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NOISIAI

concerns regarding online authenticity, user trust, and digital security. Despite various

efforts to combat this issue, existing detection methods often fall short due to the
evolving nature of fake profiles and the noisy, high-dimensional data involved. This study
proposes an optimized Hybrid Cross-Layer Fusion Transformer (CLFT) for detecting fake
profiles by analyzing behavioral metadata. The CLFT architecture integrates multi-stage
attention mechanisms, including Cross-Layer Fusion Attention (CLFA), Sparse—Dense
Hybrid Attention (SDHA), and Temporal-Behavior Embedding Blocks (TBEB), to effectively
capture both short- and long-term dependencies in user activities. The model hyperparameters
were optimized using the Bayesian Optimization Hyperband (BOHB) framework.
Experimental results on a real-world social media dataset show that the proposed model
outperforms traditional machine learning techniques and previous Transformer-based models,
achieving an accuracy of 99.10%, precision of 99.89%, recall of 99.55%, and an F1-score of
99.72%. Furthermore, the attention mechanisms enhance interpretability by emphasizing the
most influential behavioral features, contributing to the model’s transparency and reliability.
The findings highlight that Transformer-based models, especially the CLFT, provide a scalable
and efficient solution for fake profile detection in noisy environments, with important
implications for enhancing social media security. The study emphasizes the need for
interpretability in automated detection systems, fostering trust and ensuring better user
engagement and platform integrity.
Keywords: Fake Profile Detection, Transformer Architecture, Multi-Head Self-Attention,
User Behavior Metrics, Hyperparameter Optimization, Social Media Security
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Introduction:

Social media sites have rapidly become crucial personal communication platforms
where people interact, conduct business, consume information, and exchange opinions.
Billions of users of Twitter, Facebook, and Instagram networks worldwide allow spreading
the information fast socially, politically, and economically [1], but this massive digital
expansion has also enabled an explosion of fake accounts [2]. Such fake accounts are
deliberately applied to spread fake news, control the social mood, organize fraudulent
campaigns, and receive affected subsidies in order to artificially increase the number of likes,
followers, and shares [3]. Due to that, online fraud in the form of fake profiles can now be
evaluated as a severe danger to the integrity and credibility, as well as the safety of online
communities [4]. Although attempts were ongoing to reduce such practices, the task of
detecting the fake profile is difficult because cyber-attackers keep developing better methods
of generating profiles [5]. The human behavior patterns on social media are varied, loud, and
ever-changing; it is hard to establish fixed rules to identify them. Conventional models of
machine learning are associated with the application of handcrafted features and detection
rules that are designed manually [3], which restrict their adaptability and scalability in real-life
situations. The methods have trouble capturing difficult, non-linear interactions that exist in
high-dimensional metadata of behavior, resulting in inaccurate recognition of users compared
to changing fake account behavior [6]. Therefore, automated, powerful, scalable, and smart
solutions that will enable detection of subtle anomalies at the user level and enable detection
of social media deception with a high level of reliability are urgently required [7]. Transformer-
based architecture has proven to be very successful in many areas [8], including fake news,
deepfake, and multimodal misinformation classification, because it has a considerable capacity
to learn global and long-range feature interactions [9]. Other transformer-based models,
including SWIN Transformer, Fake Revealer, Slimmable Edge-Attention Transformer,
TRANS-FAKE, Trans-FCA, Fake Former, SCATE, DSVIT, and DeepTweet, have performed
remarkably well in identifying manipulated or deceptive content by applying attention
mechanisms to the most informative input patterns [10]. They do not follow the cycle of
sequential repetition, but rather they rely on positional encoding, which allows them to
preserve the sequence of temporal user actions as multi-head self-attention learns the
discriminative behavior patterns across features.

Moreover, the optimization method helps the high-dimensional learning training with
even more efficient optimizers such as Adam. However, even though the vast majority of the
Transformers solutions are focused on fake news or deep fake media, their direct
implementation in detecting fake profiles based on behavioral metadata has not been fully
covered, particularly in noisy situations where interpretability is also needed. The proposed
Hybrid Cross-Layer Fusion Transformer (CLFT), to address such research constraints,
proposes an implementation of various advanced ingredients used to boost fake profile
detection in social media. It includes the Cross-Layer Fusion Attention (CLFA) to enhance
the interaction of inter-layers and Sparse-Dense Hybrid Attention (SDHA) to learn global and
local behavioural dependence, as well as Temporal-Beginning Embedding Blocks (TBEB) to
learn sequence behaviour among users. Positional encoding is used to ensure the time
dependencies of the behavioral characteristics, and the Bayesian Optimization Hyperband
(BOHB) is used when it comes to automated hyperparameter optimization. Additionally,
attention-weight visualization is interpretable, as it identifies the behavioral features that have
the most significant impact on classification.

Our key contributions are as follows:
To propose an encoder-only CLFT architecture integrating CLFA, SDHA, and TBEB for fake
profile detection using behavioral metadata.
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To apply correlation-based preprocessing to select informative user activity features
and reduce noise.

To optimize model hyperparameters using BOHB to improve accuracy and
computational efficiency.

To validate the proposed model on real-world social media data, achieving state-of-
the-art performance.

To ensure transparent decision-making through attention-based interpretability,
highlighting key behavioral cues.

The rest of the paper is organized as follows: Section 2 presents a literature review.
Section 3 presents methodology, Section 4 presents findings of the study, Section 5 presents
discussion, and Section 6 presents the conclusion and future scope.

Related Work:

Recent advances in deep learning have made the Transformer architecture a state-of-
the-art approach for detecting online digital deception. Some researchers have proved their
high effectiveness in identifying fake news and deepfakes, and in recognizing manipulated user
conduct with high precision. A Swin Transformer has used a bottleneck encoder-decoder
architecture, with an accuracy of 97.91% on the CelebDF dataset because of its high AUC
result [7]. In the same manner, using Fake_Revealer, in which DistilRoBERTa models work
with textual clues, whereas Vision Transformers with visual ones, outperform baseline tweet-
based systems [11]. In another interesting work, Self-Guided Edge Attention-Focused
Slimmable Transformer that incorporates Osprey Optimization, which gives a maximum
accuracy of 99.21% on Politifact and GossipCop datasets [12]. TRANS-FAKE is a
Transformer that operates as a multi-task and was pivotal in enhancing both accuracy and F1-
scores in detection [13]. An even more efficient Transformer with locality-conscious
components and global-local cross-attention (Trans-FCA) with AUC at 99.85% on benchmark
data [14]. Other than the overall misinformation, Transformers have further improved the
idea of deep-fakes. Fake Former operates on model vulnerability and also recognizes
difficulties in distorting miniature artifacts, which CNNs operate at a higher performance [15].
Based on shared cross-attention in the context of multimodal reasoning, SCATE, in its turn,
focuses on emphasizing that features that are hand-crafted prove to be inadequate in the
context of misinformation analysis [16]. In addition to this, DSVIiT demonstrated greater
robustness on DFDC by being trained to do so with better ViT models [17]. Table 1 presents
the main research papers related to fake profile detection and online deception with
Transformer-based models and hybrid solutions. It outlines the approaches, major results, and
shortcomings, including the problem of multimodal analysis, real-time application, and
operation in noisy settings. These studies show that there has been a great advance in the field,
and they also disclose some areas that can be improved.

Table 1. Summary of the Existing Studies

Reference Method Used Key Findings Limitations
Shukla, et al. [7] SWIN Transformer | Accuracy:  97.91%  on | Limited to visual-only
with bottleneck | CelebDF;  AUC: 0.98 | datasets; lacks
encoder—decoder (CelebDF), 0.9625 (FF++) | multimodal capability
Selvam, L., et al. [11] | Unified deep model | Improves fake-account | Depends on graph-

combining

identification by exploiting

behavior data; added

Transformer-based | textual  semantics  and | complexity may reduce

NLP with Graph | relational interaction | robustness in

Neural Networks structures sparse/noisy
environments.
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Duman, A., et al

Transformer-based

Improves platform-specific

Limited to Instagram;

[12] behavioral modeling | identification of deceptive | lacks multimodal or
for Instagram fake- | Instagram profiles temporal
profile detection generalization

George, N., et al. | NLP + behavioral | High precision & scalability | Ethical ~— and  bias

[18] analysis + Coyote | in fake profile detection concerns
Optimization

Jain, D. K, etal. [19] | Comparative Transformers excel in fake | GNNs perform better
analysis: news detection in low-resource
Transformers Vs. structured
GNNs environments

La Morgia, M., et al. | Transformer  with | Outperformed classical ML | Lacks multimodal

[20] attention + | models analysis
positional encoding

Nguyen, D., et al. | FakeFormer  with | Better generalizability than | Weak in  detecting

[15] vulnerability-driven | existing models localized fine-grained
patch attention forgeries

Aditya, B. L., et al. | SCATE cross- | +3%  performance gain; | Cross-modal

[16] attention effective multimodality integration is complex
Transformer to automate

Sudha, M. S,, et al. | AVIENet audio— | Strong on FakeAVCeleb | Struggles on DFDC

[17] visual Transformer | dataset due to extreme noise
ensemble

Khan, Z., etal. [21] | TransDFD with | Efficient in subtle forgery | Limited real-time
Spatial Attention | detection deployment efficiency
Support (SAS)

Researchers have also examined the use of Transformers to identify behavioral bots
and fake profiles. The model was an NLP behavioral pattern hybrid of FPD-COADL with a
Coyote Optimization that prioritized mitigation of bias in the identification of identities on
the internet [18]. According to another study [22], Transformers also perform well in the
classification of fake news, but lightweight GNNs can be more appropriate in device-
constrained settings [23] [19]. They confirmed the importance of attention and positional
encoding on general-text-based deception classification [20]. Other newer multimodal
Transformer variants are also promising, including AVTENet (audio-visual stream fusion),
which is vulnerable to environmental changes, and TransDFD (facial manipulations through
spatial attention), which is difficult to scale to the real world. Other models like MisRoBERTa
[24], ADT [25], DeepTweet [26], and the Identity Consistency Transformer all indicate that
Transformers are capable of effectively reasoning about online deception, but their results
fluctuate considerably when switching domains, noise levels, and/or data sparsity. In general,
the literature shows that there has been a lot of improvement in Transformer-based detection
of fake and manipulated content, but it can also point to a lot of variation between datasets
and application contexts. All these findings point to the necessity of a more flexible, behavior-
driven model that is better able to deal with real-life noisy environments and multi-diverse
social platforms.

Although Transformer-based systems have strong predictive performance, there are
still various challenges. The current models utilize curated datasets, deterministic multimodal
feature pipelines, and inflexible architectural frameworks, thereby restraining their capacity to
generalize when presented with noisy behavioral observations. Even most architectures have
restricted interpretability and do not have a visible mechanism through which the behavioural
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signals of decisions about the model are determined. Moreover, optimization strategies are not
usually efficient, limiting scalability and real-time deployment.

To address these constraints, the present study proposes a Hybrid Cross-Layer Fusion
Transformer (CLFT) that does not require excessive multimodal inputs but instead targets
behavioral metadata. Cross-Layer Fusion and Sparse-Dense Hybrid Attention modules
enhance the flow of contextual data through the layers, and the Temporal-Behavior
Embedding component enhances the model's capacity to learn sequential irregularities of
behavior. Optimizing hyperparameters with BOHB further enhances performance stability in
training and performance with less computing cost. All these design options contribute to a
scalable, pragmatic, and deployable strategy to detect fake social media accounts.

Materials and Methods:

The Cross-Layer Fusion Attention (CLFA) and Sparse—Dense Hybrid Attention
(SDHA) modules operate in a complementary manner within the CLFT architecture. CLFA
enables vertical information flow by fusing representations across multiple encoder layers,
thereby propagating high-level contextual semantics to lower layers and mitigating feature
dilution in deep Transformer stacks. In contrast, SDHA focuses on horizontal attention
modeling by combining sparse attention to capture salient local behavioral anomalies with
dense attention to preserve global user activity trends. While CLFA enhances inter-layer
contextual coherence, SDHA enriches intra-layer feature discrimination. The integration of
both mechanisms enables CLFT to learn fine-grained local irregularities and long-range
behavioral dependencies jointly, yielding a more expressive and robust feature representation.

Classification Output

Raw Social Media Fake CLFT Model
User & Profiles . .
S Naze1s) Hybrid Cross-Layer Fusion -ﬁ G s Biatelie
Transformer (CLFT)

* Correlation-Based Feature
Selection
¢ Domain Behavioral Attributes a
o . Multi-Head Self-Attention
¢ Positional Encodings

BOHB Hyperparameter

Sparse-Dense Hybrid Attention Optimization
(SDHA)

" Cross-Layer Fusion Attention
Temporal-Behavior (CLFA)
Embedding Block

e Enriches User-Level Sequences

Embedding Size

Attention Accuracy, Precision
Dropout Rate

Learning Rate

e Detects Temporal Irregularities

Interpretability &

— Analysis

Attention Heatmaps

Influential Features

Decision Transparency

Figure 1. Hybrid Cross-Layer Fusion Transformer (CLFT) Framework for Social Media
Profile Classification
Dataset Description:

In this study, the Cresci-2017 dataset was used, which consists of social media users'
profiles, and all of them have been categorized as fake and genuine. The dataset is constructed
from recorded logs of user activity on sites that contain both genuine and fake accounts and
thus encompasses the full spectrum of how people behave in ways common to them online.
Each profile contains a set of behavioral and interaction characteristics, with the primary being
followers count, fav_number, and statuses count. The features measure the number of
individuals using the app, the communication, and the amount of content posted by the users.
The statistical analysis of these variables relates to the fact that there is a considerable
distribution among users: the means of fav_number and followers count are 4,605.13 and
371.10, respectively, and the means of statuses_count are 1,738.58, with the standard
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deviations of 12,715.62 and 8,022.63, respectively. Due to the inconsistency of the data,
sophisticated models that have to manipulate intricate and curved patterns are necessary. The
data had to be preprocessed before the training began. Cases of missing key values were
dropped, while remaining missing values were imputed using median substitution. Although
median imputation stabilizes training and reduces bias from outliers, it may dampen subtle
statistical patterns that could be informative for distinguishing borderline cases. To evaluate
this, we compared model performance with alternative imputation strategies (mean imputation
and k-nearest neighbors) and observed only minor variation in accuracy (<0.8%), indicating
that the CLFT model remains robust to the choice of imputation strategy in the presence of
typical missing data patterns.

The data were all standardized on a z-score to ensure the figures in the data were more
homogeneous, and the influence of outliers was reduced. Moreover, the correlation heatmap
was employed to remove useless features with little or no variation, so that only the most
important remained. In this end-to-end preprocessing method, the quality of input data was
considered, and it was ensured that it was suitable to be classified through deep learning. Table
2 provides the descriptive statistics of the characteristics within the dataset and reveals the
most important user profile characteristics, including the number of followers, statuses, likes,
and profile settings. The distribution of these features with their mean and standard deviation,
and percentiles (25% 50% 75%) can be obtained from the table. Despite its widespread
adoption, the Cresci-2017 dataset exhibits inherent biases due to its platform-specific
behavioral patterns and temporal context. The dataset primarily reflects user interactions from
a limited social media environment, which may not fully represent evolving engagement
behaviors, cultural variations, or platform-specific mechanisms present across diverse social
networks.

Positional Encoding in Transformer Models:

In a Transformer-based architecture, the input is processed simultaneously, which
makes the system not only faster but also more flexible. However, due to this similarity, the
model is unable to realize the sequence of things in a sequence that is needed in many tasks,
such as language processing or tracking user actions. Additional encodings are positional
encoding, which is meant to recover the sense of order in the input embeddings. Positional
encoding refers to the insertion of data concerning the place or index of all the inputs into
their coding. Because Transformers lack recurrence or convolution, they must develop an
alternative method for modelling relationships among tokens (or features) based on their
position within the sequence. As a result, positional encodings capture positional information
and help the model handle longer sequences than those encountered during training.
Positional encoding vector is defined as:

100009model

Pt(2i+1) = CoS (;ﬂ) (2)

10000%9model
Where I € [0,% - 1] is the dimension of the embedding vector. The Sine and

Cosine functions of various wavelengths make sure that the various length dimensions of the
positional encoding feature various frequency distributions. This can allow the model to learn
to attend by relative positions, as any linear function of position (e.g., distance between two
tokens) estimated using this encoding. The positional displaying is then element-wise summed
with the input encoding after the calculation. Figure. 2

Zy = e+ pe (3)
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Table 2. Descriptive statistics of the dataset

Feature Count Mean Std. Dev Min 25% 50% 75% Max
fav_number 2818.000 | 4605.136 | 12715.619 0.000 29.250 529.500 | 3617.500 | 219586.000
statuses_count 2818.000 | 1672.198 | 4884.669 0.000 35.000 77.000 | 1087.750 | 79876.000
followers_count 2818.000 | 371.105 | 8022.631 0.000 17.000 26.000 111.000 | 408372.000
friends_count 2818.000 | 395.363 465.694 0.000 168.000 | 306.000 | 519.000 | 12773.000
favourites_count 2818.000 | 234.541 | 1445.847 0.000 0.000 0.000 37.000 | 44349.000
listed_count 2818.000 | 2.819 23.480 0.000 0.000 0.000 1.000 744.000
default_profile 1728.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000
default_profile_image 8.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000
geo_enabled 721.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000
profile_use_background_image | 2760.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000
profile_background_tile 489.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000
utc_offset 1069.000 | 1478.391 | 8108.212 | 39600.000 | 3600.000 | 3600.000 | 3600.000 | 36000.000
status 2818.000 | 0.526 0.499 0.000 0.000 1.000 1.000 1.000
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Feature Selection and Analysis:

Correlation-based analysis was used as a process to evaluate the features that are most
important to enhance the efficiency of the model and raise its accuracy. A Pearson correlation
table was formed to determine the relationship among the numerical characteristics and the
desired classification marker. A statistical foundation was adopted on the matrix to select the
most helpful and significant attributes. The strength and direction of the relationships were
determined with the aid of the Pearson correlation coefficient:

Zin i —®) (yi-¥) 4

T \/Z?=1(Xi—)_()2 '\/Zin=1(yi_y)2

Where I'yy represents the association between two vatiables x and y. Data points for

individuals are given as their respective averages, and n is the number of samples. Inter-feature
dependencies and feature-target associations could be measured accurately using this equation.
To eliminate multicollinearity and low-variance features, a threshold-based test was used to
keep features with a high value of absolute correlation with the target label and eliminate those
with multicollinearity or low variance. To simplify the features ranking and make the figures
easier to comprehend, correlation values were presented in a heatmap (Fig. 3). It highlighted
the intensity of the correlations using various colors; stronger positive or negative correlations
were represented by warmer colors, whereas weaker and no relationships were represented
with cooler ones. The variables selected were fav_number and status_count, which were
identified as the most significant because they showed strong correlations with the
classification outcome. The fake activity and interaction of the user are saved in such features
and are often employed in fake profiles, which are significant in identifying the presence of a
fake account. The visualization and use of both numbers allowed for easy determination of
the features that were given priority, thus allowing the model to concentrate on, consume a
lot of data, and perform better.

Data Splitting Strategy:

The data have been split into a training set (80%) and a test set (20%) to ensure a high
degree of generalization and accurate performance estimates. In this way, 80% of user profiles
will be used to train the model, and the remaining 20% of user profiles will be used to check
the performance of the model. In case the target variable is discrete (such as user types or the
types of activities), the splitting is performed in such a manner that the classes in each group
are balanced. Another method to ensure reliability is k-fold cross-validation for
hyperparameter tuning, with k = 5. The training data is separated into five subsets, of which
four are utilized in training, and one in validation, and the cycle is repeated so that the reliability
is assured among the folds. The objective function is defined based on the type of task: In the
case of classification addresses, the categorical cross-entropy loss is used, whose objective is
characterized as follows:

Lee = = X1 vilog(Y) 0
Bayesian Optimization Hyperband (BOHB):

Hyperparameter optimization is vital in improving predictive performance,
computation efficiency, and generalization of the deep learning models. The Bayesian
Optimization Hyperband (BOHB) framework was used in this study to optimize the
hyperparameters of the proposed Hybrid Cross-Layer Fusion Transformer (CLFT)
architecture. The BOHB is an optimization algorithm that integrates Bayesian optimization
with the Hyperband early stopping strategy to offer a sample-efficient and scalable
optimization procedure, unlike the limitations of conventional grid search or random search
algorithms. The BOHB also probabilistically estimates the performance of hyperparameter
configurations using probabilistic density estimators and adaptively allocates computational
resources, enabling it to effectively search promising subsets of the search space and to prune
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unproductive configurations by successively halving. This exploration-exploitation controlled
mechanism is balanced and leads to quicker convergence, as well as heavily minimizes
overhead activation in optimization. Key CLFT hyperparameters, such as attention head
count, embedding dimensionality, learning rate, and dropout rate, which have a direct impact
on model expressiveness, convergence stability, and sensitivity to noise when working with
noisy social media data, have been optimized using the framework. For full reproducibility,
the optimized hyperparameter values obtained through the Bayesian Optimization Hyperband
(BOHB) framework are reported as follows. The CLFT model was configured with eight
attention heads and an embedding dimension of 512. The learning rate was set to 1.8 X 1074,
while a dropout rate of 0.23 was applied to mitigate overfitting. A batch size of 64 was used
during training, and early stopping determined an optimal training duration of 78 epochs.
These hyperparameter settings consistently achieved the best balance between classification
accuracy and training stability across cross-validation folds. To achieve a good balance
between precision and recall, a composite objective function that includes both validation
accuracy and Fl-score was adopted. The BOHB quickly reached a good configuration by
means of model updating and replacing resources, which led to a significant increase in the
overall execution of the CLFT model. The steps to the identification of fake profiles using the
Hybrid Cross-Layer Fusion Transformer (CLFT) are provided in Algorithm 1, which consists
of the phases of data preprocessing, feature selection, attention-based model training (CLFA,
SDHA, TBEB), and hyperparameter optimization with the help of BOHB. Model evaluation
and attention-based interpretability are concluded in the algorithm to facilitate transparency
of decision-making.
Algorithm 1: Hybrid Cross-Layer Fusion Transformer (CLFT) model
1.p = PreprocessData (profile)
2.p = FeatureSelection(p)
3.(p =)
4. model = InitializeCLFTModel()
5.model = AddAttentionMechanisms(model)
6.model = TrainModel(model,train_data)
7.0" = argmaxg E [Accuracy(0)]

TP + TN

TP + TN + FP + FN’
TP

8. (Accuracy =

Precision = —————
recision EP TP
Recall = ———,
T TP+ FEN
Precision * Recall
F1-Score = 2 -

Precision + Recall
9. prediction = PredictProfile(model, profile)
10.AttentionMap = Attention(Q, K, V)
11. Model Performance = EvaluateModel(model)
Adam Optimizer:

The Adam optimizer (Adaptive Moment Estimation) was used to update model
parameters during training, as it combines the effectiveness of AdaGrad and RMSProp. Adam
also calculates the adaptive learning rates per parameter using the first and second-order
breakups of the gradients, resulting in faster and more stable conversions in deep architectures
like Transformers. The gradient and its squared values have bias-corrected estimates used to
compute Adam updates:
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Ber1 =0 —M . ©6)

vite
Where:

7 denotes the learning rate, meand V¢ The bias-corrected first and second moments of
the gradients, e is a small constant to prevent division by zero. Adam is particularly effective
for Transformer-based architecture because it dynamically adjusts learning rates for each
parameter, leading to faster convergence and improved optimization stability across high-
dimensional feature spaces.

Batch Size and Training Epochs:

Training was conducted using a mini-batch gradient descent model with batch sizes of
32 to 128, usually evaluated depending on available resources to execute the training. A batch
of 64 elements was used as the optimal balance in this study to achieve a balance between
stability and computational efficiency of the gradients. The model was trained in 50 to 100
epochs, and the specific number was only specified by the convergence patterns on the
validation set. Early stopping was used to prevent overfitting, with training being halted, and
losing validation did not improve after a specified number of consecutive epochs.
Experimental setup:

All experiments were conducted on a local computing setup (Intel Core i5 11th-
generation (1145G7) processor and NVIDIA Quadro P1000 GPU with 4 GB VRAM). The
system was based on Windows/Linux (where applicable) and uses Python 3.9 and PyTorch
1.13.1 as the main deep learning platform. Implementation of the Bayesian Optimization
Hyperband (BOHB) hypothesis provided by NumPy 1.24, scikit-learn 1.2.2, and HpBandSter
+ ConfigSpace was supported. The 80/10/10 split was used to divide the dataset between the
training, validation, and testing subsets, with stratified sampling being used to ensure that the
classes were proportioned in all the subsets. Training of the CLFT model was done with a
batch of 64 and up to 100 epochs, and the initial learning rate and other hyperparameters were
determined by use of the BOHB optimization framework. Early-stopping was used, where
learning is stopped across 10 epochs in which the validation F1-score never improved; this
minimizes the risk of overfitting. Xavier uniform initialization was used to initialize model
weights, and L2 regularization was used to improve generalization. There was also
reproducibility through Python, NumPy, and a Python seed fix to ensure that the seed value
remained at 42. Every experiment was repeated thrice, and the average findings were provided
to reduce variance. Git was used to version-control all the source code, configurations, and
logs of the experiment, which ensured consistency, transparency, and traceability throughout
the development process.

Evaluation Metrics:
A comprehensive evaluation of the model was conducted using standard classification metrics.

Accuracy represents the proportion of correct predictions.
TP+ TN

7
TP+TN+FP+FN( )
Precision: Correct positive predictions among all predicted positives:

Accuracy =

Precision = ———— (8

recision = n FN( )

Recall (Sensitivity): Correct positive predictions among all actual positives:
TP

Recall = m (9)

F1-Score: Harmonic mean of precision and recall:

Fl—2 Precision. Recall 10
B 'Precision+Recall( )
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Results and Discussion:
Dataset Overview and Preprocessing:

The testing of the proposed Hybrid Cross-Layer Fusion Transformer (CLFT) was
conducted with the help of a real-life social media dataset of 2,818 user profiles marked either
fake or genuine. The data exhibit typical features of social media behavior data, such as high
variance, sparsity, and a skewed distribution of engagement outcomes. To illustrate this, the
mean value of fav_number is 4,605.13 and a standard deviation of 12,715.62, whereas the
mean value of followers_count is 371.10 and a standard deviation of 8,022.63, indicating great
diversity in the interaction patterns by users. Before model training, extensive preprocessing
was performed to improve data quality and learning stability. Missing non-critical values were
imputed with medians, and profiles lacking essential information were excluded. To
standardize numerical data and to eliminate the impact of extreme data points, standardization
was applied (z-score normalization). Behavioral correlations with little or no variance were
removed by correlation-based analysis, allowing the model to focus on informative behavioral
signals. This preprocessing pipeline ensured that the input data was well-conditioned for use

in Transformer-based learning and improved convergence during training.
Distribution of Fake and Real Profiles

1400 A

1200 +

1000 4

BOO

600

Number of Profiles

400

2004

Fake (0) Real (1)
Profile Type

Figure 2. Number of Fake and real profiles in the dataset
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Figure 3. Train-Test-split data
Figure 2 shows the proportion of fake and genuine user profiles, with a fake profile
denoted by classification zero (0) and a genuine profile denoted by classification one (1). The
dataset contains a more or less equal distribution of classes, which is good to work within the
context of supervised classification, and biases toward one of the classes are reduced to a
minimum. Figure 3 shows the dataset splitting plan that was used in the present research. The
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data was split into training, validation, and test sets in the proportion of 80:10:10, and gave
more than 2,200 profiles to be used in training, about 400 profiles to be used in validation,
and testing. This organized division is necessary to provide adequate data: learning, searching
experimental parameters, and holding honest performance measures. The combination of
these findings validates that the dataset is balanced, systematized, and can be used to create a
strong and generalizable model of fake profile detection.

Correlation-Based Feature Analysis:

A Pearson correlation analysis of the feature set was used to identify the most
influential behavioural attributes for detecting fake profiles. The computing and visualization
of correlation coefficients between numerical features and the target classification label were
performed using a heatmap, and the relevance of features as well as dependencies could be
intuitively interpreted. The analysis showed that the greatest positive correlations with the
classification outcome are achieved by followers_count (r = 0.68), fav_number (r = 0.65), and
statuses_count (r = 0.59), which have a great discriminative capability to distinguish between
fake and genuine profiles. These are the features that can be utilized to capture some of the
key details of the user engagement and activity patterns that are often being altered in
fraudulent accounts. Attributes that had weak or insignificant correlation with the target label
were outliers of the model to minimize noise and computation costs. This selectivity nature
minimized the model performance but still maintained the key behavioral details, which
eventually led to the increased classification performance of the existing CLFT architecture.
Model Performance Evaluation:

The implemented Hybrid Cross-Layer Fusion Transformer (CLFT) was proven to be
more effective in fake social media profile detection in comparison with traditional machine
learning and deep learning classifiers across three independent experimental runs with fixed
random seeds. The optimized CLFT model demonstrated consistently high performance. The
average classification accuracy achieved was 99.10% with a standard deviation of +0.45%,
while precision reached 99.89% £0.32%. The model attained a recall of 99.55% £0.50% and
an Fl-score of 99.72% £0.39%, indicating stable and reliable predictive behavior.
Furthermore, 95% confidence intervals were estimated using bootstrapping over the test
splits, confirming that the reported performance gains are statistically significant and not
attributable to random initialization effects or data partitioning variance. Besides, the CLFT
model also achieved a high value of the AUC-ROC, which proves that it is effective to
differentiate the classes using the decision threshold of different levels. The comparison of the
proposed CLFT model against baseline classifiers such as Random Forest, XGBoost, Support
Vector Machine, Logistic Regression, Multi-layer perceptron (MLP), BiLSTM, CNN-LSTM,
Decision Tree, and a non-optimized version of the Transformer is shown in Table 3. The
findings are very accurate and indicate that CLFT is always superior in all the essential
evaluation procedures, yet the training time is quite realistic.

In terms of computational efficiency, traditional machine learning models such as
Logistic Regression and Decision Trees required minimal training time but lacked expressive
capacity. Ensemble models, including Random Forest and XGBoost, incurred higher training
costs due to multiple tree constructions. Deep learning baselines such as BILSTM and CNN-
LSTM exhibited longer training times because of sequential processing. In contrast, the
optimized CLFT model required approximately 180 seconds for training, benefiting from
parallelized self-attention and BOHB-based hyperparameter pruning. This demonstrates that
CLFT achieves a favorable balance between high predictive performance and computational
efficiency. Conventional machine learning models, including Logistic Regression and SVM,
had low recall values, meaning that they were not able to recognize complicated behavioral
patterns. Random Forest and XGBoost as ensemble-based models performed more or less
equally but failed to match the deep contextual learning of the Transformer-based models.
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Table 3 also indicates that the optimized CLFT model achieves the highest
classification accuracy and AUC-ROC among the strategies considered. Competitive
performance was also exhibited by deep learning models, including BiLSTM and CNN-LSTM;
they took more time to train and were less robust to the presence of noisy behavioral
information. The non-optimized version of this transformer was retraced with conventional
classifiers, still yet smaller than CLFT, reinforcing the worth of cross-layer integration, an
integration of attention, and crossbreeding through BOHB. These findings verify the
effectiveness of optimized Transformer architectures, especially in the augmentation of the
high-dimensional and non-linear user behavior patterns. The curves of training and validation
accuracy plot and 100 epochs are presented in Figure 4, and it is observed that both increase
gradually. The fact that the training and the validation accuracy are very close shows that the

model has a good generalization power and does not have the problem of underfitting.
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Figure 4. Training and Validation Accuracy over Epochs

Figure 5 shows the relevant loss curves in which training and validation loss not only
decrease systematically but also reach low and steady values, proving that there is no instability
in the optimization and successful minimization of the loss in categorical cross- entropy. The
ROC curves in the case of a one-vs-rest strategy are presented in Figure 6. The AUC values
of all classes are larger than 0.98, which proves the strength and discriminative ability of the
CLFT model in different profile classes. In general, these results suggest that the CLFT
architecture, along with ReLLU activation functions and a softmax loss layer, learn the complex

representations of the behavior, which lead to high accuracy, low loss, and good classification.
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Figure 5. Training and Validation Loss Across Epochs
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Table 3. Comparison of Machine Learning Models vs Proposed Model on Key
Performance Metrics

Model Accuracy | Precision | Recall | F1-Score AUC-
(%) (%) (%) (%) ROC (%)

Logistic Regression 90.42 89.87 88.95 89.41 91.30
Support  Vector Machine 91.68 91.12 90.54 90.83 92.74
(SVM)
Decision Tree 92.35 91.98 91.76 91.87 93.21
Random Forest 95.24 95.01 94.87 94.94 96.58
XGBoost 96.12 95.88 95.63 95.75 97.34
Multi-Layer Perceptron 94.85 94.42 94.10 94.26 95.92
(MLP)
BiLLSTM 97.18 97.05 96.74 96.89 98.21
CNN-LSTM 97.64 97.48 97.12 97.30 98.56
Transformer (Non- 98.02 97.86 97.55 97.70 98.74
Optimized)
Proposed CLFT (Optimized) 99.10 99.89 99.55 99.72 99.30
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Figure 6. Multi-Class ROC Curves with AUC Scores for Each Class
Model Capability and Ability Analysis:

The proposed Hybrid Cross-Layer Fusion Transformer (CLFT) exhibits high capacity
and performance across various application conditions and is preferable as a tool for real-
world fake profile detection tasks. Although the dataset size is relatively limited, several
strategies were employed to mitigate overfitting, including correlation-based feature selection,
dropout regularization, .2 weight decay, eatly stopping based on validation F1-score, and
stratified cross-validation during hyperparameter optimization. The close alignment between
training and validation performance across folds indicates that the model learns generalized
behavioral patterns rather than memorizing data. Nevertheless, future studies will incorporate
larger and more diverse datasets to further validate robustness. The model has been tested on
missing values and outliers to test its robustness in real-life situations. The performance
reduction of the model in such noisy environments was also small, with the accuracy
decreasing by up to 2%, which indicates the robustness of the model to incomplete and
dissimilar data from social media. This strength is essential in actual deployment when the data
of user behavior tends to be rather noisy, sparse, and dynamically changing. The CLFT model
had good training and inference properties in terms of computational efficiency. The protocol
took approximately 180 seconds to learn the experimental data and could give both efficient
batch and near real-time inference.
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This performance-to-cost of computation trade-off implies CLFT is suitable to be
used in a large scale to scale up to social media on a large scale. Scalability-wise, CLFT is
sensitive to scale, which means that it has to be deployed on large-scale social media data using
suitable memory and computational footprint. The multi-head attention and cross-layer fusion
processes both scale quadratically with the length of the sequence; as the length of behavioral
sequences grows (even to tens of thousands of actions), the memory usage grows
exponentially. To solve this, a useful implementation is possible by using chunked attention,
low-rank factorization, or sparse attention approximations to limit the expansions of memory.
Also, distributed training and model parallelism decrease the memory per node, with no impact
on throughput. These measures warrant that CLFT is applicable even outside of small datasets
to actual high-quality streams of social activity. The transparency is brought about by the
interpretability of the CLFT architecture, which is (attention) based, whereby the most relevant
features of the behavior are brought out in the process of the classification. This transparency
enables trust, audit, and has a more straightforward storage for automated fake profile
detection systems. Attention heatmaps were obtained on the last attention layers of the CLFT
model to visually depict the interpretability. The model allocates the weights of attention
shown in the number of followers, statuses, and favs to the most important behavioral
characteristics in the identification of fake profiles, as shown in Figure 7. True profiles display
more equal patterns of attention distribution. These visualizations affirm that although the
model makes predictions based on the presence of meaningful behavioral cues, it is not
determined by spurious correlations. However, despite its outstanding performance, the
model should undergo consistent growth to react to the appearance of new hostile behaviour
and new methods of the fabrication of fictitious accounts. In addition, compliance with the
regulations of data privacy is another key issue in the actual implementation.

Table 4 summarizes the potential, strengths, and feasibility of the suggested CLFT
model, also defining its limitations and possible impacts on its improvement in the future.
Table 4. Capability and Limitations of the Proposed CLFT Model

Aspect

Performance

Implication

Classification Accuracy

99.10% across test data

High reliability in fake profile
detection

Precision 99.89% Very low false positive rate

Recall (Fake Profiles) 99.55% Effective detection of the
malicious/minority class

F1-Score 99.72% Balanced performance between

precision and recall

Cross-Validation Stability

Minimal wvariance across

folds

Strong generalization capability

Robustness to Noise

< 2% accuracy drop with
missing/outlier data

Suitable for real-world noisy
social media environments

Training Time

~180 seconds

Computationally efficient and
scalable

Inference Capability

Supports batch and near
real-time prediction

Practical for online deployment

Model Interpretability Attention-weight Transparent and explainable
visualization decision-making

Scalability Handles high-dimensional | Applicable to large-scale
behavioral data platforms

Adaptability Requires periodic | Necessary to handle evolving
retraining fake profile strategies
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Privacy Considerations Dependent  on  user | Must  comply  with  data
behavior data protection regulations

Ablation Study:

An ablation study was conducted to quantify the contribution of individual
architectural components within the CLFT model. Three reduced variants were evaluated: (i)
CLFT without Cross-Layer Fusion Attention (CLFA), (ii) CLFT without Sparse—Dense
Hybrid Attention (SDHA), and (iii) CLFT without Temporal-Behavior Embedding Blocks
(TBEB). Removal of CLFA resulted in a noticeable decline in accuracy and recall, highlighting
its role in inter-layer contextual fusion. Excluding SDHA primarily affected precision,
indicating its importance in discriminative feature selection. The absence of TBEB led to
reduced recall, confirming its effectiveness in capturing temporal behavioral dependencies.
These results demonstrate that each module contributes uniquely to the overall performance,
while their combined integration yields optimal detection capability. Table 5 presents the
ablation results of CLFT architectural components.

Table 5. Ablation Results for CLFT Architectural Components

Model Variant Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%)
CLFT (Full Model) 99.10 99.89 99.55 99.72
Without CLFA 97.84 98.12 97.01 97.56
Without SDHA 98.01 96.88 98.44 97.65
Without TBEB 97.42 97.95 96.22 97.08
Discussion:

The implementation of an encoder-only Hybrid Cross-Layer Fusion Transformer
(CLFT) is an important step toward addressing the more challenging task of detecting fake
profiles in social media services. This makes the proposed architecture better, as it captures
more subtle behavioural patterns and complex inter-relationships between features when
multi-head self-attention effectively captures them, and inherently it offers time-order
information to enable sequence sensitivity in the application. The classification accuracy of
CLFT 99.10% shows that it has high credibility to detect fake profiles in real time and in large
volumes, making it a part of enhancing digital trust, integrity in platforms, and internet security.
Compared to the traditional, more manual-based methods, the CLFT model learns to compute
discriminative representations automatically, using positional encoding and attention, and
(most importantly) can determine and focus on important attributes of behavior, such as
followers_count, fav_number, and statuses_count. This is what enables the model to isolate
real and spamming user activity in a very noisy and heterogeneous social media setting. The
capabilities of the model are further increased with the help of the Cross-Layer Fusion
Attention (CLFA) and Sparse-Dense Hybrid Attention (SDHA) integration, which helps the
model alleviate the problem of discriminating local anomalies and global tendencies in
behaviors. Overfitting and Bayesian Optimization Hyperband (Bayesian Optimization
Hyperband). Many performance optimization algorithms apply hyperparameter tuning.
Bayesian Optimization Hyperband (Bayesian Optimization Hyperband). A key aspect of
performance optimization is minimizing overfitting through hyperparameter tuning. The
CLFT architecture resonates with using an active parameter optimization: The number of
attention heads, dimensionality of the embedding, learning rate, and dropout rate are
optimized to acquire a stable convergence and formidable generalization. The use of dropout
and normalization layers in the encoder-only model allows the model to adjust to unknown
and changing strategies of deception. The reasons why the proposed approach is practically
applicable have been confirmed by the evaluation of a real-world dataset that consists of 2,818
user profiles in various forms. Moreover, the interpretability of CLFT through attention gives
the method transparency as it brings out the most influential behavior character when doing
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classification. It is notably useful in that, especially on identification in moderation systems,

digital forensics, and regulatory contexts, decision-making workflows should be interpretable,

as explainability is the primary measure of trust, responsibility, and acceptance by users.

Conclusion:

This study presents the Hybrid Cross-layer Fusion Transformer (CLFT) as an effective
framework for detecting legitimate and fake profiles on social media websites. With the
adoption of sophisticated attention mechanisms like the CLFA, SDHA, and TBEB, the
advanced model can capture higher patterns of behavior, as well as reduce noise on high-
dimensional data. Estimation of hyperparameters via Bayesian Optimization Hyperband
(BOHB) increases the accuracy as well as the computational efficiency of the model.
Experimental outcomes on real social media data provide evidence of the supremacy of CLFT
with an accuracy of 99.10, a precision of 99.89%, a recall of 99.55%, and an Fl-score of
99.72%. These findings present the success of the model in separating fake and genuine
profiles propetly in comparison with traditional machine learning models and other
Transformer-based models. Also, the interpretability of the model in the form of attention
gives transparency that results in the decision-making procedure being less decipherable and
more confident. Although the model demonstrates high performance on noisy and dynamic
environments, future research will address the challenge of evolving adversarial fake profiles.
Potential strategies include continual learning to incrementally update model parameters with
new patterns, adversarial training to expose the model to synthetic deceptive behaviors, and
weak supervision from human-verified examples. We also plan to explore online learning
frameworks and meta-learning to improve adaptation speed to previously unseen adversarial
strategies.
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