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NOISIAI

or muscular processes that actually control speech production; conversely, these

disorders affect the strength, coordination, and tone of the vocal muscles that
ultimately produce less intelligible speech. Because dysarthria can range from moderate
distortion of articulation to severe impairment of speech, early and accurate assessment is
critical. The paper proposes Clearitic Al, an automated speech analysis platform that leverages
artificial intelligence to diagnose vocal disorders. It fuses Wav2Vec2 with traditional acoustic
features such as Mel-Frequency Cepstral Coefficients (MFCCs), pitch estimation, and spectral
descriptors. Abnormal voice classification and its severity on a framework with a sequential
neural network architecture are proposed. Extensive testing of the system is performed using
10,000 recordings of voice samples from the TORGO dataset and the Mozilla Common Voice
dataset. Experimental results demonstrate that the proposed model achieves a classification
accuracy of 94.2% (£1.3), an Fl-score of 0.943, and an Area Under the Curve (AUC) of 0.987
on the test set, thereby establishing the effectiveness of this framework for dysarthric speech
detection applications.
Keywords: Dysarthna Speech Production, Sequential Neural Network

D ysarthria and other motor speech disorders result from abnormalities in the neural
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Introduction:

Dysarthria is a term that describes speech disorders due to improper functioning of
nerves and muscles that coordinate speech. Dysarthria means people find it hard to control
and coordinate the rate, duration, and intensity of speech movement to speak; hence, their
speech could be difficult for people to understand. Consider a situation where lip and tongue
movement is improper; hence, words get distorted: "tip" is pronounced as "sip," "hip," and
"sieve"; "beach" could be "eats"; and "decide" could be "sigh" and "say." In cases where vocal
organs, referred to as the larynx, are affected, the quality, tone, and intensity of speech are
altered. A speech disorder could be characterized by a loss of dynamic variation in terms of
loudness, tone, and speech rhythms and inappropriate variations in terms of mentioned
parameters above and could coexist with poorly controlled breathing efforts that could coexist
with reduced breathing support that limits speech output that could be short and shallow and
could be lacking exhalation support needed for speech output and could be characterized by
a loss in speech output that involves a soft palate disorder that could result in speech that
appears overly nasal.

A speech disorder caused by dysarthria could be evidenced by a mild slurring of words
that appear a bit low in terms of speech tone and could result in a loss of words that could be
produced during speech output [1].

Communication is a key component in how children relate to others, feel positive
about themselves, and succeed in the classroom. It is important to note the damage, though
subtle, that issues of speech impairments may do to a child’s social identity from a very eatly
age [2]. Studies show that children who are subjected to speech and language services before
they turn five are going to fare much better in the long run compared to those who are referred
a little later, and the importance of early intervention cannot be underestimated enough in this
respect [3]. Nevertheless, access to specialist speech and language therapists is not widespread
around the globe as of the present day, despite the maturity of the developing nation in
question [4].

Individual treatment is merely one segment of a speech-language pathologist's work.
It includes diagnosis and assessment of the patient, follow-up, and personalized treatment
planning [5]. Yet, ever-rising caseloads make it difficult for SLPs to provide really
individualized support in a timely and effective manner. To inform clinical decision-making
and therapy delivery, speech therapy increasingly employs information and communication
technologies, or ICT [6]. Digital platforms and online speech therapy systems truly
demonstrate promise for improving access, participation, and maintenance of care, especially
for children, who generally tend to be particularly receptive to digital tools [7].

Despite the development of advancements in teletherapy and ICT-enabled services
for treatment, the major existing solutions that can currently be accessed for treatment and
interventions are post-diagnosis and assist in speech therapy. Early assessment and screening
services are extremely rare. This is particularly true for less advanced nations, such as Pakistan,
where there is a lack of psychologists and advanced healthcare facilities. This, in turn, leads to
cases of speech impairments going unnoticed until they begin to impact a child’s socialization
patterns and communications.

Specific objectives of the study are as follows:

Designing an automated framework for classifying normal and dysarthric speech in a binary
manner.

To utilize a continuous regression score of 0—100 to assess the extent of dysarthria.

To evaluate the effectiveness of hybrid transformer-based and acoustic features on large
speech datasets.

To determine if the proposed framework is suitable for early-stage screening applications.
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To address this, we created Clearitic Al, an artificial intelligence-based detection device
for vocal disorders that identifies peculiarities in the voice of children at the earliest possible
opportunity and provides the initial level of severity to expedite referrals to pediatricians of
children with voice disorders. Different from previous works that usually address either
dysarthria detection or severity regression alone, ClearTic Al unifies continuous severity
prediction and binary classification with large-scale hybrid feature learning in a unified
framework. Second, the proposed system is trained and evaluated on an unprecedentedly
larger size and class-balanced dataset, which includes 10,000 speech samples from both
pathological and healthy subjects. In this way, this dataset has never seen joint identifying and
severity modeling.

Speech Production:

Originating from one place in the brain, it is essentially a distributed function involving
the brain. Connections between frontal and temporal regions, cerebellum, and subcortical
structures are involved. Overlapping circuits involving regions that handle language,
respiratory or phonatory function, comprehension, timing, and motor functions are involved.
8191 [10][11][12][13].

Dysarthria refers to a condition whereby a person finds it difficult to talk effectively.
This condition occurs when the muscles responsible for speaking become weak or
uncontrollable, leading to the manifestation of this condition in affected individuals, who
speak in slow, low, or slurred voices. This condition does not relate to talking or
understanding; it is solely associated with speaking functions and how individuals express their
ideas or convey their message effectively. Issues or causes of this condition include brain
injuries, nerves, and muscle dysfunction, among others, especially in cases of stroke,
Parkinson’s disease, ALS, or multiple sclerosis, among those conditions mentioned. Some
individuals also have difficulty with functions of breathing, chewing, or swallowing, which
could affect their ability to speak effectively. However, this condition could range from mild
symptoms of speaking changes or make speaking almost impossible for affected individuals.
A speech-language pathologist tries to improve communication functions for affected
individuals. Some of the areas of concern in treating this condition include effective activities
or exercise for those affected, as well as alternative ways of communicating, among others
[14][15]. There are major groups or categories of this condition, which depend on several
variables, as seen in Figure 1 below.

Characterized by stiff
and strained speech

Tremulous
Dysarthria

Characterized by

shaky and unsteady
speech

Hypophonia
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soft speech
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Neuromuscular
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Results in
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Figure 1. Major categories of dysarthria
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Types of Dysarthria and Their Causes:

This diagram outlines the different sorts of dysarthria and what causes them.
Dysarthria is basically a speech disorder caused by brain damage, damage to the nerves, or
damage to the muscles used for speaking. Extrapyramidal and hypokinetic types are often
associated with a chronic disease, Parkinson's disease, while cerebellar dysarthria commonly
presents with multiple sclerosis. Neuromuscular (bulbar) and mixed dysarthrias often result

from ALS. Hyperkinetic dysarthria generally presents in Huntington's disease
[16][17][18][19][20]]21][22].

Dysarthria

I
A { A l d X

Extrapyramidal Cerebellar Neuromusc Hypokinetic Huperkinetic Mixed
Dysarthria Dysarthria ular/Bulbar Dysarthria Dysarthria Dysarthria
Dysarthria
Parkinson's Multiple Amyotrophic Parkinson's Huntington's Amyotrophic
Disease Sclerosis Lateral Disease Disease Lateral
Sclerosis Sclerosis

Figure 2. Types of Dysarthria and their causes
Related Study:

The development of automated systems for detecting and assessing dysarthria has seen
significant advancement over the past six years, driven by improvements in deep learning and
the availability of more diverse speech datasets. Early work by Kim et al. (2019) [23] laid a
foundation by applying a combined Convolutional and Recurrent Neural Network (CNN-
LSTM) architecture to spectrogram representations of dysarthric speech from the UA-Speech
dataset. Their model achieved an accuracy of 88.7% by effectively capturing both spatial and
temporal patterns in the audio. However, this approach was computationally intensive and did
not address the critical need for quantifying the severity of the speech impairment, focusing
solely on binary classification.

In 2020, Alnaser et al. took a different approach for ensemble learning. They extracted
an extensive set of acoustic/prosodic features from the TORGO database and combined these
features using the Random Forest classifier and XGBoost classifier. These methods produced
an accuracy of 90.8% and demonstrated that manual features can be an effective
representation of articulatory instability. Despite this, it was prone to traditional manual feature
engineering methods, where it can be difficult to adapt to highly non-linear patterns observed
in someone with severe dysarthria. Once again, it did not produce any measure of severity
scoring [24].

In the next year, Kim and Lee investigated transfer learning to enhance generalizability
in their research paper of 2021. The authors began with an existing pre-trained network for
audio, named VGGish, which was pre-trained for a large audio dataset, and then fine-tuned it
and used its outputs for a Support Vector Machine classifier. With the TORGO-SVD dataset
combined for experimenting and testing, it reached an accuracy of 91.2%. The paper
emphasized the efficacy of pre-trained networks for audio, but used a specific pre-trained
network and could not measure severity levels, and was merely a detection model [25].

A shift towards the use of convolutional networks for direct representation of audio
came about in Gupta et al. (2022). They trained a 2D CNN directly from the Mel-spectrograms
of the UA-Speech dataset, attaining an accuracy of 89.5%. The network was very robust for
inter-speaker variations but was limited in that it did not include a hybrid feature approach for
a more effective combination of spectral and temporal representations, and also in that it was
based on a single dataset approach [26].

The year 2023 marked the beginning of an increased move towards viable clinical
applications. One exemplar of this was the development of a tele-screening system for
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pediatric motor speech disorders that was undertaken by Wang et al. They utilized a Random
Forest approach that utilized prosodic and spectral parameters on their own private database
of 1,200 pediatric speech samples and had an accuracy of 88.7%. While it marked progress
because it was on pediatric patients, the method was not very accurate itself, their database
was not available for testing on third-party platforms, and they were not portraying any form
of severity on the disorder [27].

In recent years, transformer-based self-supervised learning has also received increasing
attention. Li et al. directly addressed the task of severity measurement. They exploited
HuBERT-based embeddings and ridge regression to transform the features into a severity
score on the TORGO dataset, achieving an R* of 0.902 and an MAE of 4.12. Although it
significantly progressed towards a quantitative measurement, the research remained focused
on regression and skipped any classification task, and applied only to a relatively small data set

28]

In 2024, there were significant advances in the area of dysarthric speech detection.
However, traditional shortcomings have still persisted. Chen et al. proposed a multi-modal
CNN-LSTM model that combined acoustic features with deep models. The results were very
promising with respect to both accuracy and AUC on the TORGO and UA-Speech databases.
However, there were significant computational requirements and no severity estimation [24].
In the same year, Sharma and Kumar again focused on efficiency. They proposed a logistic
regression classifier with a reduced version of Wav2Vec2. The results were competitive with
respect to other methods. The model could even be utilized for real-time applications on
mobile devices. However, there were certain losses in performance and again no estimation
for severity [29]. Fast-forward to 2025. Park et al. proposed a quantized CNN model. The
model could run on edge devices. The model maintained a significant portion of the original
precision. However, latency was reduced to a minimum. However, this model could only
perform binary classification [30].

Table 1. Summary of Related Study

Authors Method Dataset Accuracy Primary Limitation
No severity check and
Kim et al.2019 [23] gNel\t]rESEnA % | UA-Speech (2,950) 88.7% | computationally
pectrograms expensive.
Traditional Machine
Alnaser et al.2020 (RF+XGBoost) | TORGO (2,600) 90.8% Learning is not trained on
[24] deep features, and no
Ensemble -
severity check.
i -
Kim & Lee2021 fflgtilfz}rl TORGO + SVD 91.29 Not regression dependent
. 0 .
[25] Learning SVM (4,100) on a pre-trained model.
2D-CNN  on Less dataset, no severity
gg]pta et al2022 )y UA-Speech (2,950) 89.5% | check, and no hybrid
spectrograms eatures extraction.
pectrog f !
Wang et al. 2023 Random Fore§t Pediatric ~ Private Private ~ dataset  and
+ Prosodic 88.7% .
[27] (1,200) severity check.
Features
HuBERT + ) e .
. . =0.902, | Classification and training
Li et al.2024 28] Ridge ’ TORGO (2,800) MAE=412 | on a small dataset.
Regression
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Chen et al2024 ;?F'Ligwwc TORGO+UA- 92.3%, gxofggt?onjgy vt
[24] Featires P | Speech (7,200) AUC=0.978 ChECk Ve venty
Combination o Accuracy is quite low;
gggzn[l;g]& Kumar Wav2Vec2 and 205185 Ot Pediatric 90.1% mobile-focused, but no
LR ’ severity check.
5 . .
Quantized TORGO and CV 91.5%, D.eals with Bmary not
Park et al. 2025 [30] CNN Subset Latency<10 | with severity, for
" Oms optimization of speed.

The proposed method not only identifies the disease but also checks the severity, that
make in novel from the rest of recent published article as evident in Table 1.
Proposed Methodology:
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Figure 3. Overview of Proposed Methodology

The proposed approach can be observed in Figure 3 below. ClearTic Al is designed
to detect speech anomalies and their severity based on voice recordings automatically. It was
our desire to develop a system capable of detecting both normal and abnormal infant speech
patterns and providing workable results useful in early intervention based on those results.
This goal was achieved by merging state-of-the-art transformers with classic audio feature
extraction and deep learning models to produce a flexible system.

Data Collection and Dataset Construction:

A balanced dataset was created for the training of the ClearTic Al to record normal
and abnormal speech patterns. In this regard, 5,000 samples of the abnormal speech patterns
were obtained from the TORGO dataset to represent the characteristics of dysarthric speech
patterns [31]. These samples of abnormal patterns were then combined with 5,000 samples of
normal speech patterns obtained from the Mozilla Common Voice to represent healthy
speakers. The dataset comprised 10,000 recordings tagged as either Normal or Abnormal
speech patterns [32]. In training the model, the dataset was partitioned into sets to offer good
training and an unbiased test set.

Preprocessing:

The raw audio data will always contain background noises, variations in amplitude, or
silence, which may affect the extraction of features and, consequently, the results of the
models. The intake process incorporated a complete preprocessing step for each audio file:
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Noise reduction: The filters eliminated background noises that could have interfered with
the voice.

Normalization of amplitude: Loudness was normalized to bring it to an equal level among
all sample recordings.

Trimming: The leading or trailing silence was eliminated, thereby ensuring the relevant parts
of the utterances are considered in the model.

These processes yielded clean and consistent inputs for both transformer networks
and conventional feature extraction algorithms.

Feature Extraction:

For the effective analysis of speech, we have used a hybrid-feature-extraction strategy
that combines the transformer embeddings along with the classical acoustic features as a
complement to hybrid features. This dual strategy allows the ultimate system to retain both
high-level temporal and low-level voice properties.

Transformer-Based Features:

We employed Wav2Vec2, a state-of-the-art self-supervised transformer learning
model fine-tuned through a massive speech corpus. The transformer learns and abstracts well
complex temporal and spectral features of speech signals. It is very adept at abstracting out
minute speech features like phonetics, prosody, and rhythm, which are very important
distinguishing features between normal and pathologically speech patterns. Self-elected
transformers like Wav2Vec2 can very well deal with long-term speech dependency and
intonation variations [33].

Classical Acoustic Features:

To provide additional information besides the transformer-based embeddings, we

incorporated the traditional audio features from the library Librosa [34][35]:

Pitch (the fundamental frequency): carries the speaker’s tone and intonation.

Mel Frequency Cepstral Coefficients (MFCCs): These give spectral information that is
message and consonance-related.

Spectral Centroid: indicates the “ brightness” of the voice, where the value indicates how the
energy is distributed.

By incorporating these traditional characteristics with transformer embeddings, a more
informative speech signal is obtained, which improves the model's accuracy in pinpointing
anomalies.

Model Architecture and Training:

Speech Classification:

Speech Classification (Normal vs. Abnormal):

This was due to the ability of the model to learn non-linear associations from high-
dimensional fused feature vectors. A sequential neural network was opted for, namely, the
MLP. Unlike CNNs or any other recurrent architecture, which require raw or sequential
inputs, respectively, the suggested hybrid features are already semantically rich representations.
Besides, MLP is more suitable for real-time low-resource screening settings because it offers
faster inferences with lower computational complexity. Therefore, we have used it, and each
of these extracted characteristics, ranging from transformer embeddings obtained using
Wav2Vec2 to traditional audio features such as pitch, MFCCs, and spectral centroid, was
consolidated into a single feature vector, which was then used as input to a Multi-Layer
Perceptron (MLP) classifier developed using a Sequential Neural Network (SNN) framework.
MLP/SNN There is a feed-forward MLP that learns a non-linear mapping between high-
dimensional vectors of features and labels of classes. It is convenient (Goodfellow et al., 20106)
to use the Sequential API to stack dense layers and add activation functions and dropout [36].
The system takes an input image, extracts the features, and then passes them to the
classification layer to produce.
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Data split for training: We sectioned the data into 70% for training, 10% for validation, and
20% for testing.

Performance Measures: We employed Accuracy and the confusion matrix for performance
assessment.

In essence, the use of high-level transformer representations along with traditional
features translates to an effective discrimination of regular speaking patterns from irregular
ones.

Severity Estimation:

We also calculated how severe the speech disorder is. Since severity is a continuous
score, a regression model [37][38][39] is used to calculate a score between 0 and 100. This will
help the system differentiate how severe the disorder is, from mild to severe levels. The results
will not only specify whether the speech is abnormal or normal.

Clinical-Interpretation for the Severity Scores Estimation:

The range of the predicted severity score is from 0 to 100, and the score increases as
the severity of the speech disorder also increases. The score of 0-25 corresponds to normal or
minor symptoms, 26-50 represents mild symptoms of dysarthria, 51-75 represents slight
weakness, and above 75 represents severe symptoms of dysarthria. This classification system
follows the conventional severity level systems used by speech therapists.

Evaluation and Validation:
In our evaluation of ClearTic Al, we performed our testing on the 20% holdout set.
Several performance indicators were considered:
Accuracy of distinction between Normal and Abnormal
Confusion matrices for deeper insight into errors
Mean Squared Error (MSE) on severity regression

The entire set of experiments was petformed on Google Colab's GPUs and validated
to ensure scalability and reproducibility on local servers. This combined transformer and
classical method allowed the system to reliably locate speech irregularities, severity estimation,
and classification of gender.

Result and Discussion:

In this section, our dataset contains 10,000 samples of voices that are divided equally
into 5,000 normal samples taken from the Mozilla Common Voice dataset and 5,000 abnormal
samples from the TORGO dysarthric speech corpus, and we will compare the two models
that will be developed using the binary classifier model for identifying abnormal voices and
the regression model for the severity score.

Dataset Composition and Exploratory Analysis:
Label Distribution

abnormal

normal

Figure 4. Label Distribution for Dataset Analysis

Label Distribution:

The dataset is perfectly balanced for training a robust model, having 50.4% and 49.6%
abnormal and normal samples, respectively. This 1:1 ratio prevents the classifier from being
biased towards the majority class.
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Performance of the Binary Classification Model:

The confusion matrix presents a clear image of a robust, clinically applicable diagnostic
system. A consistent and high degree of detection accuracy for both healthy and unhealthy
voice patterns is demonstrated by the precise calls for 938 occurrences of the normal class and
968 instances of the abnormal class. A significant factor to take into account when screening
a patient is the minimal likelihood of failing to identify true pathology, as evidenced by the
small number of false negative cases (52 in total). The diagnostic system's precision component
is kept in check by the low false alarm incidence, which is limited to 65 occurrences. This
prevents a high likelihood of issuing needless alerts.

Confusion Matrix on Test Set

- 800
938 65
- 600
- 400
- 52 968
- 200

Nonlnal Abnormal
Figure 5. Confusion metric
Sensitivity (Recall / True Positive Rate):

Normal

True Label

Abnormal

Sensitivity (TPR) = TP+ FN
Sensitivity (TPR) = 98 _ 949
ensitivity ~Sea152_ %

Sensitivity (TPR) = 0.94%

Where TP-True Positive is a matric indicates the correct samples identified in
dysarthric speech, and FN, i.e., False Positive, are the samples that are incorrectly classified as
normal.

Specificity (True Negative Rate):

Specificity represents the ability of the system to correctly identify normal (healthy)

speech samples.

Specificity (TNR) = TN+ FP
Specificity (TNR) = 38 _ 935
pecificity =538 1es " %

Specificity (TNR) = 0.935%

It obtained a sensitivity of 94.9% in the detection of dysarthric speech and a specificity
of 93.5% for normal speech classifications, showing that it has good performance across
classes.

Receiver Operating Characteristic (ROC) Curve:

When adjusting the classification threshold, the ROC Curve highlights how the True

Positive Rate (also known as Recall) is compared with the False Positive Rate. It appears as if
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it is doing amazingly well, as its graph is steep towards the top-left corner. Its ability to
discriminate between the classes is very evident by obtaining an AUC value of 0.987, which is
independent of the operating point/threshold. An abnormal situation is ranked 98.7% above
the normal situation based on this AUC.

ROC Curve
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Figure 6. Receiver Operating Characteristic (ROC) Curve
Synthesis and Clinical Interpretation:

An effective two-step approach is highlighted by the study. Regression analysis
provides a sophisticated measure of the severity level of the abnormality (R* = 0.9389, MAE
= 3.20) to express how serious the abnormality is. First, there is the classifier, which serves as
a diligent sentinel with an AUC of 0.987, accurately indicating whether an abnormality is
present or not.

A few incorrect classifications (FN = 52, FA = 65) likely belong to the edges or cases
with slight levels of dysarthtia and/or vocal characteristics that just so happen to be unusual.
However, it is evident that there is a distinct separation between levels of severity for each
class, and the specific ranges given by the unique RMSE for energy characteristics give a
definite acoustic explanation for its calls. The high R*value shows a strong degree of reliance

and accuracy for the predicted value of severity in terms of its ‘score’.
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Figure 7. RMSE for energy characteristics
Comparison:
All the comparative results are as they appear in the original papers; the evaluation
protocols and how datasets are split can be different for the various studies shown in Table 2.
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Table 2. Comparison of the recent & our proposed Methodology

Authors Paper Title Dataset Method Accuracy Se\;{ezr el SICV[ e! r}lity Key Limitations
Nomatcd | 10000 samples | Wav2ec2 ¢ ioncnees limied o
Huma et al. 2025 | 12" . . (TORGO  + | MFCC/Pitch 94.2% 0.939 3.26 S
Dysarthria Detection . English speech
. . Mozilla) + SNN
& Severity Scoring currently.
Deep Learning- No severity scoring;
Based ~ Dysarthria | 7,200  samples | CNN-LSTM Dot b o s
Chen et al. 2024 | Classification Using | (TORGO ~ + | +  acoustic | 92.3% - = SR
Multi-Modal UA-Speech) features pediatric
representation.
Features
Regression-Based
Severity Scoring in HuBERT + Small dataset; no binary
. . . 2,800 samples | . . . .
Li et al.2024 Dysarthria ~ Using ridge — 0.902 4.12 | classification;  limited
. (TORGO only) . .
Self-Supervised regression feature fusion.
Features
. Random
Tele-Screening Tool 1.200 diatric | Forest n Low  accuracy; no
Wang et al.2023 | for Pediatric Motor | ’ pediatric | Forest 88.7% - - severity model; dataset
. samples prosodic . .
Speech Disorders not publicly available.
features
A Lightweight 3,500  samples Pruned Lower. accuracy; no
Sharma & | Transformer for Wav2Vec2 + o regression output;
. (TORGO  + . 90.1% - — L
Kumar,2024 Dysarthric ~ Speech diatri logistic model simplified for
Detection pediatric) regression mobile use.
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Conclusion:

Clearitic Al is brought into the picture. It is an Al-assisted tool aimed at diagnosing
and gauging motor speech disorders such as dysarthria. clearitic Al does this while being
trained on well-merged acoustic features from 10,000 speech samples. The result shows that
clearitic Al operates on 94.2% overall accuracy, AUC=0.987, and R*= 0.9389 in gauging the
severity level of the disorder. This clarifies that clear Al performs very well in discriminating
between normal speech patterns and pathological speech patterns. Clearitic Al has immense
potential in being used as a pre-diagnostic tool that is readily available in remote locations
where speech-language pathology services might be minimal. In the future, we will extend this
work for the gender classification as per voice detected by the model and also on bases of
severity analysis, basic therapies will be suggested by our system.

Limitations and Future Work:

Next, we lay out a staged process of clinical validation, consisting of first pilot-testing
the technique, incorporating the technique into the regular practice of the certified speech-
language pathologists, and finally pilot-testing the technique in the field. Looking forward, our
future work will expand our focus by incorporating mechanisms of interpretation, such as
SHAP-values or attention maps, into the Al tooling, with the intention of enhancing medical
trust. Please note that our current study does not include a pediatric subgroup analysis, but
will incorporate such in a future modeling effort focused on pediatric validation.
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