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ysarthria and other motor speech disorders result from abnormalities in the neural 
or muscular processes that actually control speech production; conversely, these 
disorders affect the strength, coordination, and tone of the vocal muscles that 

ultimately produce less intelligible speech. Because dysarthria can range from moderate 
distortion of articulation to severe impairment of speech, early and accurate assessment is 
critical. The paper proposes Clearitic AI, an automated speech analysis platform that leverages 
artificial intelligence to diagnose vocal disorders. It fuses Wav2Vec2 with traditional acoustic 
features such as Mel-Frequency Cepstral Coefficients (MFCCs), pitch estimation, and spectral 
descriptors. Abnormal voice classification and its severity on a framework with a sequential 
neural network architecture are proposed. Extensive testing of the system is performed using 
10,000 recordings of voice samples from the TORGO dataset and the Mozilla Common Voice 
dataset. Experimental results demonstrate that the proposed model achieves a classification 
accuracy of 94.2% (±1.3), an F1-score of 0.943, and an Area Under the Curve (AUC) of 0.987 
on the test set, thereby establishing the effectiveness of this framework for dysarthric speech 
detection applications. 
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Introduction: 
Dysarthria is a term that describes speech disorders due to improper functioning of 

nerves and muscles that coordinate speech. Dysarthria means people find it hard to control 
and coordinate the rate, duration, and intensity of speech movement to speak; hence, their 
speech could be difficult for people to understand. Consider a situation where lip and tongue 
movement is improper; hence, words get distorted: "tip" is pronounced as "sip," "hip," and 
"sieve"; "beach" could be "eats"; and "decide" could be "sigh" and "say." In cases where vocal 
organs, referred to as the larynx, are affected, the quality, tone, and intensity of speech are 
altered. A speech disorder could be characterized by a loss of dynamic variation in terms of 
loudness, tone, and speech rhythms and inappropriate variations in terms of mentioned 
parameters above and could coexist with poorly controlled breathing efforts that could coexist 
with reduced breathing support that limits speech output that could be short and shallow and 
could be lacking exhalation support needed for speech output and could be characterized by 
a loss in speech output that involves a soft palate disorder that could result in speech that 
appears overly nasal. 

A speech disorder caused by dysarthria could be evidenced by a mild slurring of words 
that appear a bit low in terms of speech tone and could result in a loss of words that could be 
produced during speech output [1]. 

Communication is a key component in how children relate to others, feel positive 
about themselves, and succeed in the classroom. It is important to note the damage, though 
subtle, that issues of speech impairments may do to a child’s social identity from a very early 
age [2]. Studies show that children who are subjected to speech and language services before 
they turn five are going to fare much better in the long run compared to those who are referred 
a little later, and the importance of early intervention cannot be underestimated enough in this 
respect [3]. Nevertheless, access to specialist speech and language therapists is not widespread 
around the globe as of the present day, despite the maturity of the developing nation in 
question [4]. 

Individual treatment is merely one segment of a speech-language pathologist's work. 
It includes diagnosis and assessment of the patient, follow-up, and personalized treatment 
planning [5]. Yet, ever-rising caseloads make it difficult for SLPs to provide really 
individualized support in a timely and effective manner. To inform clinical decision-making 
and therapy delivery, speech therapy increasingly employs information and communication 
technologies, or ICT [6]. Digital platforms and online speech therapy systems truly 
demonstrate promise for improving access, participation, and maintenance of care, especially 
for children, who generally tend to be particularly receptive to digital tools [7].  

Despite the development of advancements in teletherapy and ICT-enabled services 
for treatment, the major existing solutions that can currently be accessed for treatment and 
interventions are post-diagnosis and assist in speech therapy. Early assessment and screening 
services are extremely rare. This is particularly true for less advanced nations, such as Pakistan, 
where there is a lack of psychologists and advanced healthcare facilities. This, in turn, leads to 
cases of speech impairments going unnoticed until they begin to impact a child’s socialization 
patterns and communications. 
Specific objectives of the study are as follows: 
Designing an automated framework for classifying normal and dysarthric speech in a binary 
manner. 
To utilize a continuous regression score of 0–100 to assess the extent of dysarthria. 
To evaluate the effectiveness of hybrid transformer-based and acoustic features on large 
speech datasets. 
To determine if the proposed framework is suitable for early-stage screening applications. 
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To address this, we created Clearitic AI, an artificial intelligence-based detection device 
for vocal disorders that identifies peculiarities in the voice of children at the earliest possible 
opportunity and provides the initial level of severity to expedite referrals to pediatricians of 
children with voice disorders. Different from previous works that usually address either 
dysarthria detection or severity regression alone, ClearTic AI unifies continuous severity 
prediction and binary classification with large-scale hybrid feature learning in a unified 
framework. Second, the proposed system is trained and evaluated on an unprecedentedly 
larger size and class-balanced dataset, which includes 10,000 speech samples from both 
pathological and healthy subjects. In this way, this dataset has never seen joint identifying and 
severity modeling. 
Speech Production: 

Originating from one place in the brain, it is essentially a distributed function involving 
the brain. Connections between frontal and temporal regions, cerebellum, and subcortical 
structures are involved. Overlapping circuits involving regions that handle language, 
respiratory or phonatory function, comprehension, timing, and motor functions are involved. 
[8][9][10][11][12][13]. 

Dysarthria refers to a condition whereby a person finds it difficult to talk effectively. 
This condition occurs when the muscles responsible for speaking become weak or 
uncontrollable, leading to the manifestation of this condition in affected individuals, who 
speak in slow, low, or slurred voices. This condition does not relate to talking or 
understanding; it is solely associated with speaking functions and how individuals express their 
ideas or convey their message effectively. Issues or causes of this condition include brain 
injuries, nerves, and muscle dysfunction, among others, especially in cases of stroke, 
Parkinson’s disease, ALS, or multiple sclerosis, among those conditions mentioned. Some 
individuals also have difficulty with functions of breathing, chewing, or swallowing, which 
could affect their ability to speak effectively. However, this condition could range from mild 
symptoms of speaking changes or make speaking almost impossible for affected individuals. 
A speech-language pathologist tries to improve communication functions for affected 
individuals. Some of the areas of concern in treating this condition include effective activities 
or exercise for those affected, as well as alternative ways of communicating, among others 
[14][15]. There are major groups or categories of this condition, which depend on several 
variables, as seen in Figure 1 below. 

 
Figure 1. Major categories of dysarthria 
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Types of Dysarthria and Their Causes: 
This diagram outlines the different sorts of dysarthria and what causes them. 

Dysarthria is basically a speech disorder caused by brain damage, damage to the nerves, or 
damage to the muscles used for speaking. Extrapyramidal and hypokinetic types are often 
associated with a chronic disease, Parkinson's disease, while cerebellar dysarthria commonly 
presents with multiple sclerosis. Neuromuscular (bulbar) and mixed dysarthrias often result 
from ALS. Hyperkinetic dysarthria generally presents in Huntington's disease 
[16][17][18][19][20][21][22]. 

 
Figure 2. Types of Dysarthria and their causes 

Related Study: 
The development of automated systems for detecting and assessing dysarthria has seen 

significant advancement over the past six years, driven by improvements in deep learning and 
the availability of more diverse speech datasets. Early work by Kim et al. (2019) [23] laid a 
foundation by applying a combined Convolutional and Recurrent Neural Network (CNN-
LSTM) architecture to spectrogram representations of dysarthric speech from the UA-Speech 
dataset. Their model achieved an accuracy of 88.7% by effectively capturing both spatial and 
temporal patterns in the audio. However, this approach was computationally intensive and did 
not address the critical need for quantifying the severity of the speech impairment, focusing 
solely on binary classification. 

In 2020, Alnaser et al. took a different approach for ensemble learning. They extracted 
an extensive set of acoustic/prosodic features from the TORGO database and combined these 
features using the Random Forest classifier and XGBoost classifier. These methods produced 
an accuracy of 90.8% and demonstrated that manual features can be an effective 
representation of articulatory instability. Despite this, it was prone to traditional manual feature 
engineering methods, where it can be difficult to adapt to highly non-linear patterns observed 
in someone with severe dysarthria. Once again, it did not produce any measure of severity 
scoring [24].  

In the next year, Kim and Lee investigated transfer learning to enhance generalizability 
in their research paper of 2021. The authors began with an existing pre-trained network for 
audio, named VGGish, which was pre-trained for a large audio dataset, and then fine-tuned it 
and used its outputs for a Support Vector Machine classifier. With the TORGO-SVD dataset 
combined for experimenting and testing, it reached an accuracy of 91.2%. The paper 
emphasized the efficacy of pre-trained networks for audio, but used a specific pre-trained 
network and could not measure severity levels, and was merely a detection model [25]. 

A shift towards the use of convolutional networks for direct representation of audio 
came about in Gupta et al. (2022). They trained a 2D CNN directly from the Mel-spectrograms 
of the UA-Speech dataset, attaining an accuracy of 89.5%. The network was very robust for 
inter-speaker variations but was limited in that it did not include a hybrid feature approach for 
a more effective combination of spectral and temporal representations, and also in that it was 
based on a single dataset approach [26]. 

The year 2023 marked the beginning of an increased move towards viable clinical 
applications. One exemplar of this was the development of a tele-screening system for 
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pediatric motor speech disorders that was undertaken by Wang et al. They utilized a Random 
Forest approach that utilized prosodic and spectral parameters on their own private database 
of 1,200 pediatric speech samples and had an accuracy of 88.7%. While it marked progress 
because it was on pediatric patients, the method was not very accurate itself, their database 
was not available for testing on third-party platforms, and they were not portraying any form 
of severity on the disorder [27]. 

In recent years, transformer-based self-supervised learning has also received increasing 
attention. Li et al. directly addressed the task of severity measurement. They exploited 
HuBERT-based embeddings and ridge regression to transform the features into a severity 
score on the TORGO dataset, achieving an R² of 0.902 and an MAE of 4.12. Although it 
significantly progressed towards a quantitative measurement, the research remained focused 
on regression and skipped any classification task, and applied only to a relatively small data set 
[28]. 

In 2024, there were significant advances in the area of dysarthric speech detection. 
However, traditional shortcomings have still persisted. Chen et al. proposed a multi-modal 
CNN-LSTM model that combined acoustic features with deep models. The results were very 
promising with respect to both accuracy and AUC on the TORGO and UA-Speech databases. 
However, there were significant computational requirements and no severity estimation [24]. 
In the same year, Sharma and Kumar again focused on efficiency. They proposed a logistic 
regression classifier with a reduced version of Wav2Vec2. The results were competitive with 
respect to other methods. The model could even be utilized for real-time applications on 
mobile devices. However, there were certain losses in performance and again no estimation 
for severity [29]. Fast-forward to 2025. Park et al. proposed a quantized CNN model. The 
model could run on edge devices. The model maintained a significant portion of the original 
precision. However, latency was reduced to a minimum. However, this model could only 
perform binary classification [30]. 

Table 1. Summary of Related Study 

Authors Method Dataset Accuracy Primary Limitation 

Kim et al.2019 [23] 
CNN LSTM on 
Spectrograms 

UA-Speech (2,950) 88.7%  
No severity check and 
computationally 
expensive. 

Alnaser et al.2020 
[24] 

 
(RF+XGBoost) 
Ensemble 

TORGO (2,600) 90.8%  

Traditional Machine 
Learning is not trained on 
deep features, and no 
severity check. 

Kim & Lee2021 
[25] 

VGGish + 
Transfer 
Learning  SVM  

TORGO + SVD 
(4,100) 

91.2%  
Not regression dependent 
on a pre-trained model. 

Gupta et al.2022 
[26] 

2D-CNN on 
Mel-
spectrograms 

UA-Speech (2,950) 89.5%  
Less dataset, no severity 
check, and no hybrid 
features extraction. 

Wang et al. 2023 
[27] 

Random Forest 
+ Prosodic 
Features 

Pediatric Private 
(1,200) 

88.7%  
Private dataset and 
severity check. 

Li et al.2024 [28] 
HuBERT + 
Ridge 
Regression 

TORGO (2,800) 
R²=0.902, 

MAE=4.12 
Classification and training 
on a small dataset. 
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Chen et al.2024 
[24] 

CNN-LSTM 
along Acoustic 
Features 

TORGO+UA-
Speech (7,200) 

92.3%, 
AUC=0.978 

Computationally 
expensive; no severity 
check. 

Sharma & Kumar 
2024 [29] 

Combination 
Wav2Vec2 and 
LR 

TORGO+Pediatric 
(3,500) 

90.1%  
Accuracy is quite low; 
mobile-focused, but no 
severity check. 

Park et al. 2025 [30] 
Quantized 
CNN  

TORGO and CV 
Subset 

91.5%, 
Latency<10

0ms 

Deals with Binary not 
with severity, for 
optimization of speed. 

The proposed method not only identifies the disease but also checks the severity, that 
make in novel from the rest of recent published article as evident in Table 1. 
Proposed Methodology: 

 
Figure 3. Overview of Proposed Methodology 

The proposed approach can be observed in Figure 3 below. ClearTic AI is designed 
to detect speech anomalies and their severity based on voice recordings automatically. It was 
our desire to develop a system capable of detecting both normal and abnormal infant speech 
patterns and providing workable results useful in early intervention based on those results. 
This goal was achieved by merging state-of-the-art transformers with classic audio feature 
extraction and deep learning models to produce a flexible system. 
Data Collection and Dataset Construction: 

A balanced dataset was created for the training of the ClearTic AI to record normal 
and abnormal speech patterns. In this regard, 5,000 samples of the abnormal speech patterns 
were obtained from the TORGO dataset to represent the characteristics of dysarthric speech 
patterns [31]. These samples of abnormal patterns were then combined with 5,000 samples of 
normal speech patterns obtained from the Mozilla Common Voice to represent healthy 
speakers. The dataset comprised 10,000 recordings tagged as either Normal or Abnormal 
speech patterns [32]. In training the model, the dataset was partitioned into sets to offer good 
training and an unbiased test set. 
Preprocessing: 

The raw audio data will always contain background noises, variations in amplitude, or 
silence, which may affect the extraction of features and, consequently, the results of the 
models. The intake process incorporated a complete preprocessing step for each audio file: 
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Noise reduction: The filters eliminated background noises that could have interfered with 
the voice. 
Normalization of amplitude: Loudness was normalized to bring it to an equal level among 
all sample recordings. 
Trimming: The leading or trailing silence was eliminated, thereby ensuring the relevant parts 
of the utterances are considered in the model. 

These processes yielded clean and consistent inputs for both transformer networks 
and conventional feature extraction algorithms. 
Feature Extraction: 

For the effective analysis of speech, we have used a hybrid-feature-extraction strategy 
that combines the transformer embeddings along with the classical acoustic features as a 
complement to hybrid features. This dual strategy allows the ultimate system to retain both 
high-level temporal and low-level voice properties. 
Transformer-Based Features: 

We employed Wav2Vec2, a state-of-the-art self-supervised transformer learning 
model fine-tuned through a massive speech corpus. The transformer learns and abstracts well 
complex temporal and spectral features of speech signals. It is very adept at abstracting out 
minute speech features like phonetics, prosody, and rhythm, which are very important 
distinguishing features between normal and pathologically speech patterns. Self-elected 
transformers like Wav2Vec2 can very well deal with long-term speech dependency and 
intonation variations [33]. 
Classical Acoustic Features: 

To provide additional information besides the transformer-based embeddings, we 
incorporated the traditional audio features from the library Librosa [34][35]: 
Pitch (the fundamental frequency): carries the speaker’s tone and intonation. 
Mel Frequency Cepstral Coefficients (MFCCs): These give spectral information that is 
message and consonance-related. 
Spectral Centroid: indicates the “ brightness” of the voice, where the value indicates how the 
energy is distributed. 
By incorporating these traditional characteristics with transformer embeddings, a more 
informative speech signal is obtained, which improves the model's accuracy in pinpointing 
anomalies. 
Model Architecture and Training: 
Speech Classification: 
Speech Classification (Normal vs. Abnormal): 

This was due to the ability of the model to learn non-linear associations from high-
dimensional fused feature vectors. A sequential neural network was opted for, namely, the 
MLP. Unlike CNNs or any other recurrent architecture, which require raw or sequential 
inputs, respectively, the suggested hybrid features are already semantically rich representations. 
Besides, MLP is more suitable for real-time low-resource screening settings because it offers 
faster inferences with lower computational complexity. Therefore, we have used it, and each 
of these extracted characteristics, ranging from transformer embeddings obtained using 
Wav2Vec2 to traditional audio features such as pitch, MFCCs, and spectral centroid, was 
consolidated into a single feature vector, which was then used as input to a Multi-Layer 
Perceptron (MLP) classifier developed using a Sequential Neural Network (SNN) framework. 
MLP/SNN There is a feed-forward MLP that learns a non-linear mapping between high-
dimensional vectors of features and labels of classes. It is convenient  (Goodfellow et al., 2016) 
to use the Sequential API to stack dense layers and add activation functions and dropout [36]. 
The system takes an input image, extracts the features, and then passes them to the 
classification layer to produce. 
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Data split for training: We sectioned the data into 70% for training, 10% for validation, and 
20% for testing. 
Performance Measures: We employed Accuracy and the confusion matrix for performance 
assessment. 

In essence, the use of high-level transformer representations along with traditional 
features translates to an effective discrimination of regular speaking patterns from irregular 
ones. 
Severity Estimation: 

We also calculated how severe the speech disorder is. Since severity is a continuous 
score, a regression model [37][38][39] is used to calculate a score between 0 and 100. This will 
help the system differentiate how severe the disorder is, from mild to severe levels. The results 
will not only specify whether the speech is abnormal or normal. 
Clinical-Interpretation for the Severity Scores Estimation: 

The range of the predicted severity score is from 0 to 100, and the score increases as 
the severity of the speech disorder also increases. The score of 0-25 corresponds to normal or 
minor symptoms, 26-50 represents mild symptoms of dysarthria, 51-75 represents slight 
weakness, and above 75 represents severe symptoms of dysarthria. This classification system 
follows the conventional severity level systems used by speech therapists. 
Evaluation and Validation: 

In our evaluation of ClearTic AI, we performed our testing on the 20% holdout set. 
Several performance indicators were considered: 
Accuracy of distinction between Normal and Abnormal 
Confusion matrices for deeper insight into errors 
Mean Squared Error (MSE) on severity regression 

The entire set of experiments was performed on Google Colab's GPUs and validated 
to ensure scalability and reproducibility on local servers. This combined transformer and 
classical method allowed the system to reliably locate speech irregularities, severity estimation, 
and classification of gender. 
Result and Discussion: 

In this section, our dataset contains 10,000 samples of voices that are divided equally 
into 5,000 normal samples taken from the Mozilla Common Voice dataset and 5,000 abnormal 
samples from the TORGO dysarthric speech corpus, and we will compare the two models 
that will be developed using the binary classifier model for identifying abnormal voices and 
the regression model for the severity score. 
Dataset Composition and Exploratory Analysis: 

 
Figure 4. Label Distribution for Dataset Analysis 

Label Distribution: 
The dataset is perfectly balanced for training a robust model, having 50.4% and 49.6% 

abnormal and normal samples, respectively. This 1:1 ratio prevents the classifier from being 
biased towards the majority class. 
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Performance of the Binary Classification Model: 
The confusion matrix presents a clear image of a robust, clinically applicable diagnostic 

system. A consistent and high degree of detection accuracy for both healthy and unhealthy 
voice patterns is demonstrated by the precise calls for 938 occurrences of the normal class and 
968 instances of the abnormal class. A significant factor to take into account when screening 
a patient is the minimal likelihood of failing to identify true pathology, as evidenced by the 
small number of false negative cases (52 in total). The diagnostic system's precision component 
is kept in check by the low false alarm incidence, which is limited to 65 occurrences. This 
prevents a high likelihood of issuing needless alerts. 

 
Figure 5. Confusion metric 

Sensitivity (Recall / True Positive Rate): 

Sensitivity (TPR) =
TP

TP + FN
 

Sensitivity (TPR) =
968

968 + 52
= 0.949 

Sensitivity (TPR) = 0.94% 
Where TP-True Positive is a matric indicates the correct samples identified in 

dysarthric speech, and FN, i.e., False Positive, are the samples that are incorrectly classified as 
normal. 
Specificity (True Negative Rate): 

Specificity represents the ability of the system to correctly identify normal (healthy) 
speech samples. 

Specificity (TNR) =
TN

TN + FP
 

Specificity (TNR) =
938

938 + 65
= 0.935 

Specificity (TNR) = 0.935% 
It obtained a sensitivity of 94.9% in the detection of dysarthric speech and a specificity 

of 93.5% for normal speech classifications, showing that it has good performance across 
classes. 
Receiver Operating Characteristic (ROC) Curve: 

When adjusting the classification threshold, the ROC Curve highlights how the True 
Positive Rate (also known as Recall) is compared with the False Positive Rate. It appears as if 
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it is doing amazingly well, as its graph is steep towards the top-left corner. Its ability to 
discriminate between the classes is very evident by obtaining an AUC value of 0.987, which is 
independent of the operating point/threshold. An abnormal situation is ranked 98.7% above 
the normal situation based on this AUC. 

 
Figure 6. Receiver Operating Characteristic (ROC) Curve 

Synthesis and Clinical Interpretation: 
An effective two-step approach is highlighted by the study. Regression analysis 

provides a sophisticated measure of the severity level of the abnormality (R² = 0.9389, MAE 
= 3.26) to express how serious the abnormality is. First, there is the classifier, which serves as 
a diligent sentinel with an AUC of 0.987, accurately indicating whether an abnormality is 
present or not. 

A few incorrect classifications (FN = 52, FA = 65) likely belong to the edges or cases 
with slight levels of dysarthria and/or vocal characteristics that just so happen to be unusual. 
However, it is evident that there is a distinct separation between levels of severity for each 
class, and the specific ranges given by the unique RMSE for energy characteristics give a 
definite acoustic explanation for its calls. The high R²value shows a strong degree of reliance 
and accuracy for the predicted value of severity in terms of its ‘score’. 

 
Figure 7. RMSE for energy characteristics 

Comparison: 
All the comparative results are as they appear in the original papers; the evaluation 

protocols and how datasets are split can be different for the various studies shown in Table 2. 
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Table 2. Comparison of the recent & our proposed Methodology 

Authors Paper Title Dataset Method Accuracy 
Severity 

R² 
Severity 
MAE 

Key Limitations 

Huma et al. 2025 

Clearitic AI: 
Automated 
Dysarthria Detection 
& Severity Scoring 

10,000 samples 
(TORGO + 
Mozilla) 

Wav2Vec2 + 
MFCC/Pitch 
+ SNN 

94.2% 0.939 3.26 

Requires a GPU for 
inference; limited to 
English speech 
currently. 

Chen et al. 2024 

Deep Learning-
Based Dysarthria 
Classification Using 
Multi-Modal 
Features 

7,200 samples 
(TORGO + 
UA-Speech) 

CNN-LSTM 
+ acoustic 
features 

92.3% – – 

No severity scoring; 
dataset is smaller; lacks 
pediatric 
representation. 

Li et al.2024 

Regression-Based 
Severity Scoring in 
Dysarthria Using 
Self-Supervised 
Features 

2,800 samples 
(TORGO only) 

HuBERT + 
ridge 
regression 

– 0.902 4.12 
Small dataset; no binary 
classification; limited 
feature fusion. 

Wang et al.2023 
Tele-Screening Tool 
for Pediatric Motor 
Speech Disorders 

1,200 pediatric 
samples 

Random 
Forest + 
prosodic 
features 

88.7% – – 
Low accuracy; no 
severity model; dataset 
not publicly available. 

Sharma & 
Kumar,2024  

A Lightweight 
Transformer for 
Dysarthric Speech 
Detection 

3,500 samples 
(TORGO + 
pediatric) 

Pruned 
Wav2Vec2 + 
logistic 
regression 

90.1% – – 

Lower accuracy; no 
regression output; 
model simplified for 
mobile use. 



                                 International Journal of Innovations in Science & Technology 

December 2025|Vol 7 | Issue 4                                                          Page |3029 

Conclusion: 
Clearitic AI is brought into the picture. It is an AI-assisted tool aimed at diagnosing 

and gauging motor speech disorders such as dysarthria. clearitic AI does this while being 
trained on well-merged acoustic features from 10,000 speech samples. The result shows that 
clearitic AI operates on 94.2% overall accuracy, AUC=0.987, and R²= 0.9389 in gauging the 
severity level of the disorder. This clarifies that clear AI performs very well in discriminating 
between normal speech patterns and pathological speech patterns. Clearitic AI has immense 
potential in being used as a pre-diagnostic tool that is readily available in remote locations 
where speech-language pathology services might be minimal. In the future, we will extend this 
work for the gender classification as per voice detected by the model and also on bases of 
severity analysis, basic therapies will be suggested by our system.  
Limitations and Future Work: 

Next, we lay out a staged process of clinical validation, consisting of first pilot-testing 
the technique, incorporating the technique into the regular practice of the certified speech-
language pathologists, and finally pilot-testing the technique in the field. Looking forward, our 
future work will expand our focus by incorporating mechanisms of interpretation, such as 
SHAP-values or attention maps, into the AI tooling, with the intention of enhancing medical 
trust. Please note that our current study does not include a pediatric subgroup analysis, but 
will incorporate such in a future modeling effort focused on pediatric validation. 
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