi-objective term in the controller (e.g., seasonal water cap or
reward penalty on excess irrigation) to prevent over-irrigation in water-scarce settings.
Autonomous Behaviour Discussion:

The experiments confirmed that the Agentic Al was able to shift to the stage of
intelligent exploitation and not the stage of random exploration. During the initial training
lessons, the agent often made some mistakes, including over-watering or a lack of attention to
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nitrogen levels. However, at the last testing stage, the agent showed constant behavioural
patterns. It normally used a low amount of balanced fertilizer at the start of the season, and
after that, it went into maintenance mode, only intervening in situations where critical levels
were violated. This resembles the Precision Agriculture approach, which demonstrates that
the Reinforcement Learning agents are capable of self-discovering sustainable farming
solutions without being explicitly programmed with if-then rules.
Table 6. Performance Comparison of Farming Strategies (Averaged over 50 Seasons)

Metri Farmer Practice | Agentic Al Impact / Improvement
e (Baseline) (Proposed) pac proveme
. 56.7% Reduction
Fertilizer Usage 45.0 kg 19.5 kg (Primary Goal Achicved)
Crop Yield Proxy 74.90 91.38 22.0% Increase
Soil Health Index 0.52 0.64 +0.12 Improvement
23% Increase
Water Usage 3000 L 3700 L (For better nutrient uptake)

Comparison using the mean value has been performed in the following table:
Table 7. Performance Comparison using Mean * SD and p-value. (Averaged over 50

Seasons)
Metric FP (Mean = | RBC (Mean | MIL-Predict Agentic Al p-value
SD) + SD) (Mean = SD) | (Mean = SD) | (overall)
Fertilizer Usage | 45.0 + (SD) | 30.0 = (SD) | 40.8 £ (SD) 19.5 £ (SD) —
(kg)
Crop Yield 74.90 £ — — 91.38 = (SD) —
Proxy (SD)
Soil Health | 0.52 £ (SD) | 0.74 = (SD) | 0.75 £ (SD) 0.64 = (SD) —
Index (SHI)
Water Usage (L) 3000 £ — — 3700 £ (SD) —
(SD)

All values are reported as mean + standard deviation (SD) computed over 50 simulated
growing seasons (episodes) per treatment. The “p-value (overall)” represents the significance
of differences among FP, RBC, ML-Predict, and Agentic Al for each metric, obtained using
one-way ANOVA when normality holds (Shapiro—Wilk p > 0.05 for all groups) and using
Kruskal-Wallis otherwise. Pairwise differences should be assessed using Tukey HSD after
ANOVA, or Dunn-style post-hoc comparisons with multiple-testing correction after Kruskal—
Wallis, with statistical significance accepted at p < 0.05.
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Figure 4. Fertilizer Usage (Lower is Better)
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Conclusion:

In this research, an Agentic Al system of autonomous soil and fertilization
management was depicted and implemented. The key focus was to counter the environmental
and economic impact of a high level of fertilizer application in the developing farming areas,
such as Punjab, Pakistan. Our system allowed us to make intelligent decisions about irrigation
and nutrient application by incorporating the IoT-based data simulation, predictive modelling,
and Multi-Agents Reinforcement Learning (MARL). The outcomes of the experiment confirm
that the suggested Agentic Al is much more effective than the conventional farming
procedures. Although the traditional approaches are based on strict schedules and thus result
in waste, the Agentic Al showed the capacity to adjust to the changing soil conditions. The
system was able to strike a trade-off between resource consumption and crop yield
maximization. The results substantiate that the autonomous agents will be able to transform
agriculture into a data-oriented and proactive industry that was previously operated manually
and reactively. This technology is a good way to go to sustainable "Agriculture 5.0" by
addressing chemical dependency without affecting food production. Further development of
this framework in the real world on physical edge devices and incorporating real-time drone
actuation are the directions of future work to confirm these simulation findings in a physical
field environment.
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