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he rapid increase of fake profiles on social media platforms has raised significant 
concerns regarding online authenticity, user trust, and digital security. Despite various 
efforts to combat this issue, existing detection methods often fall short due to the 

evolving nature of fake profiles and the noisy, high-dimensional data involved. This study 
proposes an optimized Hybrid Cross-Layer Fusion Transformer (CLFT) for detecting fake 
profiles by analyzing behavioral metadata. The CLFT architecture integrates multi-stage 
attention mechanisms, including Cross-Layer Fusion Attention (CLFA), Sparse–Dense 
Hybrid Attention (SDHA), and Temporal-Behavior Embedding Blocks (TBEB), to effectively 
capture both short- and long-term dependencies in user activities. The model hyperparameters 
were optimized using the Bayesian Optimization Hyperband (BOHB) framework. 
Experimental results on a real-world social media dataset show that the proposed model 
outperforms traditional machine learning techniques and previous Transformer-based models, 
achieving an accuracy of 99.10%, precision of 99.89%, recall of 99.55%, and an F1-score of 
99.72%. Furthermore, the attention mechanisms enhance interpretability by emphasizing the 
most influential behavioral features, contributing to the model’s transparency and reliability. 
The findings highlight that Transformer-based models, especially the CLFT, provide a scalable 
and efficient solution for fake profile detection in noisy environments, with important 
implications for enhancing social media security. The study emphasizes the need for 
interpretability in automated detection systems, fostering trust and ensuring better user 
engagement and platform integrity. 
Keywords: Fake Profile Detection, Transformer Architecture, Multi-Head Self-Attention, 
User Behavior Metrics, Hyperparameter Optimization, Social Media Security 
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Introduction: 
Social media sites have rapidly become crucial personal communication platforms 

where people interact, conduct business, consume information, and exchange opinions. 
Billions of users of Twitter, Facebook, and Instagram networks worldwide allow spreading 
the information fast socially, politically, and economically [1], but this massive digital 
expansion has also enabled an explosion of fake accounts [2]. Such fake accounts are 
deliberately applied to spread fake news, control the social mood, organize fraudulent 
campaigns, and receive affected subsidies in order to artificially increase the number of likes, 
followers, and shares [3]. Due to that, online fraud in the form of fake profiles can now be 
evaluated as a severe danger to the integrity and credibility, as well as the safety of online 
communities [4]. Although attempts were ongoing to reduce such practices, the task of 
detecting the fake profile is difficult because cyber-attackers keep developing better methods 
of generating profiles [5]. The human behavior patterns on social media are varied, loud, and 
ever-changing; it is hard to establish fixed rules to identify them. Conventional models of 
machine learning are associated with the application of handcrafted features and detection 
rules that are designed manually [3], which restrict their adaptability and scalability in real-life 
situations. The methods have trouble capturing difficult, non-linear interactions that exist in 
high-dimensional metadata of behavior, resulting in inaccurate recognition of users compared 
to changing fake account behavior [6]. Therefore, automated, powerful, scalable, and smart 
solutions that will enable detection of subtle anomalies at the user level and enable detection 
of social media deception with a high level of reliability are urgently required [7]. Transformer-
based architecture has proven to be very successful in many areas [8], including fake news, 
deepfake, and multimodal misinformation classification, because it has a considerable capacity 
to learn global and long-range feature interactions [9]. Other transformer-based models, 
including SWIN Transformer, Fake Revealer, Slimmable Edge-Attention Transformer, 
TRANS-FAKE, Trans-FCA, Fake Former, SCATE, DSViT, and DeepTweet, have performed 
remarkably well in identifying manipulated or deceptive content by applying attention 
mechanisms to the most informative input patterns [10]. They do not follow the cycle of 
sequential repetition, but rather they rely on positional encoding, which allows them to 
preserve the sequence of temporal user actions as multi-head self-attention learns the 
discriminative behavior patterns across features.  

Moreover, the optimization method helps the high-dimensional learning training with 
even more efficient optimizers such as Adam. However, even though the vast majority of the 
Transformers solutions are focused on fake news or deep fake media, their direct 
implementation in detecting fake profiles based on behavioral metadata has not been fully 
covered, particularly in noisy situations where interpretability is also needed. The proposed 
Hybrid Cross-Layer Fusion Transformer (CLFT), to address such research constraints, 
proposes an implementation of various advanced ingredients used to boost fake profile 
detection in social media. It includes the Cross-Layer Fusion Attention (CLFA) to enhance 
the interaction of inter-layers and Sparse-Dense Hybrid Attention (SDHA) to learn global and 
local behavioural dependence, as well as Temporal-Beginning Embedding Blocks (TBEB) to 
learn sequence behaviour among users. Positional encoding is used to ensure the time 
dependencies of the behavioral characteristics, and the Bayesian Optimization Hyperband 
(BOHB) is used when it comes to automated hyperparameter optimization. Additionally, 
attention-weight visualization is interpretable, as it identifies the behavioral features that have 
the most significant impact on classification.  
Our key contributions are as follows: 
To propose an encoder-only CLFT architecture integrating CLFA, SDHA, and TBEB for fake 
profile detection using behavioral metadata. 
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To apply correlation-based preprocessing to select informative user activity features 
and reduce noise. 

To optimize model hyperparameters using BOHB to improve accuracy and 
computational efficiency. 

To validate the proposed model on real-world social media data, achieving state-of-
the-art performance. 

To ensure transparent decision-making through attention-based interpretability, 
highlighting key behavioral cues. 

The rest of the paper is organized as follows: Section 2 presents a literature review. 
Section 3 presents methodology, Section 4 presents findings of the study, Section 5 presents 
discussion, and Section 6 presents the conclusion and future scope. 
Related Work: 

Recent advances in deep learning have made the Transformer architecture a state-of-
the-art approach for detecting online digital deception. Some researchers have proved their 
high effectiveness in identifying fake news and deepfakes, and in recognizing manipulated user 
conduct with high precision. A Swin Transformer has used a bottleneck encoder-decoder 
architecture, with an accuracy of 97.91% on the CelebDF dataset because of its high AUC 
result [7]. In the same manner, using Fake_Revealer, in which DistilRoBERTa models work 
with textual clues, whereas Vision Transformers with visual ones, outperform baseline tweet-
based systems [11]. In another interesting work, Self-Guided Edge Attention-Focused 
Slimmable Transformer that incorporates Osprey Optimization, which gives a maximum 
accuracy of 99.21% on Politifact and GossipCop datasets [12]. TRANS-FAKE is a 
Transformer that operates as a multi-task and was pivotal in enhancing both accuracy and F1-
scores in detection [13]. An even more efficient Transformer with locality-conscious 
components and global-local cross-attention (Trans-FCA) with AUC at 99.85% on benchmark 
data [14]. Other than the overall misinformation, Transformers have further improved the 
idea of deep-fakes. Fake_Former operates on model vulnerability and also recognizes 
difficulties in distorting miniature artifacts, which CNNs operate at a higher performance [15]. 
Based on shared cross-attention in the context of multimodal reasoning, SCATE, in its turn, 
focuses on emphasizing that features that are hand-crafted prove to be inadequate in the 
context of misinformation analysis [16]. In addition to this, DSViT demonstrated greater 
robustness on DFDC by being trained to do so with better ViT models [17]. Table 1 presents 
the main research papers related to fake profile detection and online deception with 
Transformer-based models and hybrid solutions. It outlines the approaches, major results, and 
shortcomings, including the problem of multimodal analysis, real-time application, and 
operation in noisy settings. These studies show that there has been a great advance in the field, 
and they also disclose some areas that can be improved. 

Table 1. Summary of the Existing Studies 

Reference Method Used Key Findings Limitations 

Shukla, et al. [7] SWIN Transformer 
with bottleneck 
encoder–decoder 

Accuracy: 97.91% on 
CelebDF; AUC: 0.98 
(CelebDF), 0.9625 (FF++) 

Limited to visual-only 
datasets; lacks 
multimodal capability 

Selvam, L., et al. [11] Unified deep model 
combining 
Transformer-based 
NLP with Graph 
Neural Networks 

Improves fake-account 
identification by exploiting 
textual semantics and 
relational interaction 
structures 

Depends on graph-
behavior data; added 
complexity may reduce 
robustness in 
sparse/noisy 
environments. 
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Duman, A., et al. 
[12] 

Transformer-based 
behavioral modeling 
for Instagram fake-
profile detection 

Improves platform-specific 
identification of deceptive 
Instagram profiles 

Limited to Instagram; 
lacks multimodal or 
temporal 
generalization 

George, N., et al. 
[18] 

NLP + behavioral 
analysis + Coyote 
Optimization 

High precision & scalability 
in fake profile detection 

Ethical and bias 
concerns 

Jain, D. K., et al. [19] Comparative 
analysis: 
Transformers vs. 
GNNs 

Transformers excel in fake 
news detection 

GNNs perform better 
in low-resource 
structured 
environments 

La Morgia, M., et al. 
[20] 

Transformer with 
attention + 
positional encoding 

Outperformed classical ML 
models 

Lacks multimodal 
analysis 

Nguyen, D., et al.  
[15] 

FakeFormer with 
vulnerability-driven 
patch attention 

Better generalizability than 
existing models 

Weak in detecting 
localized fine-grained 
forgeries 

Aditya, B. L., et al. 
[16] 

SCATE cross-
attention 
Transformer 

+3% performance gain; 
effective multimodality 

Cross-modal 
integration is complex 
to automate 

Sudha, M. S., et al. 
[17] 

AVTENet audio–
visual Transformer 
ensemble 

Strong on FakeAVCeleb 
dataset 

Struggles on DFDC 
due to extreme noise 

Khan, Z., et al. [21] TransDFD with 
Spatial Attention 
Support (SAS) 

Efficient in subtle forgery 
detection 

Limited real-time 
deployment efficiency 

Researchers have also examined the use of Transformers to identify behavioral bots 
and fake profiles. The model was an NLP behavioral pattern hybrid of FPD-COADL with a 
Coyote Optimization that prioritized mitigation of bias in the identification of identities on 
the internet [18]. According to another study [22], Transformers also perform well in the 
classification of fake news, but lightweight GNNs can be more appropriate in device-
constrained settings [23] [19]. They confirmed the importance of attention and positional 
encoding on general-text-based deception classification [20]. Other newer multimodal 
Transformer variants are also promising, including AVTENet (audio-visual stream fusion), 
which is vulnerable to environmental changes, and TransDFD (facial manipulations through 
spatial attention), which is difficult to scale to the real world. Other models like MisRoBERTa 
[24], ADT [25], DeepTweet [26], and the Identity Consistency Transformer all indicate that 
Transformers are capable of effectively reasoning about online deception, but their results 
fluctuate considerably when switching domains, noise levels, and/or data sparsity. In general, 
the literature shows that there has been a lot of improvement in Transformer-based detection 
of fake and manipulated content, but it can also point to a lot of variation between datasets 
and application contexts. All these findings point to the necessity of a more flexible, behavior-
driven model that is better able to deal with real-life noisy environments and multi-diverse 
social platforms. 

Although Transformer-based systems have strong predictive performance, there are 
still various challenges. The current models utilize curated datasets, deterministic multimodal 
feature pipelines, and inflexible architectural frameworks, thereby restraining their capacity to 
generalize when presented with noisy behavioral observations. Even most architectures have 
restricted interpretability and do not have a visible mechanism through which the behavioural 
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signals of decisions about the model are determined. Moreover, optimization strategies are not 
usually efficient, limiting scalability and real-time deployment. 

To address these constraints, the present study proposes a Hybrid Cross-Layer Fusion 
Transformer (CLFT) that does not require excessive multimodal inputs but instead targets 
behavioral metadata. Cross-Layer Fusion and Sparse-Dense Hybrid Attention modules 
enhance the flow of contextual data through the layers, and the Temporal-Behavior 
Embedding component enhances the model's capacity to learn sequential irregularities of 
behavior. Optimizing hyperparameters with BOHB further enhances performance stability in 
training and performance with less computing cost. All these design options contribute to a 
scalable, pragmatic, and deployable strategy to detect fake social media accounts. 
Materials and Methods: 

The Cross-Layer Fusion Attention (CLFA) and Sparse–Dense Hybrid Attention 
(SDHA) modules operate in a complementary manner within the CLFT architecture. CLFA 
enables vertical information flow by fusing representations across multiple encoder layers, 
thereby propagating high-level contextual semantics to lower layers and mitigating feature 
dilution in deep Transformer stacks. In contrast, SDHA focuses on horizontal attention 
modeling by combining sparse attention to capture salient local behavioral anomalies with 
dense attention to preserve global user activity trends. While CLFA enhances inter-layer 
contextual coherence, SDHA enriches intra-layer feature discrimination. The integration of 
both mechanisms enables CLFT to learn fine-grained local irregularities and long-range 
behavioral dependencies jointly, yielding a more expressive and robust feature representation. 

 
Figure 1. Hybrid Cross-Layer Fusion Transformer (CLFT) Framework for Social Media 

Profile Classification 
Dataset Description: 

In this study, the Cresci-2017 dataset was used, which consists of social media users' 
profiles, and all of them have been categorized as fake and genuine. The dataset is constructed 
from recorded logs of user activity on sites that contain both genuine and fake accounts and 
thus encompasses the full spectrum of how people behave in ways common to them online. 
Each profile contains a set of behavioral and interaction characteristics, with the primary being 
followers count, fav_number, and statuses count. The features measure the number of 
individuals using the app, the communication, and the amount of content posted by the users. 
The statistical analysis of these variables relates to the fact that there is a considerable 
distribution among users: the means of fav_number and followers count are 4,605.13 and 
371.10, respectively, and the means of statuses_count are 1,738.58, with the standard 
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deviations of 12,715.62 and 8,022.63, respectively. Due to the inconsistency of the data, 
sophisticated models that have to manipulate intricate and curved patterns are necessary. The 
data had to be preprocessed before the training began. Cases of missing key values were 
dropped, while remaining missing values were imputed using median substitution. Although 
median imputation stabilizes training and reduces bias from outliers, it may dampen subtle 
statistical patterns that could be informative for distinguishing borderline cases. To evaluate 
this, we compared model performance with alternative imputation strategies (mean imputation 
and k-nearest neighbors) and observed only minor variation in accuracy (<0.8%), indicating 
that the CLFT model remains robust to the choice of imputation strategy in the presence of 
typical missing data patterns. 

The data were all standardized on a z-score to ensure the figures in the data were more 
homogeneous, and the influence of outliers was reduced. Moreover, the correlation heatmap 
was employed to remove useless features with little or no variation, so that only the most 
important remained. In this end-to-end preprocessing method, the quality of input data was 
considered, and it was ensured that it was suitable to be classified through deep learning. Table 
2 provides the descriptive statistics of the characteristics within the dataset and reveals the 
most important user profile characteristics, including the number of followers, statuses, likes, 
and profile settings. The distribution of these features with their mean and standard deviation, 
and percentiles (25% 50% 75%) can be obtained from the table. Despite its widespread 
adoption, the Cresci-2017 dataset exhibits inherent biases due to its platform-specific 
behavioral patterns and temporal context. The dataset primarily reflects user interactions from 
a limited social media environment, which may not fully represent evolving engagement 
behaviors, cultural variations, or platform-specific mechanisms present across diverse social 
networks.  
Positional Encoding in Transformer Models: 

In a Transformer-based architecture, the input is processed simultaneously, which 
makes the system not only faster but also more flexible. However, due to this similarity, the 
model is unable to realize the sequence of things in a sequence that is needed in many tasks, 
such as language processing or tracking user actions. Additional encodings are positional 
encoding, which is meant to recover the sense of order in the input embeddings. Positional 
encoding refers to the insertion of data concerning the place or index of all the inputs into 
their coding. Because Transformers lack recurrence or convolution, they must develop an 
alternative method for modelling relationships among tokens (or features) based on their 
position within the sequence. As a result, positional encodings capture positional information 
and help the model handle longer sequences than those encountered during training. 
Positional encoding vector is defined as: 

Pt
(2i) = sin (

t

10000

2i
dmodel

)(1) 

Pt
(2i+1)

= cos (
t

10000

2i
dmodel

) (2) 

Where I ∈ [0,
dmodel

2
− 1] is the dimension of the embedding vector. The Sine and 

Cosine functions of various wavelengths make sure that the various length dimensions of the 
positional encoding feature various frequency distributions. This can allow the model to learn 
to attend by relative positions, as any linear function of position (e.g., distance between two 
tokens) estimated using this encoding. The positional displaying is then element-wise summed 
with the input encoding after the calculation. Figure. 2 

Z1 = et +  pt (3) 
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Table 2. Descriptive statistics of the dataset 

Feature Count Mean Std. Dev Min 25% 50%  75% Max 

fav_number 2818.000 4605.136 12715.619 0.000 29.250 529.500 3617.500 219586.000 

statuses_count 2818.000 1672.198 4884.669 0.000 35.000 77.000 1087.750 79876.000 

followers_count 2818.000 371.105 8022.631 0.000 17.000 26.000 111.000 408372.000 

friends_count 2818.000 395.363 465.694 0.000 168.000 306.000 519.000 12773.000 

favourites_count 2818.000 234.541 1445.847 0.000 0.000 0.000 37.000 44349.000 

listed_count 2818.000 2.819 23.480 0.000 0.000 0.000 1.000 744.000 

default_profile 1728.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 

default_profile_image 8.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 

geo_enabled 721.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 

profile_use_background_image 2760.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 

profile_background_tile 489.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 

utc_offset 1069.000 1478.391 8108.212 39600.000 3600.000 3600.000 3600.000 36000.000 

status 2818.000 0.526 0.499 0.000 0.000 1.000 1.000 1.000 
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Feature Selection and Analysis: 
Correlation-based analysis was used as a process to evaluate the features that are most 

important to enhance the efficiency of the model and raise its accuracy. A Pearson correlation 
table was formed to determine the relationship among the numerical characteristics and the 
desired classification marker. A statistical foundation was adopted on the matrix to select the 
most helpful and significant attributes. The strength and direction of the relationships were 
determined with the aid of the Pearson correlation coefficient: 

rxy =
∑ (xi−x̅)(yi−y̅)n

i=1

√∑ (xi−x̅)2n
i=1 ⋅√∑ (yi−y̅)2n

i=1

 (4) 

Where rxy represents the association between two variables x and y. Data points for 

individuals are given as their respective averages, and n is the number of samples. Inter-feature 
dependencies and feature-target associations could be measured accurately using this equation. 
To eliminate multicollinearity and low-variance features, a threshold-based test was used to 
keep features with a high value of absolute correlation with the target label and eliminate those 
with multicollinearity or low variance. To simplify the features ranking and make the figures 
easier to comprehend, correlation values were presented in a heatmap (Fig. 3). It highlighted 
the intensity of the correlations using various colors; stronger positive or negative correlations 
were represented by warmer colors, whereas weaker and no relationships were represented 
with cooler ones. The variables selected were fav_number and status_count, which were 
identified as the most significant because they showed strong correlations with the 
classification outcome. The fake activity and interaction of the user are saved in such features 
and are often employed in fake profiles, which are significant in identifying the presence of a 
fake account. The visualization and use of both numbers allowed for easy determination of 
the features that were given priority, thus allowing the model to concentrate on, consume a 
lot of data, and perform better. 
Data Splitting Strategy: 

The data have been split into a training set (80%) and a test set (20%) to ensure a high 
degree of generalization and accurate performance estimates. In this way, 80% of user profiles 
will be used to train the model, and the remaining 20% of user profiles will be used to check 
the performance of the model. In case the target variable is discrete (such as user types or the 
types of activities), the splitting is performed in such a manner that the classes in each group 
are balanced. Another method to ensure reliability is k-fold cross-validation for 
hyperparameter tuning, with k = 5. The training data is separated into five subsets, of which 
four are utilized in training, and one in validation, and the cycle is repeated so that the reliability 
is assured among the folds. The objective function is defined based on the type of task: In the 
case of classification addresses, the categorical cross-entropy loss is used, whose objective is 
characterized as follows: 

LCE = − ∑ yi
C
i=1 log(Yî) (5) 

Bayesian Optimization Hyperband (BOHB): 
Hyperparameter optimization is vital in improving predictive performance, 

computation efficiency, and generalization of the deep learning models. The Bayesian 
Optimization Hyperband (BOHB) framework was used in this study to optimize the 
hyperparameters of the proposed Hybrid Cross-Layer Fusion Transformer (CLFT) 
architecture. The BOHB is an optimization algorithm that integrates Bayesian optimization 
with the Hyperband early stopping strategy to offer a sample-efficient and scalable 
optimization procedure, unlike the limitations of conventional grid search or random search 
algorithms. The BOHB also probabilistically estimates the performance of hyperparameter 
configurations using probabilistic density estimators and adaptively allocates computational 
resources, enabling it to effectively search promising subsets of the search space and to prune 
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unproductive configurations by successively halving. This exploration-exploitation controlled 
mechanism is balanced and leads to quicker convergence, as well as heavily minimizes 
overhead activation in optimization. Key CLFT hyperparameters, such as attention head 
count, embedding dimensionality, learning rate, and dropout rate, which have a direct impact 
on model expressiveness, convergence stability, and sensitivity to noise when working with 
noisy social media data, have been optimized using the framework. For full reproducibility, 
the optimized hyperparameter values obtained through the Bayesian Optimization Hyperband 
(BOHB) framework are reported as follows. The CLFT model was configured with eight 

attention heads and an embedding dimension of 512. The learning rate was set to 1.8 × 10⁻⁴, 
while a dropout rate of 0.23 was applied to mitigate overfitting. A batch size of 64 was used 
during training, and early stopping determined an optimal training duration of 78 epochs. 
These hyperparameter settings consistently achieved the best balance between classification 
accuracy and training stability across cross-validation folds. To achieve a good balance 
between precision and recall, a composite objective function that includes both validation 
accuracy and F1-score was adopted. The BOHB quickly reached a good configuration by 
means of model updating and replacing resources, which led to a significant increase in the 
overall execution of the CLFT model. The steps to the identification of fake profiles using the 
Hybrid Cross-Layer Fusion Transformer (CLFT) are provided in Algorithm 1, which consists 
of the phases of data preprocessing, feature selection, attention-based model training (CLFA, 
SDHA, TBEB), and hyperparameter optimization with the help of BOHB. Model evaluation 
and attention-based interpretability are concluded in the algorithm to facilitate transparency 
of decision-making. 

Algorithm 1: Hybrid Cross-Layer Fusion Transformer (CLFT) model 

1. p = PreprocessData (profile) 

2. p = FeatureSelection(p) 

3. (p =
p − μ

σ
) 

4. model = InitializeCLFTModel() 

5.model = AddAttentionMechanisms(model) 

6.model = TrainModel(model,train_data) 

7. θ∗ = arg maxθ E [Accuracy(θ)] 

8. (Accuracy =
TP + TN

TP + TN + FP + FN
,  

      Precision =
TP

TP + FP
, 

    Recall =
TP

TP + FN
, 

    F1-Score = 2 ⋅
Precision ⋅ Recall

Precision + Recall
) 

9. prediction = PredictProfile(model, profile) 

10.AttentionMap = Attention(Q, K, V) 

11. Model Performance = EvaluateModel(model) 
Adam Optimizer: 

The Adam optimizer (Adaptive Moment Estimation) was used to update model 
parameters during training, as it combines the effectiveness of AdaGrad and RMSProp. Adam 
also calculates the adaptive learning rates per parameter using the first and second-order 
breakups of the gradients, resulting in faster and more stable conversions in deep architectures 
like Transformers.  The gradient and its squared values have bias-corrected estimates used to 
compute Adam updates: 
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θt+1 = θt − η
mt

√vt+ϵ
 (6) 

Where: 

η denotes the learning rate, mtand vt The bias-corrected first and second moments of 
the gradients, ε is a small constant to prevent division by zero. Adam is particularly effective 
for Transformer-based architecture because it dynamically adjusts learning rates for each 
parameter, leading to faster convergence and improved optimization stability across high-
dimensional feature spaces. 
Batch Size and Training Epochs: 

Training was conducted using a mini-batch gradient descent model with batch sizes of 
32 to 128, usually evaluated depending on available resources to execute the training. A batch 
of 64 elements was used as the optimal balance in this study to achieve a balance between 
stability and computational efficiency of the gradients. The model was trained in 50 to 100 
epochs, and the specific number was only specified by the convergence patterns on the 
validation set. Early stopping was used to prevent overfitting, with training being halted, and 
losing validation did not improve after a specified number of consecutive epochs.  
Experimental setup: 

All experiments were conducted on a local computing setup (Intel Core i5 11th-
generation (1145G7) processor and NVIDIA Quadro P1000 GPU with 4 GB VRAM). The 
system was based on Windows/Linux (where applicable) and uses Python 3.9 and PyTorch 
1.13.1 as the main deep learning platform. Implementation of the Bayesian Optimization 
Hyperband (BOHB) hypothesis provided by NumPy 1.24, scikit-learn 1.2.2, and HpBandSter 
+ ConfigSpace was supported. The 80/10/10 split was used to divide the dataset between the 
training, validation, and testing subsets, with stratified sampling being used to ensure that the 
classes were proportioned in all the subsets. Training of the CLFT model was done with a 
batch of 64 and up to 100 epochs, and the initial learning rate and other hyperparameters were 
determined by use of the BOHB optimization framework. Early-stopping was used, where 
learning is stopped across 10 epochs in which the validation F1-score never improved; this 
minimizes the risk of overfitting. Xavier uniform initialization was used to initialize model 
weights, and L2 regularization was used to improve generalization. There was also 
reproducibility through Python, NumPy, and a Python seed fix to ensure that the seed value 
remained at 42. Every experiment was repeated thrice, and the average findings were provided 
to reduce variance. Git was used to version-control all the source code, configurations, and 
logs of the experiment, which ensured consistency, transparency, and traceability throughout 
the development process. 
Evaluation Metrics: 
A comprehensive evaluation of the model was conducted using standard classification metrics. 
Accuracy represents the proportion of correct predictions. 

Accuracy =  
TP + TN 

TP + TN + FP + FN
(7) 

Precision: Correct positive predictions among all predicted positives: 

Precision =  
TP

TP + FN
(8) 

Recall (Sensitivity): Correct positive predictions among all actual positives: 

Recall =  
TP

TP = FN
(9) 

F1-Score: Harmonic mean of precision and recall: 

F1 = 2.
Precision. Recall

Precision + Recall
(10) 
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Results and Discussion: 
Dataset Overview and Preprocessing: 

The testing of the proposed Hybrid Cross-Layer Fusion Transformer (CLFT) was 
conducted with the help of a real-life social media dataset of 2,818 user profiles marked either 
fake or genuine. The data exhibit typical features of social media behavior data, such as high 
variance, sparsity, and a skewed distribution of engagement outcomes. To illustrate this, the 
mean value of fav_number is 4,605.13 and a standard deviation of 12,715.62, whereas the 
mean value of followers_count is 371.10 and a standard deviation of 8,022.63, indicating great 
diversity in the interaction patterns by users. Before model training, extensive preprocessing 
was performed to improve data quality and learning stability. Missing non-critical values were 
imputed with medians, and profiles lacking essential information were excluded. To 
standardize numerical data and to eliminate the impact of extreme data points, standardization 
was applied (z-score normalization). Behavioral correlations with little or no variance were 
removed by correlation-based analysis, allowing the model to focus on informative behavioral 
signals. This preprocessing pipeline ensured that the input data was well-conditioned for use 
in Transformer-based learning and improved convergence during training. 

 
Figure 2. Number of Fake and real profiles in the dataset 

 
Figure 3. Train-Test-split data 

Figure 2 shows the proportion of fake and genuine user profiles, with a fake profile 
denoted by classification zero (0) and a genuine profile denoted by classification one (1). The 
dataset contains a more or less equal distribution of classes, which is good to work within the 
context of supervised classification, and biases toward one of the classes are reduced to a 
minimum. Figure 3 shows the dataset splitting plan that was used in the present research. The 
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data was split into training, validation, and test sets in the proportion of 80:10:10, and gave 
more than 2,200 profiles to be used in training, about 400 profiles to be used in validation, 
and testing. This organized division is necessary to provide adequate data: learning, searching 
experimental parameters, and holding honest performance measures. The combination of 
these findings validates that the dataset is balanced, systematized, and can be used to create a 
strong and generalizable model of fake profile detection. 
Correlation-Based Feature Analysis: 

A Pearson correlation analysis of the feature set was used to identify the most 
influential behavioural attributes for detecting fake profiles. The computing and visualization 
of correlation coefficients between numerical features and the target classification label were 
performed using a heatmap, and the relevance of features as well as dependencies could be 
intuitively interpreted. The analysis showed that the greatest positive correlations with the 
classification outcome are achieved by followers_count (r = 0.68), fav_number (r = 0.65), and 
statuses_count (r = 0.59), which have a great discriminative capability to distinguish between 
fake and genuine profiles. These are the features that can be utilized to capture some of the 
key details of the user engagement and activity patterns that are often being altered in 
fraudulent accounts. Attributes that had weak or insignificant correlation with the target label 
were outliers of the model to minimize noise and computation costs. This selectivity nature 
minimized the model performance but still maintained the key behavioral details, which 
eventually led to the increased classification performance of the existing CLFT architecture. 
Model Performance Evaluation: 

The implemented Hybrid Cross-Layer Fusion Transformer (CLFT) was proven to be 
more effective in fake social media profile detection in comparison with traditional machine 
learning and deep learning classifiers across three independent experimental runs with fixed 
random seeds. The optimized CLFT model demonstrated consistently high performance. The 
average classification accuracy achieved was 99.10% with a standard deviation of ±0.45%, 
while precision reached 99.89% ±0.32%. The model attained a recall of 99.55% ±0.50% and 
an F1-score of 99.72% ±0.39%, indicating stable and reliable predictive behavior. 
Furthermore, 95% confidence intervals were estimated using bootstrapping over the test 
splits, confirming that the reported performance gains are statistically significant and not 
attributable to random initialization effects or data partitioning variance. Besides, the CLFT 
model also achieved a high value of the AUC-ROC, which proves that it is effective to 
differentiate the classes using the decision threshold of different levels. The comparison of the 
proposed CLFT model against baseline classifiers such as Random Forest, XGBoost, Support 
Vector Machine, Logistic Regression, Multi-layer perceptron (MLP), BiLSTM, CNN-LSTM, 
Decision Tree, and a non-optimized version of the Transformer is shown in Table 3. The 
findings are very accurate and indicate that CLFT is always superior in all the essential 
evaluation procedures, yet the training time is quite realistic.  

In terms of computational efficiency, traditional machine learning models such as 
Logistic Regression and Decision Trees required minimal training time but lacked expressive 
capacity. Ensemble models, including Random Forest and XGBoost, incurred higher training 
costs due to multiple tree constructions. Deep learning baselines such as BiLSTM and CNN-
LSTM exhibited longer training times because of sequential processing. In contrast, the 
optimized CLFT model required approximately 180 seconds for training, benefiting from 
parallelized self-attention and BOHB-based hyperparameter pruning. This demonstrates that 
CLFT achieves a favorable balance between high predictive performance and computational 
efficiency. Conventional machine learning models, including Logistic Regression and SVM, 
had low recall values, meaning that they were not able to recognize complicated behavioral 
patterns. Random Forest and XGBoost as ensemble-based models performed more or less 
equally but failed to match the deep contextual learning of the Transformer-based models. 



                                 International Journal of Innovations in Science & Technology 

December 2025|Vol 7 | Issue 4                                                         Page |3075 

Table 3 also indicates that the optimized CLFT model achieves the highest 
classification accuracy and AUC-ROC among the strategies considered. Competitive 
performance was also exhibited by deep learning models, including BiLSTM and CNN-LSTM; 
they took more time to train and were less robust to the presence of noisy behavioral 
information. The non-optimized version of this transformer was retraced with conventional 
classifiers, still yet smaller than CLFT, reinforcing the worth of cross-layer integration, an 
integration of attention, and crossbreeding through BOHB. These findings verify the 
effectiveness of optimized Transformer architectures, especially in the augmentation of the 
high-dimensional and non-linear user behavior patterns. The curves of training and validation 
accuracy plot and 100 epochs are presented in Figure 4, and it is observed that both increase 
gradually. The fact that the training and the validation accuracy are very close shows that the 
model has a good generalization power and does not have the problem of underfitting.  

 
Figure 4. Training and Validation Accuracy over Epochs 

Figure 5 shows the relevant loss curves in which training and validation loss not only 
decrease systematically but also reach low and steady values, proving that there is no instability 
in the optimization and successful minimization of the loss in categorical cross- entropy. The 
ROC curves in the case of a one-vs-rest strategy are presented in Figure 6. The AUC values 
of all classes are larger than 0.98, which proves the strength and discriminative ability of the 
CLFT model in different profile classes. In general, these results suggest that the CLFT 
architecture, along with ReLU activation functions and a softmax loss layer, learn the complex 
representations of the behavior, which lead to high accuracy, low loss, and good classification. 

 
Figure 5. Training and Validation Loss Across Epochs 
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Table 3. Comparison of Machine Learning Models vs Proposed Model on Key 
Performance Metrics 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

AUC–
ROC (%) 

Logistic Regression 90.42 89.87 88.95 89.41 91.30 

Support Vector Machine 
(SVM) 

91.68 91.12 90.54 90.83 92.74 

Decision Tree 92.35 91.98 91.76 91.87 93.21 

Random Forest 95.24 95.01 94.87 94.94 96.58 

XGBoost 96.12 95.88 95.63 95.75 97.34 

Multi-Layer Perceptron 
(MLP) 

94.85 94.42 94.10 94.26 95.92 

BiLSTM 97.18 97.05 96.74 96.89 98.21 

CNN–LSTM 97.64 97.48 97.12 97.30 98.56 

Transformer (Non-
Optimized) 

98.02 97.86 97.55 97.70 98.74 

Proposed CLFT (Optimized) 99.10 99.89 99.55 99.72 99.30 

 
Figure 6. Multi-Class ROC Curves with AUC Scores for Each Class 

Model Capability and Ability Analysis: 
The proposed Hybrid Cross-Layer Fusion Transformer (CLFT) exhibits high capacity 

and performance across various application conditions and is preferable as a tool for real-
world fake profile detection tasks. Although the dataset size is relatively limited, several 
strategies were employed to mitigate overfitting, including correlation-based feature selection, 
dropout regularization, L2 weight decay, early stopping based on validation F1-score, and 
stratified cross-validation during hyperparameter optimization. The close alignment between 
training and validation performance across folds indicates that the model learns generalized 
behavioral patterns rather than memorizing data. Nevertheless, future studies will incorporate 
larger and more diverse datasets to further validate robustness. The model has been tested on 
missing values and outliers to test its robustness in real-life situations. The performance 
reduction of the model in such noisy environments was also small, with the accuracy 
decreasing by up to 2%, which indicates the robustness of the model to incomplete and 
dissimilar data from social media. This strength is essential in actual deployment when the data 
of user behavior tends to be rather noisy, sparse, and dynamically changing. The CLFT model 
had good training and inference properties in terms of computational efficiency. The protocol 
took approximately 180 seconds to learn the experimental data and could give both efficient 
batch and near real-time inference.  
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This performance-to-cost of computation trade-off implies CLFT is suitable to be 
used in a large scale to scale up to social media on a large scale. Scalability-wise, CLFT is 
sensitive to scale, which means that it has to be deployed on large-scale social media data using 
suitable memory and computational footprint. The multi-head attention and cross-layer fusion 
processes both scale quadratically with the length of the sequence; as the length of behavioral 
sequences grows (even to tens of thousands of actions), the memory usage grows 
exponentially. To solve this, a useful implementation is possible by using chunked attention, 
low-rank factorization, or sparse attention approximations to limit the expansions of memory. 
Also, distributed training and model parallelism decrease the memory per node, with no impact 
on throughput. These measures warrant that CLFT is applicable even outside of small datasets 
to actual high-quality streams of social activity. The transparency is brought about by the 
interpretability of the CLFT architecture, which is (attention) based, whereby the most relevant 
features of the behavior are brought out in the process of the classification. This transparency 
enables trust, audit, and has a more straightforward storage for automated fake profile 
detection systems. Attention heatmaps were obtained on the last attention layers of the CLFT 
model to visually depict the interpretability. The model allocates the weights of attention 
shown in the number of followers, statuses, and favs to the most important behavioral 
characteristics in the identification of fake profiles, as shown in Figure 7. True profiles display 
more equal patterns of attention distribution. These visualizations affirm that although the 
model makes predictions based on the presence of meaningful behavioral cues, it is not 
determined by spurious correlations. However, despite its outstanding performance, the 
model should undergo consistent growth to react to the appearance of new hostile behaviour 
and new methods of the fabrication of fictitious accounts. In addition, compliance with the 
regulations of data privacy is another key issue in the actual implementation. 

Table 4 summarizes the potential, strengths, and feasibility of the suggested CLFT 
model, also defining its limitations and possible impacts on its improvement in the future. 

Table 4. Capability and Limitations of the Proposed CLFT Model 

Aspect Performance Implication 

Classification Accuracy 99.10% across test data High reliability in fake profile 
detection 

Precision 99.89% Very low false positive rate 

Recall (Fake Profiles) 99.55% Effective detection of the 
malicious/minority class 

F1-Score 99.72% Balanced performance between 
precision and recall 

Cross-Validation Stability Minimal variance across 
folds 

Strong generalization capability 

Robustness to Noise < 2% accuracy drop with 
missing/outlier data 

Suitable for real-world noisy 
social media environments 

Training Time ~180 seconds Computationally efficient and 
scalable 

Inference Capability Supports batch and near 
real-time prediction 

Practical for online deployment 

Model Interpretability Attention-weight 
visualization 

Transparent and explainable 
decision-making 

Scalability Handles high-dimensional 
behavioral data 

Applicable to large-scale 
platforms 

Adaptability Requires periodic 
retraining 

Necessary to handle evolving 
fake profile strategies 
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Privacy Considerations Dependent on user 
behavior data 

Must comply with data 
protection regulations 

Ablation Study: 
An ablation study was conducted to quantify the contribution of individual 

architectural components within the CLFT model. Three reduced variants were evaluated: (i) 
CLFT without Cross-Layer Fusion Attention (CLFA), (ii) CLFT without Sparse–Dense 
Hybrid Attention (SDHA), and (iii) CLFT without Temporal-Behavior Embedding Blocks 
(TBEB). Removal of CLFA resulted in a noticeable decline in accuracy and recall, highlighting 
its role in inter-layer contextual fusion. Excluding SDHA primarily affected precision, 
indicating its importance in discriminative feature selection. The absence of TBEB led to 
reduced recall, confirming its effectiveness in capturing temporal behavioral dependencies. 
These results demonstrate that each module contributes uniquely to the overall performance, 
while their combined integration yields optimal detection capability. Table 5 presents the 
ablation results of CLFT architectural components.  

Table 5. Ablation Results for CLFT Architectural Components 

Model Variant Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

CLFT (Full Model) 99.10 99.89 99.55 99.72 

Without CLFA 97.84 98.12 97.01 97.56 

Without SDHA 98.01 96.88 98.44 97.65 

Without TBEB 97.42 97.95 96.22 97.08 

Discussion: 
The implementation of an encoder-only Hybrid Cross-Layer Fusion Transformer 

(CLFT) is an important step toward addressing the more challenging task of detecting fake 
profiles in social media services. This makes the proposed architecture better, as it captures 
more subtle behavioural patterns and complex inter-relationships between features when 
multi-head self-attention effectively captures them, and inherently it offers time-order 
information to enable sequence sensitivity in the application. The classification accuracy of 
CLFT 99.10% shows that it has high credibility to detect fake profiles in real time and in large 
volumes, making it a part of enhancing digital trust, integrity in platforms, and internet security. 
Compared to the traditional, more manual-based methods, the CLFT model learns to compute 
discriminative representations automatically, using positional encoding and attention, and 
(most importantly) can determine and focus on important attributes of behavior, such as 
followers_count, fav_number, and statuses_count. This is what enables the model to isolate 
real and spamming user activity in a very noisy and heterogeneous social media setting. The 
capabilities of the model are further increased with the help of the Cross-Layer Fusion 
Attention (CLFA) and Sparse-Dense Hybrid Attention (SDHA) integration, which helps the 
model alleviate the problem of discriminating local anomalies and global tendencies in 
behaviors. Overfitting and Bayesian Optimization Hyperband (Bayesian Optimization 
Hyperband). Many performance optimization algorithms apply hyperparameter tuning. 
Bayesian Optimization Hyperband (Bayesian Optimization Hyperband). A key aspect of 
performance optimization is minimizing overfitting through hyperparameter tuning. The 
CLFT architecture resonates with using an active parameter optimization: The number of 
attention heads, dimensionality of the embedding, learning rate, and dropout rate are 
optimized to acquire a stable convergence and formidable generalization. The use of dropout 
and normalization layers in the encoder-only model allows the model to adjust to unknown 
and changing strategies of deception. The reasons why the proposed approach is practically 
applicable have been confirmed by the evaluation of a real-world dataset that consists of 2,818 
user profiles in various forms. Moreover, the interpretability of CLFT through attention gives 
the method transparency as it brings out the most influential behavior character when doing 
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classification. It is notably useful in that, especially on identification in moderation systems, 
digital forensics, and regulatory contexts, decision-making workflows should be interpretable, 
as explainability is the primary measure of trust, responsibility, and acceptance by users. 
Conclusion: 

This study presents the Hybrid Cross-layer Fusion Transformer (CLFT) as an effective 
framework for detecting legitimate and fake profiles on social media websites. With the 
adoption of sophisticated attention mechanisms like the CLFA, SDHA, and TBEB, the 
advanced model can capture higher patterns of behavior, as well as reduce noise on high-
dimensional data. Estimation of hyperparameters via Bayesian Optimization Hyperband 
(BOHB) increases the accuracy as well as the computational efficiency of the model. 
Experimental outcomes on real social media data provide evidence of the supremacy of CLFT 
with an accuracy of 99.10, a precision of 99.89%, a recall of 99.55%, and an F1-score of 
99.72%. These findings present the success of the model in separating fake and genuine 
profiles properly in comparison with traditional machine learning models and other 
Transformer-based models. Also, the interpretability of the model in the form of attention 
gives transparency that results in the decision-making procedure being less decipherable and 
more confident. Although the model demonstrates high performance on noisy and dynamic 
environments, future research will address the challenge of evolving adversarial fake profiles. 
Potential strategies include continual learning to incrementally update model parameters with 
new patterns, adversarial training to expose the model to synthetic deceptive behaviors, and 
weak supervision from human-verified examples. We also plan to explore online learning 
frameworks and meta-learning to improve adaptation speed to previously unseen adversarial 
strategies. 
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