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B aluchistan, the largest province of Pakistan, hosts abundant metallic and non-metallic

NOISIAI

mineral resources, particularly copper, gold, chromite, lead-zinc, and rare earth

elements, making it a strategic region for mineral exploration and geological
characterization. Despite such potential, mineral exploration in the province’s ophiolitic belts
remains limited by sparse ground surveys, logistical challenges, and incomplete spatial
coverage. To address this gap, the present study aimed to (1) Key ophiolitic minerals
(chromite, serpentine, magnesite) and associated lithologies with high spectral precision, and
(2) Compare hyperspectral and multispectral sensors for mineral identification and mapping.
The methodology integrated ZiYuan-1 02D (ZY-1E) hyperspectral satellite data (spectral
range 0.4-2.5 pm) with advanced spectral analysis techniques i.e. Diagnostic Absorption
Feature extraction, Spectral Matching against the United States Geological Survey (USGS)
Spectral Library, and multiple classifiers including Spectral Angle Mapper (SAM), Spectral
Feature Fitting (SFF), Random Forest (RF), and targeted band ratios/indices. Mineral point
data and lithological maps from the Geological Survey of Pakistan (GSP) were used for
accuracy assessment. For comparative analysis, multispectral datasets from ASTER, Landsat-
8 OLI, and Sentinel-2 MSI were processed, with a focus on the efficacy of SWIR coverage for
mineral detection. Results indicated that ZY-1E hyperspectral data achieved 81.82% mineral
classification accuracy and 86.11% lithology mapping accuracy, with Band Ratio techniques
emerging as a rapid detection tool. Among multispectral datasets, ASTER outperformed
Landsat-8 and Sentinel-2 due to its six SWIR bands, enabling superior discrimination of OH-
, Al-, and carbonate-bearing minerals. The study concludes that hyperspectral imagery, due to
its high spectral resolution, is indispensable for precise mapping of minerals and lithology in
rugged, inaccessible terrains. However, ASTER remains a cost-effective alternative for
targeted mapping of alteration minerals where hyperspectral coverage is unavailable. It is
recommended to integrate hyperspectral mapping in strategic exploration campaigns to
accelerate mineral resource assessment in underexplored regions of the world.
Keywords: Ophiolites, Hyperspectral, Multispectral, Diagnostic Absorption Features,
Alteration Minerals, USGS Spectral Library.
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Introduction:

At the time of independence of Pakistan back in August 1947, it was perceived that
Pakistan lacks in mineral potential, despite having occurrences of large deposits of salt,
gypsum, limestone, marble, etc [1] The geological community of Pakistan should be credited
for the discovery of major gas fields in Baluchistan, uranium from the foothills of the Sulaiman
Range in Punjab and southern Khyber Pakhtunkhwa (KP), barite from Baluchistan and KP,
chromite and China clay in KP, famous emerald in KP, copper-gold and lead-zinc in
Baluchistan and KP. Numerous studies have been conducted showing the potential of
Pakistan’s economic minerals [2], with abundant resources at various locations [3][4][5][6]-.
Moreover, recent studies and reports [7][8] present a comprehensive detail on the mineral
potential of Pakistan. Additionally, province-wise minerals as well as basin details have also
been updated [9].

Baluchistan is abundantly enriched with metallic as well as non-metallic resources,
making it a focal point for multiple minerals, ranging from economic to Rare Earth Elements
(REE) and precious metals [10][11][1]. The Baluchistan basin consists of Cretaceous to recent
sediments, as well as metamorphic and igneous rocks. The first pioneering geological work in
the Baluchistan Basin was done by [12] where mapping of the first ever sedimentary, igneous,
and metamorphic rock units across large tracts; delineation of major fold-thrust belts and
mélanges was performed. In lines with production report from Baluchistan during 2007-08
[13], 36,583 tons (t) copper, 245 t antimony, 49,268 t barite, 331 t basalt, 33,815 t chromite,
25t clay, 2,325,220 t coal, 291 t granite, 259 t rhyolite, 134 t diorite, 183 t gabbro, 2431 t
serpentinite, 98 t gneiss, 323 t quartzite, 360 t Sulphur, 176 t dolomite, 424 t fluorite, 75 t
galena, 15,808 t iron ore, 727,951 t limestone, 70,740 t marble (onyx), 267,312 t marble
(ordinary), 790 t magnesite, 1385 t manganese, 5060 t pumice and 1,306,764 t shale have been
reported. It is pertinent to mention that what has been found so far is still too small than what
is expected to be discovered, which indeed is not too distant future [14].

Remote Sensing and Minerals Exploration:

A convenient and cost-effective approach for mineral deposits exploration is the use
of remote sensing [15][16]. Lithological mapping, together with mineralized zone detection,
has proven the benefits of remote sensing data [17][18][19][20]|21]. The use of spatial data for
tracing and analyzing lithological maps to recognize the geological characteristics associated
with the target mineralization is the key step in the mineral exploration process [22]. Generated
maps include a variety of features, including minor and major structures, alteration types,
diagnostic minerals, and lithological units [23][24][25]. Several workers tested different remote
sensing techniques on the Oman ophiolite (Abrams and Rothery, 1988), [26], ophiolites in
Egypt [27] and ophiolites in the Yarlung suture zone in Tibet [28] using mainly Thematic
Mapper data sets. Ninomiya (2002) [29] used ASTER (Advanced Spaceborne Thermal
Emission and Reflection Radiometer) data to discriminate carbonate, mafic, and ultramafic
rocks. But there is not a single good technique to map ophiolites, mainly because ophiolites
consist of a wide range of lithologies. Moreover, secondary minerals produced in different
climatic zones, along with variable amounts of vegetation, may cover the characteristic spectral
signals of the rocks.

Geological Settings of Baluchistan:

Geologically, Baluchistan is dominated by accreted fragments of the Tethyan belt,
comprising ophiolites, sedimentary basins, and magmatic arcs [30]. The Tethyan collision belt
consists of the Mediterranean, the Middle East, the Himalayas, and Southeast Asia, and
includes at least 20 ‘megacities’ and hosts more than half of the world’s population [31]. As
described in Ref 1, the western Indus suture is a suture between the Baluchistan basin (a part
of Tethys) and the Indus Basin (a part of Gondwana). The western Indus suture is jointed just
east of the Baluchistan basin, which is the reason being described here. It includes the
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ophiolitic mélanges and sedimentary Mesozoic and Cenozoic sedimentary sequences. The
ultrabasic rocks consist of altered pyroxenite, serpentinized peridotite, and amorphous and
sheared serpentinite. The rocks of intermediate compositions are diorite and gabbro. The
gabbro is a dark green rock spotted with large crystals of white feldspar, which is kaolinized.
Some types are pegmatitic and exhibit crystals up to 4 inches across of biotite and pyroxene.

Muslimbagh Ophiolite Complex consists mainly of serpentinized ultrabasic rocks that
include saxoniter, dunite, and pyroxenite. It also consists of dolerite, gabbro, and diorite, but
these seem to be slightly later phases. The age is Late Cretaceous-Early Paleocene [32][33][34].

Chromite was first reported by R. H. Nagell [35] and its mining was started in 1903 in
the Khanozai area and extended to Muslimbagh in 1915. In the early twenties, mining started
in the Sra Salwat area, 29 km south of Muslimbagh. The following deposits, like Muslimbagh
chromite (Qila Saifullah District) and Wad, Sonaro, and Ornach chromite (Khuzdar District),
are significant [36]. The Muslim bagh area chromite (Qila Saifullah District) extends from
Gwal to Nisai, about 100 km. This region boasts the most extensive deposits in Pakistan.
Hyperspectral Imagery and Minerals Exploration:

Since the inception of hyperspectral technology towards identification and exploration
of minerals back in 1985 [37][38] (e.g., Goetz and Srivastava, 1985; Kruse, 1988), numerous
studies and research have been conducted along with field validations to extract the naturally
occurring minerals most efficiently. Ahmad et al. (2025) [39] ZY1-02D hyperspectral satellite
imagery, which offers moderate spectral and high spatial resolution to perform lithological
mapping in the Kohat—Pothohar Plateau, located along Pakistan’s Main Boundary Thrust
(MBT). The study combined spectral indices, false color composites (FCC), principal
component analysis (PCA), support vector machine (SVM) classification, and spatial—spectral
transformer (SSTF) deep learning models to classify key lithological units. PCA significantly
enhanced lithological discrimination by extracting the highest eigenvalues. The generated
lithological maps, wvalidated through field surveys and laboratory analyses (XRD,
photomicrographs, spectral profiles), successfully identified limestone, gypsum, sandstone,
clay, and conglomerates. SVM and SSTF classification methods achieved high accuracies of
89.7% and 92.1%, respectively, demonstrating strong reliability in matching mapped geological
boundaries. The study highlights the effectiveness of ZY1-02D hyperspectral data combined
with machine and deep learning approaches for accurate geological mapping, with direct
applications in mineral, oil, gas, coal, and uranium exploration.

Tong et al. (2023) [40] demonstrated that hyperspectral remote sensing technology
enables rapid extraction of alteration minerals and linear structures based on spectral
characteristics. The study areas of Zhaojinggou and Hutoushan in Wuchuan County, Inner
Mongolia, were selected. Using ZY-1-02D satellite hyperspectral data, alteration minerals and
linear structures were extracted based on spectral analysis techniques. The spatial distribution
characteristics of these features were analyzed. Eight alteration minerals (hematite, low-
aluminum sericite, medium-aluminum sericite, lepidolite, biotite, chlorite, carbonate, and
kaolinite) and 127 linear structures were extracted. These features were closely related to
lithology, concentrated in specific geological units. Linear structures were distributed along
tonal boundaries and linear anomalies. Six prospecting areas were delineated, four of which
coincided with known ore veins, confirming the reliability of remote sensing for mineral
exploration.

Saeid Asadzadeh et al. (2024) [40] demonstrated the enhanced mineral mapping
potential of the Environmental Mapping and Analysis Program (EnMAP) satellite, which
captures 224 contiguous spectral bands between 420—2450 nm at a 30-meter spatial resolution.
Unlike conventional multispectral sensors (e.g., ASTER, Sentinel-2), which are limited by
broad spectral bands, EnMAP’s fine spectral sampling (8.1 nm in VNIR and 12.5 nm in SWIR)
enables precise identification of mineral absorption features. The authors applied a polynomial
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fitting technique to EnMAP’s Level 2A data to extract diagnostic absorption parameters,
including minimum wavelength, depth, width, and asymmetry for key alteration minerals in
the Reko Diq porphyry Cu-Au deposit (Chagai Belt, Pakistan). This study successfully mapped
white micas (2195-2210 nm), chlorite, epidote, calcite, kaolinite, gypsum, jarosite, and
ferric/ferrous iron minerals, trevealing distinct zonation patterns associated with
mineralization. Notably, Al-rich white micas (shorter wavelengths) were found proximal to
mineralized zones, while ferrous iron and chlorite-epidote-calcite assemblages marked potassic
and propylitic alteration zones, respectively. The study underscored EnMAP’s superiority over
multispectral sensors in delineating alteration mineralogy, providing a robust tool for porphyry
copper exploration in exposed terrains worldwide.

Mahboob et al. (2024) [41] demonstrated the efficacy of integrating satellite remote
sensing data with ML algorithms, specifically Random Forest (RF), Support Vector Machine
(SVM), and Convolutional Neural Networks (CNN), for predictive modeling of copper (Cu)
deposits in Pakistan’s North Waziristan region. The critical gap in mineral exploration, the
underutilization of ML techniques in processing multi-parameter datasets, including
hydrothermal alteration maps derived from satellite imagery and limited field data, is
highlighted in the study. By developing nine predictor maps and evaluating model
performance using confusion matrices, statistical measures, and ROC curves, they found that
the RIF algorithm outperformed SVM and CNN in predictive accuracy, consistency, and
interpretability. Notably, the RF model successfully delineated high-potential zones that
aligned with known Cu deposits, thereby validating its robustness for targeting exploration.
Their prospectivity map, which classified regions into low to very-high potential zones, led to
the discovery of a new deposit, hence underscoring the practical utility of their approach.

Jan et al. (2024) [42] proposed a hybrid 1-Dimensional CNN-SVM model for mineral
classification using Sentinel-2 multispectral data, achieving a classification accuracy of 95.3%
with a polynomial kernel degree of 12. Their study demonstrated that combining CNN-based
feature extraction with SVM classification outperformed traditional methods such as ANN-
Softmax (93.4% accuracy) and CNN-RF (94.01% accuracy) in delineating carbonate minerals,
rocks, vegetation, water, and urban areas in Pakistan’s MARDAN and BUNER regions. The
hybrid model’s success was attributed to SVM’s ability to capture complex, non-linear
relationships in high-dimensional spectral data, while CNN layers efficiently extracted
discriminative features from 1D reflectance values. This work aligns with broader trends in
mineral exploration where ML/DL hybrids are increasingly adopted to address limitations of
conventional methods.

Anees et al. (2022) [43] demonstrated the efficacy of integrating ASTER (multispectral)
and Hyperion (hyperspectral) data in mapping lithological units and identifying mineralized
zones in Chitral, NW Pakistan. This study employed band ratios, spectral indices (e.g., calcite,
dolomite, hydroxyl, ferrous), principal component analysis (PCA), and spectral angle mapper
(SAM) to discriminate rock types and alteration minerals. ASTER’s superior spectral
resolution enabled mapping of carbonates and granites, while LLandsat-8’s radiometric strength
distinguished metamorphic rocks. Hyperion’s hyperspectral data identified alteration minerals
such as montmorillonite, muscovite, and pyrite, pinpointing potential mineralization zones in
the Drosh-Shishi Valley. The study highlighted the complementary strengths of multi-sensor
data, with ASTER excelling in carbonate detection and Hyperion in alteration mineral
mapping, despite challenges like topographic noise and spectral mixing.

Lobo et al. (2021) [44] evaluated the effectiveness of HSI combined with ML
classifiers, Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), and
Random Forest (RF) for distinguishing key minerals (e.g., cassiterite, wolframite, chalcopyrite)
in tin—tungsten deposits. Their study compared two imaging scenarios: (1) laboratory-based
HSI under controlled conditions and (2) a simulated mine face scan replicating field
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conditions. Key findings include: Laboratory HSI achieved 98%  classification accuracy,
underscoring the precision of hyperspectral data under ideal conditions. Performance declined
slightly when analyzing spectral ranges (450-950 nm and 950-1650 nm) independently and
dropped significantly (74.5% accuracy) for conventional RGB imagery, thereby highlighting
the limitations of broadband sensors. In the simulated mine face scan, accuracy remained high
(85%), though reduced spatial resolution and field-like conditions introduced challenges,
particularly in distinguishing cassiterite from wolframite (70% user accuracy). Random Forest
(RF) marginally outperformed LDA and SVM in classification robustness, with a lumped ore
category achieving 94.9% user accuracy, demonstrating practical utility for ore mapping.

Khan et al. (2018) [45] highlight the evolution of HSI over three decades, emphasizing
its enhanced spatial, spectral, and temporal resolutions that enable precise identification of
materials with visually similar but spectrally distinct signatures. The review categorizes modern
HSI applications into: (1) food quality/safety inspection, whete it detects contaminants and
chemical composition; (2) medical diagnostics, including surgical guidance and disease
detection; (3) forensic science, particulatly document forgery detection; (4) defense/security
for threat identification; and (5) remote sensing applications like precision agriculture and
water resource management. Notably, the authors underscore the growing role of deep
learning in advancing HSI analysis, particulatly for complex tasks such as forgery detection in
questioned documents. This synthesis aligns with broader trends in HSI research. The review
also identifies gaps, such as the need for real-time processing algorithms and miniaturized HSI
systems for field deployment, suggesting directions for future research.

Ahmad et al. (2025) (as shown in Ref. 42) leveraged ZY1-02D hyperspectral data (with
high spatial resolution) combined with machine learning (SVM) and deep learning (SSTT)
methods to achieve exceptional lithological classification accuracy (89.7% for SVM, 92.1% for
SSTF). The methodology integrated spectral indices, PCA, and field-validated techniques
(XRD, photomicrographs) to discriminate limestone, gypsum, sandstone, and conglomerate
units critical for hydrocarbon and mineral exploration near the Main Boundary Thrust. This
work builds on foundational HSI applications in geology while advancing the field in three key
ways: 1. Sensor Innovation: First demonstrated application of China's ZY1-02D satellite data
for lithological mapping, showcasing its superior spatial-spectral capabilities. 2. Algorithm
Comparison: Quantitative validation of SSTF's superiority (92.1% accuracy) over traditional
SVM for geological classification 3. Exploration Ultility: Direct linkage between mapped units
and economic deposits (oil, gas, gypsum), bridging academic research and industry needs. The
study further suggests integration with geophysical data for 3D reservoir modeling, Extension
to other tectonic regions with complex stratigraphy, and Real-time processing pipelines for
exploration campaigns.

Giri et al. (2024) [46] used AVIRIS-NG data from Jahazpur, Rajasthan, developing a
stacked ensemble learning framework combining multiple base learners (Naive Bayes, KNN,
ANN;, Decision Tree, SVM) with a Random Forest meta-learner, achieving exceptional
performance metrics (98.96% overall accuracy, 0.9628 Kappa coefficient) for mapping key
minerals including talc, montmorillonite, and kaolinite. This work makes three significant
contributions to the field: 1. Algorithm Innovation by introducing a novel stacked ensemble
approach that outperforms individual ML models in mineral classification, 2. Application
Precision, which demonstrates AVIRIS-NG's capability for discriminating between spectrally
similar phyllosilicate minerals, 3. Methodological Rigor to establish a replicable framework for
mineral mapping with quantified accuracy metrics.

Islam et al. (2024) [47] utilized ASTER multispectral data and employed an integrated
approach that combined FCC, PCA, Decorrelation Stretch, and machine learning (TRTC) to
successfully map lithological units and identify five new mineralization targets associated with
copper and iron deposits. Their methodology achieved precise discrimination of alteration
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minerals (chlorite, limonite, muscovite) and validated findings through field campaigns, XRD
analysis, and spectral measurements. This work significantly advances previous studies in three
key aspects: Methodological Integration: Combines traditional image processing (PCA, FCC)
with modern ML techniques (TRTC) for enhanced lithological discrimination Exploration
Breakthroughs: Identifies new mineralization zones in Shishi, Maroi and Drunil valleys -
expanding known mineral potential in collisional belts Validation Protocol: Establishes
rigorous ground truthing through petrography, XRD and spectral analysis. The study builds
upon foundational work in ASTER applications (Ninomiya & Fu, 2003), [48] while addressing
critical gaps in: High-relief terrain mapping challenges, Phyllosilicate mineral discrimination,
Metallogenic potential assessment in orogenic belts. Future research directions include:
Integration with hyperspectral data for improved alteration mapping,.

Bedini (2017) [49] provides a seminal and comprehensive review of hyperspectral
remote sensing applications in mineral exploration, systematically evaluating three decades of
technological advancements and their practical implementation across diverse deposit types.
The study categorizes ore deposits by genetic processes (magmatic, hydrothermal,
sedimentary, supergene). It assesses hyperspectral effectiveness for each, establishing critical
benchmarks for proven applications, documents successful case studies for Kimbetlite/
carbonatite diamond/REE exploration, Hydrothermal deposits (porphyry, epithermal,
VHMS), Sedimentary-exhalative (SEDEX) Pb-Zn-Ag systems, underexplored potentials,
identifies key gaps for Ni-sulfide deposits in mafic/ultramafic rocks, Sedimentary uranium and
MVT Pb-Zn deposits, Lateritic bauxite and banded iron formations, technology assessment,
contrasts capabilities of airborne vs. spaceborne systems, VNIR-SWIR vs. emerging thermal
infrared sensors, Spatial resolution requirements for deposit-scale mapping, etc. This work
builds upon foundational hyperspectral principles while providing the first systematic
framework for matching sensor capabilities to deposit types, optimizing spatial/spectral
resolution tradeoffs. Integrating hyperspectral data with exploration workflows.

Novelty of the Study:

Maiden application of ZY-1E hyperspectral imagery for mineral and lithological
mapping of underexplored ophiolitic belts of Baluchistan. Previously, no such study in
Pakistan has utilized full-range (0.4-2.5 pm) of satellite based hyperspectral data and made use
of diagnostic absorption features of chromite, serpentine, and magnesite within ophiolitic
collections. Further, direct, quantitative comparison of hyperspectral and multispectral sensors
(ASTER, Landsat-8 OLI, Sentinel-2 MSI) under identical geological and validation conditions
allowed us to isolate the role of spectral resolution, particularly the SWIR region, for minerals
discrimination. Unlike earlier research, which only relied on multispectral indices or visual
interpretation, this research integrates diagnostic absorption feature extraction, USGS spectral
library matching, physics-based classifiers (SAM and SFF), machine-learning classification
(Random Forest), and targeted band ratios within a single, unified framework.
Notwithstanding, a rigorous accuracy assessment strategy using known mineral occurrence
point data and lithological maps from the Geological Survey of Pakistan (GSP), providing
statistically defensible validation rarely reported in regional ophiolite studies, is also explained.
Study reveals that ZY1E hyperspectral data achieves substantially higher mineral and
lithological mapping accuracies than multispectral sensors in rugged and inaccessible terrains,
thereby making hyperspectral satellite imagery an operational exploration tool rather than an
experimental approach.

Materials and Methods:
Study Area:

The diverse geology of the Qilla Saifullah district gives rise to a variety of mineral
resources, where deposits of chromite are well known with the Muslim Bagh ophiolites
together with several other minerals of economic interest. Currently, chromite and magnesite
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are actively mined in the district, while other minerals are present as prospects or small
occurrences [50][51]. Potential minerals include Chromite, Magnesite, Manganese, Asbestos,
and Calcite.

The Muslim Bagh ophiolite (earlier called Hindu Bagh) is located in the Zhob Valley
northeast of Quetta and is one of the well-exposed ophiolites of Pakistan. The closure of the
Neo-Tethys finally ended with the collision of the Indian plate with the Asian, Afghan, and
Luth-continental blocks, which is dated at approximately 40 Ma ago [52]. The Muslim Bagh
ophiolite was first reported on maps by Vredenburg (1901), [53]. The Muslim Bagh ophiolite
comprises two main bodies known as Jang Tor Ghar (JTG) and Saplai Tor Ghar (STG). These
two bodies are structurally related and belong to the same ophiolite nappe and overlay a zone
of subophiolitic “melange” and Mesozoic sediments (Hunting Survey Corporation Ltd., 1960)
[12]. The Jang Tor Ghar massif consists of partially serpentinized peridotites (harzburgite and
dunite) and covers an area of about 150 km2. The best preserved series of sub-ophiolitic
metamorphic rocks is located at the north-western side of the Jang Tor Ghar massif [30].

The Eastern Block (Saplai Tor Ghar) has an area of about 600 sq km' showing nearly
a complete ophiolitic sequence, as defined by the Penrose Conference (1972) [54]. Only the
uppermost unit consisting of extrusive rocks and related sediments is missing. The
metamorphic sole below the Saplai Tor Ghar block is lithologically similar to Jang Tor Ghar,
though less complete, and is tectonically sheared off at the top and at the base of the sequence
[55](56].

In the Muslim Bagh ophiolites, the mantle-crust transition section ranges in thickness
from several meters to over one kilometer. It is composed of dunites, chromites, wehrlites,
and troctolites containing pyroxenites and/or gabbros as discontinuous bands or lenses

Legend
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Figure 1. Study area map of research.
Datasets and Software:

Multiple datasets, including hyperspectral to multispectral imagery, USGS spectral
libraries, minerals point data for validation/ ground truthing, and the geological maps of the
Geological Survey of Pakistan (GSP), were used. In contrast, software including ArcMap,
ENVI, and open-source Google Colab for Python coding were also utilized for the
identification of minerals and lithological mapping. To ensure quick analysis by leveraging
available computing resources and avoiding unnecessary data processing, not only were the
unwanted/ bad bands from the hyperspectral dataset eliminated, but also the unnecessary
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bands of multispectral sensors were removed to limit our analysis to minerals detection only.
Time of datasets acquisition also plays an important role in avoiding unwanted cloud cover
and capturing the imagery covering maximum details [58][59]. Considering the fact that our
primary dataset for minerals extraction and lithological mapping was hyperspectral, concerted
efforts were made to acquire multispectral datasets on the same date and time. However,
acquisition of similar data and time imagery of some sensors could not be materialized due to
no coverage during that desired timeframe. It is worth mentioning that old imagery of ASTER
was acquited due to the issuance of NASA advisory/ alert [60] that says ASTER SWIR
detectors got defect since April 2008, and despite rigorous efforts, faults could not be rectified;
therefore, data acquired after April 2008 for ASTER SWIR sensors are not reliable. Hence, a
dataset of old date i.e May 2007, was acquired for ASTER. Details of data acquisition dates,
level of processing performed by the service provider, and details of bands being used are
shown in Table 1. Whereas collective details of all required datasets and their sources are
summarized in Table 2.

Methodology:

A step-by-step comprehensive methodology spanning over data acquisition,
preprocessing, end member extraction, analysis, and finally accuracy assessment was
formulated (Figure 2). Primarily, the methodology consists of these steps ie. (1) Data
acquisition including geological map of Baluchistan and field samples data of minerals in the
form of point data from Geological Survey of Pakistan (2) Data preprocessing (3) Images
stacking (VNIR and SWIR) (4) Endmember Extraction through Minimum Noise Fraction
Transformation (MNFT), Pixel Purity Index (PPI) and n-Dimension Visualization. (5)
Collection of diagnostic absorption features of expected minerals in our study area (6) Spectral
Matching with USGS library (7) Minerals identification & Lithological Zoning based on
alteration zones (8) Accuracy assessment and (9) Formulation of maps for minerals and
lithologies. Details of the datasets acquisition are already explained in para 2.2, whereas a brief
description of the relevant steps being followed is described in the ensuing paragraphs.

Table 1. Datasets acquisition dates, processing levels, and bands details.

Satellites | Acquisition | Processing Useful Bands Removed Bands
Date level
ZY1E 30 Jul 2020 1A 140 (Total bands | VNIR: 63 —76
160) SWIR: 20 — 25 & Bands 50 —
55
ASTER 22 May 2007 1T All 14 bands were | The old dataset of ASTER is
used used due to the introduction
of a defect in the SWIR
sensor since April 2008. No
bands were removed
Sentinel-2 30 Jul 2020 2A 10 bands were used,
08 VNIR & 02
SWIR
Landsat-8 20 Jul 2020 28P 07 bands were used,
5 VNIR & 2 SWIR
Table 2. Summary of all datasets being used and their sources.
Data Type ‘ Description ‘ Source
Satellite Imagery
ZY1E Hyperspectral ZY1E Hyperspectral ZY1E Hyperspectral
ASTER ASTER ASTER
Sentinel-2 (A, B) Sentinel-2 (A, B) Sentinel-2 (A, B)
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Landsat-8 | Landsat-8 | Landsat-8

Spectral Reference Data
USGS Spectral Library | USGS Spectral Library | USGS Spectral Library
Geological Maps Geological Maps Geological Maps
Field Validation Data Field Validation Data Field Validation Data
Software & Tools Software & Tools Software & Tools

ZY | E Hyperspectral

Sentinel-2 Multispectral Geological Maps/ Lithologies |

| 1 Data Collection )‘_l
pul

|

Data I
Preprocessing

Endmember

| ASTER Multispectral

| Ground Truthing/ Minerals Data |

| Landsat-8 Multispectral I

—b[ Geometric Corrections

[ Radiometric Correction

[

[ Atmospheric Correction

-

~

Image
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Bad Band Removal
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)
)
]
)
)

Spectral Smoothing
Qiagnoslic Absorption l-‘eamre)
. : Analysis I
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( Acquisition of Spectral Profiles ) \
| Identification of Minerals — Spectral Feature
Fitting
v

Overlay With Geological Maps &
Minerals Point Data

Accuracy \
— Band Ratios
Assessment
+

Minerals & Lithologies
Maps
Figure 2. The complete methodology flowchart used in the study/ reseatch.
Data Preprocessing:

Data pre-processing is the fundamental step or heart of Remote Sensing before the
commencement of any analysis [61][62][63]. Here, satellite-observed raw Digital Number
(DN) values are converted into meaningful units such as radiance or reflectance, thereby
enabling accurate quantitative analysis and comparison for mineral identification. Pre-
processing steps include:

Geometric Corrections: to rectify spatial distortions in raw imagery and ensure that all
features are accurately georeferenced and align with real-world coordinates for precise
mapping and analysis [64][65]. Geometric corrections details include Projection: UTM,

Zone: 42 N,  Units: Meters, Datum: WGS 1984, and Spatial Resolution: 30m.
Radiometric Corrections: Radiometric error is influenced by sensor calibration, sun
illumination, and atmospheric interference. Therefore, in order to extract distinct spectral
absorption and reflection features of specific minerals, radiometric correction is performed,
which transforms the raw Digital Number (DN) values into accurate radiance values
[66][67][68].

Atmospheric Corrections: To remove the scattering and absorption effects of atmospheric
gases and aerosols and accurately represent the true reflectance properties of the Earth's
surface [69][70][71][72]. In Envi, 02 x Tools exist for Atmospheric Corrections, i.e., QUAC
[73][74] and FLAASH [75][76]. QUAC, an empirical in-scene atmospheric correction, was run
on all images for atmospheric corrections.

Bad Bands Removal: Bad bands are spectral bands that contain little or no useful
information amid severe atmospheric absorption (e.g., water absorption bands) or sensor

[
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malfunctions [77][78][79]. Such bands are removed to prevent the introduction of noise or
erroneous details. These bands could include overlapping bands as well. Accordingly, these
bands are removed before further analysis. Multispectral datasets do not need this step due to

limited spectral coverage. Fig
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Figure 3. Data preprocessing steps (a) Image georeferencing, projection, and spatial
resolution details, (b) Radiometric corrections showing spectral profile transformation, (c)
QUAC Atmospheric corrections with spectral profile of vegetation pixel, (d) Removal of

watet absorption/ band bands.
Image Stacking:

An essential preprocessing step in multispectral and hyperspectral analysis, which
allows spectral signatures to be analyzed across all wavelengths simultaneously by combining
multiple single-band images into a single, multi-layered file, creating a composite dataset
essential for integrated analysis, visualization, and the application of multi-spectral techniques
[80][81] (Ref. 60, 68, 73, and 86 are also relevant). Both hyperspectral and multispectral bands
were combined after pre-processing (Figure 4) to get a single composite imagery for
subsequent detailed analysis.
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Figure 4. Spectral profile of vegetation pixel after stacking VNIR & SWIR images.
End Member Extraction:

Endmember extraction is a process of identifying the pure spectral signatures of
materials from hyperspectral or multispectral imagery [82][83][84][85]. It is something like
finding the ingredient colors in a mixed-color pixel and, hence, helping to map specific
materials across an image. For end members extraction, we followed these 3 steps: 1. Minimum
Noise Fraction Transformation (MNFT) 2. Pixel Purity Index (PPI) 3. N-Dimensional
Visualization. MNF Transformation is the initial step that is applied to reduce data
dimensionality and separate noise from the spectral signal [86][83]. It orders the bands by
signal-to-noise ratio, i.e., effectively concentrating the spectral information into a few clean
MNF bands. MNF curve plots data values, i.e., variance or eigenvalues, on the Y-axis against
component index/ band index on the X-axis. It is a diagnostic output from the MNF
transformation and is commonly used in hyperspectral image processing. The first few
components ie left side of the curve, have high variance and contain most of the signal/
information. Components with low variance, dominated by noise, are subsequently
highlighted on the right side, which highlights the most informative and noisy band details. In
hyperspectral image processing, the MNF curve helps to reduce dimensionality [80] by keeping
only the most informative bands and suppressing noise by removing components having
minimal signal [87]. Consequent upon completion of MNF, Pixel Purity Index (PPI) is
performed on MNF output to identify the spectrally most extreme pixels in the transformed
data, i.e., highly uncorrelated, which are strong candidates for pure endmembers. PPI
iteratively projects n-Dimensional data onto random unit vectors and counts how many times
each pixel falls/ moves at the extreme ends of these projections (same as Ref. 96). Those pixels
that are consistently at extreme ends are considered as pure pixels and are therefore flagged as
potential endmembers [88]. Hence, representing the distinct mineral spectra in our study area.
A total of 10,000 iterations is run to get the purest signals. Accordingly, it is evident that after
10,000 iterations, the curve starts to flatten, i.e., no more distinct pure pixels exist afterwards
[89].

Subsequent to MNF and PPI, n-Dimensional Visualization is performed as part of end
members extraction. It is an interactive environment to visually analyze the pure pixels
identified by PPI and select the conclusive endmembers [90][91]. It allows you to plot the
MNF-transformed data in a multi-dimensional scatterplot, where each axis represents an MNF
band. We selected a 3-dimensional axis for the selection of pixels. Accordingly, the most
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extreme pixels carrying maximum information and no noise are selected as new classes in
ENVI. Extreme pixels highlighted in red indicate the selected purest pixels. Details of the
steps are shown in Figure 5.

It is pertinent to note that multiple studies validate that this visualization technique
allows to rotate and exploring the data cloud, identifying clusters of spectrally similar pure
pixels and manually selecting the most representative endmember spectra for your target
minerals, thereby ensuring accuracy for mapping of minerals and their lithologies. Therefore,
using the same principle and step-by-step procedure, spectra of all sensors were collected. i.e
hyperspectral as well as multispectral.

Diagnostic Absorption Features:

Diagnostic absorption features are unique/ wavelength-specific dips in the reflectance
spectrum of different materials that act as fingerprints, i.e., a primary source for identifying
minerals using hyperspectral remote sensing data [92]. These specific dips or fingerprints arise
from the unique ways electromagnetic radiations interact with the atomic and molecular bonds
within a material [93]. Precise position, depth, width, and unique shape represent specific
minerals or chemical compounds. For example, Serpentine shows a weak dip at 1400 nm and
strong absorption features between 2300 and 2320 nm, which help to identify these minerals.
A detailed summary of diagnostic absorption features of all expected minerals of our study
area is placed in Table 3.
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Figure 5. End member extraction steps (a) MNF Transformation and variance curve
showing most informative bands, (b) MNF transformed image is processed for PPI, and
1000 iterations are run to get pure pixels.

Table 2. Diagnostic absorption features of desired materials.

Material/ Wavelengths (nm) Diagnostic Absorption
Material Features
Serpentine 1400 nm (weak), 2300-2320 nm | Strong doublet in the 2.3 pm
(strong/doublet) region
Chromite 400-500 nm, 1000-1200 nm Broad dip toward shorter A beyond
1100 nm
Magnesite 1890 nm (weak), 2320-2350 nm, 2520 | Sharp 2.3-2.5 um carbonate
nm (strong) absorptions
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Very low reflectance, dip at 850—1000 | Flat dark spectrum across VINIR
nm
Quartz High, flat reflectance in VNIR- | Featureless in VNIR-SWIR; used
SWIR; strong features in TIR (8—10 | as spectral reference
wm)
Kaolinite 1400 nm, 2165-2175 nm, 2200-2210 | Sharp doublet near 2.2 um
nm (doublet)
Montmorillonite | 1900 nm (broad), 2200-2210 nm Broader 2.2 pm feature than
kaolinite
Calcite 1950 nm (weak), 2330-2340 nm, 2550 | 2.34 pum carbonate dip; deeper
nm (strong) than dolomite
Dolomite 1880 nm, 2320-2325 nm, 2520 nm 2.32 um dip (slightly blue-shifted
vs calcite)
Vegetation 450, 670 nm (absorb); 550 nm | Red-edge + high NIR + SWIR
(reflect); rise at 680-750 nm dips at | water absorption
1400, 1900, 2100-2300 nm

Spectral Matching:

Spectral matching is the process of comparing an unknown spectrum (from a pixel in
the image or a lab sample) to a known library of reference spectra, e.g., from the USGS spectral
library, to determine its identity [38]. Spectral matching critically relies on the presence and
characteristics of diagnostic absorption features. Accordingly, based on Geological settings
together with known lithologies of the study area (as acquired from the Geological Survey of
Pakistan), exploration of minerals including chromite, serpentine, magnetite, magnesite,
quartz, kaolinite, montmorillonite, calcite, and dolomite was envisaged. First of all, spectral
profiles of individual minerals duly matching the USGS library were collected, and finally, the
cumulative spectra were prepared. Separate spectral libraries for the USGS library and
individual spectra of expected minerals in our study area, using ZY1E satellite imagery and
multispectral datasets, were prepared.

Minerals Identification and Lithologies Zoning:

Based on peculiar diagnostic absorption features and spectral matching [94], spectral
libraries of pixels extracted from hyperspectral and multispectral imageries are prepared
[95]]96]. These libraries served as training datasets for subsequent classification and mapping
of minerals and lithologies. Traditionally, geologists used to identify lithologies through field
observations and physical samples, followed by geochemical analysis [97]. Nevertheless, owing
to acute difficulties in accessing hilly, rugged terrain areas, limited resources, and security
threats, physical visits are very difficult [98]. Therefore, using a verified means of Remote
Sensing, the principle of alteration minerals is used for minerals & lithologies identification.
In geology, alteration is the mineralogical as well as chemical alteration of a rock amid its
interaction/ reaction with hydrothermal fluids, heat, or gases, which leads to the formation of
distinct alteration minerals & lithologies serving as fingerprints or pathfinders to discover
underlying original/ actual deposits. The most common alteration types, their key minerals,
and lithological settings are summarized in Table 4. A geological map showing the lithologies
of Baluchistan province was acquired from GSP in JPEG format and then digitized (shapefile)
in ArcMap. Thereafter, a lithological map was created having different polygons showing
different lithologies of the study area (Figure 6) in line with GSP provided geological map of
Pakistan. Most of the areas contain ophiolites, limestone, sandstone, and shale types of
lithology.

Table 4. Alteration minerals types and common settings.

Alteration Type | Key Minerals ‘ Common Setting

December 2025 | Vol 7 | Issue 4 Page | 3241




OPEN a ACCESS

International Journal of Innovations in Science & Technology

Potassic (K-silicate) | K-feldspar, Biotite, Magnetite, Quartz Porphyry Cu-Au core
Phyllic (Sericitic) Sericite, Quartz, Pyrite, Chlorite Porphyry halo
Propylitic Chlorite, Epidote, Calcite, Albite, Hematite | Distal ore halo
Argillic Kaolinite, Montmorillonite, Illite Shallow epithermal
Advanced Argillic Alunite, Pyrophyllite, Dickite, Quartz High-sulfidation epithermal
Silicification Microcrystalline Quartz, Chalcedony, Opal | Veins/Stockworks
Carbonatization Calcite, Dolomite, Ankerite, Siderite Shear zones/Greenstones
Greisenization Quartz, Muscovite, Topaz, Fluorite Sn, W, Mo deposits
Skarn Formation Garnet, Pyroxene, Epidote, Wollastonite Intrusion-carbonate contact
Chloritization Chlorite, Epidote, Actinolite Propylitic zones
Serpentinization Chrysotile, Lizardite, Antigorite Ultramafic rocks
Hematitization Hematite, Goethite Oxidized zones

Results:

Efficacy of hyperspectral (ZY1E) vis-a-vis multispectral (ASTER, Sentinel-2,

Landsat-8) datasets for alteration minerals detection as well as lithological mapping was
evaluated in the Qilla Saifullah district with a deep focus on the Muslim Bagh ophiolite
complex. Spectral signatures were collected for each imagery (training samples) and different
classification/ minerals identification techniques, i.e., Spectral Angle Mapper (SAM), Spectral
Feature Fitting (SFF), Support Vector Machine (SVM), Random Forest (RF), and Band Ratios
were used, particularly for ZY1E/ hyperspectral dataset. However, for multispectral datasets,
SAM, SFF, and Band Ratios were used for the identification/ extraction of minerals.
Continuous spectral coverage of ZY1E hyperspectral imagery, i.e., 400nm to 2500nm (Table
5), proved convenient for near actual/ perfect extraction of spectral profiles of expected
minerals. A comparative chart (Figure 7) showing spectral coverage of all datasets used reveals

the absence of a vast SWIR region in multispectral image

S
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Figure 6. a. Geological Survey of Pakistan provided a geological map, b. Digitized study
area map with lithologies.
Table 3. ZY1E satellite specifications.

Satellite Payloads ZY1E
Launch date 2019-09-12
Orbit altitude (km) 778

Number of bands

76 (VNIR), 90 (SWIR)

Spectral range (um)

0.4-1.0 (VNIR), 1.0-2.5 (SWIR)

Spectral resolution (nm)

10 (VNIR), 20 (SWIR)

Spatial resolution (m) 30
Revisit period (days) 55
Swath width (km) 60

Signal-to-noise ratio 2240 (0.4-0.9 pm)
(SNR) >180 (0.9-1.75 um)
>120 (1.75-2.50 pm)
VNIR (0.4-1.0 pm) SWIR (1.0-2.5 pim)
ZY1E Hyperspectral
ASTER : 2 a SHEE
Sentinel-2 A 513 2 o
1 I
Landsat 8 H H 5
|
U,ISU U,I'."S 1.60 1,‘25 1.50 1.3’5 2.I00 2.3!5 2.50
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Figure 7. Comparative chart showing spectral coverage of all datasets being used in
research.

A spectral library of expected minerals in our study area was generated using diagnostic
absorption features and spectral matching principles, followed by classification using SAM,
SVM, and RF. Spectral profiles of USGS and ZY1E imageries are shown in Figure 8. Ground
truthing data (point data) acquired from the field survey by GSP was overlaid on the classified
images to visualize how many mineral points (field survey data) exactly fall on classified
minerals. SAM showed strong performance due spectral based classification. Nevertheless,
SVM and RF also yielded higher accuracy against tuned parameters. For minerals classification,
81.82% accuracy was achieved, 86.11% accuracy was observed towards lithologies
classification. Here, SAM turned out to be the best classifier with 81.82% accuracy. A
comparative table showing different classifiers' accuracy and kappa coefficients is shown in
Table 6. It is to be noted that the spatial resolution of ZY1E imagery is 30m, and each pixel
and its spectral profile were generated of 30m ground distance. Each pixel represents a 30m x
30m area. Whereas ground sampling was done on small points (2-3m distance). Hence, it is
deduced that low spatial resolution is one of the reasons for low accuracy for mineral
classification. By increasing the spatial resolution, accuracy could be improved effectively.
Minerals and lithology maps were also generated (Figure 9) from ZY1E imagery. Additionally,
SFF and band ratios were also used to ascertain the minerals' presence through different
techniques. It focuses on the depth and shape of absorption features in mineral-diagnostic
wavelengths, rather than the entire spectral curve. Higher Scale value & Low RMS values are
desired for accurate identification of minerals. Results of SFF and band ratios also validate the
presence of desired minerals in our study area. Montmorillonite, Kaolinite, Chromite, and
Magnesite showed higher scale values. SFF classification results for ZY1E are shown in Table
7. Band ratio showed excellent results for the identification of magnesite, magnetite,
serpentine, and chromite. A detailed summary of band ratios/ indices along with wavelengths
for hyperspectral and multispectral datasets is shown in Table 8. Only hyperspectral covers
the desired minerals' diagnostic absorption wavelength range. Comparative assessment of
band ratios results is also shown in Figure 12.
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Figure 8. Spectral Libraries a. Spectral profiles of expected minerals, b. USGS Spectral
library of expected minerals.
Table 6. Comparative summary of different classifiers' accuracy.

Classifier | Accuracy | Kappa Factor
Original SAM | 73.91 % 0.636
Initial RF 72.73 % 0.633
Tuned RF 63.64 % 0.532
Tuned SVM 81.82 % 0.761
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Figure 9. Maps generated using spectral angle mapper classifier, a. ZY1E minerals map, b.
ZY1E lithology map.
Table 4. SFF classification (ZY1E) showing scale and RMS values, generated using spectral
signatures.
Mineral Scale RMS
MIN | MAX | MEAN | SD MIN | MAX | MEAN | SD
Quartz 0.15 3.00 1.01 0.17 0.01 0.01 0.09 0.06
Serpentine 0.10 2.23 0.60 0.17 0.00 0.45 0.12 0.05
Magnetite 0.12 2.63 0.87 0.16 0.00 0.65 0.12 0.07
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Magnesite 0.16 3.24 1.06 0.19 0.00 0.57 0.09 0.05
Chromite 0.13 2.86 0.94 0.17 0.00 0.58 0.09 0.05
Vegetation 0.10 1.79 0.28 0.10 0.00 0.01 0.23 0.04

Kaolinite 0.15 3.49 1.00 0.25 0.00 0.48 0.11 0.04
Calcite 0.12 2.50 0.85 0.15 0.00 0.65 0.11 0.05
Dolomite 0.10 2.32 0.79 0.14 0.00 0.65 0.11 0.07
Montmorillonite | 0.17 3.76 1.11 0.26 0.02 0.49 0.10 0.04

Among multispectral imageries, except for ASTER, the remaining multispectral
sensors (Sentinel-2 and Landsat-8) could not identify the expected minerals with higher
accuracy in our study area due to limited SWIR coverage. ASTER proved to be the most
effective dataset due to its six SWIR bands, enabling superior detection of OH-, Al-, and
carbonate-bearing minerals. Serpentine, magnetite, carbonates (calcite, dolomite, magnesite),
and uniquely enabling quartz identification due to its TIR coverage proved helpful in ASTER
Imagery. Landsat-8 delivered balanced yet moderate performance, detecting carbonates
(calcite, dolomite, magnesite) and Mg—OH minerals (serpentine) reasonably well but was
limited by its broader bands and shorter SWIR cutoff at 2.30 pm. Sentinel-2 performed best
as a complementary dataset, offering acceptable detection for clays (kaolinite,
montmorillonite) and some carbonates (calcite, dolomite), but underperforming for minerals
with absorption features beyond 2.19pum. Mineral maps using spectral profiles from these
multispectral sensors/ images were also generated (Figures 10 to 12). Spectral Feature Fitting
(SFF) and band ratios further confirmed ASTER’s relative advantage. SFF results (Scale and
RMS values) are shown in Tables 8 to 9. Higher scale value and low RMS value indicate better
detection of minerals. Overall, magnesite, chromite, and magnetite were identified accurately.
Band ratios/ indices (alteady shown in Table 8) are shown in Figure 13. These results validate
the absence of precise identification of spectral profiles in multispectral datasets due to limited
bands/ spectral coverage. Band ratios proved helpful for chromite and serpentine
identification. Alteration minerals were used as proxies to delineate the lithologies of the study
area. Overall comparison of all sensors with respect to performance/ detection of minerals
(rated out of 10) is also explained in Figure 14.
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Table 5. Band ratios/ indices of all datasets being used in research.

Minerals ZY1E ASTER Sentinel-2 Landsat-8
Band Ratios Wavelengths Band Wavelengths Band Wavelengths Band Wavelengths
Ratios Ratios Ratios
Chromite b21/b6 600/450 b2/b1 660/560 b4/b3 - b4 /b2 562/443
Magnetite (b5-b10)/ (1100 -1200)/ b5/b4 - (b4/b2) - (b10-b11)/ 10.89-
(b5+b10) (1100 + 1200) (b10+b11) 12.00/
10.89-12.00
Magnesite (b67-b72)/ (2340 -2440)/ (b8-b9)/ (2330-2395/ | (b11/b12) - b6/b7 -
(b67+b72) (2340 + 2440) (b8+b9) (2330+2395)
Serpentine (b60-b49)/ (2200-2000)/ (b6+b9)/ - (b11/b12) - (b6+b7)/b5 -
(b60+b49) (2200+2000) (b7+b8)
Quartz (b55-b60)/ (2100 -2200)/ (b11/ . b12-b11/ | 2190-1610/ - -
(b55+b60) (2100 + 2200) (b10+b12)) b12+b11 | 2190+1610
Kaolinite (b144-136)/ (2200-2100)/ b4/b6 - b11/b12 - - -
(b144+b130) (2200+2100)
Montmorillonite (b144-151)/ (2200- 2300)/ b7/b6 - b11/b12 - - -
(b144+b151) (2200+2300)
Calcite (b154-163)/ (2340 -2450)/ (b6+b8) /b7 - (b11/b12 - b6/b7 -
(b154+b163) (2340+2450)
Dolomite (b154-163)/ (2340-2450)/ b8/b7 - - - - -
(b154+b163) (2340 + 2450)
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Figure 11. a. Spectral signatures collected from Sentinel-2 imagery, b. Minerals map
generated using spectral angle mapper classifier (Sentinel-2)
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Figure 12. a. Spectral signatures collected from Landsat-8 imagery, b. Minerals map
generated using spectral angle mapper classifier (Landsat-8)
Table 9. Spectral Feature Fitting classification (ASTER) showing scale and RMS values.

Mineral Scale RMS
MIN | MAX | MEAN | SD | MIN | MAX | MEAN | SD
Quartz 0.15 | 3.00 1.01 0.17 | 0.01 | 0.61 0.09 0.06
Serpentine 0.10 | 2.23 0.60 0.17 | 0.00 | 0.45 0.12 0.05
Magnetite 0.12 | 2.63 0.87 0.16 | 0.00 | 0.65 0.12 0.07
Magnesite 0.16 | 3.24 1.06 0.19 | 0.00 | 0.57 0.09 0.05
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Vegetation 0.10 | 1.79 0.28 ]0.10| 0.00 | 0.61 0.23 | 0.04
Kaolinite 0.15 | 3.49 1.00 [0.25| 0.00 | 0.48 0.11 ] 0.04
Calcite 0.12 | 2.50 0.85 ]0.15] 0.00 | 0.64 0.12 | 0.07
Dolomite 0.10 | 2.32 0.79 10.14| 0.00 | 0.65 0.11 |0.07
Montmorillonite | 0.17 | 3.76 1.11 026 | 0.02 | 0.49 0.10 | 0.04
Table 10. Spectral Feature Fitting classification (Sentinel-2) showing scale and RMS values.

Mineral Scale RMS
MIN | MAX | MEAN | SD | MIN | MAX | MEAN | SD
Quartz 0.00 | 28.73 | 0.85 ]1.96| 0.00 | 0.28 0.01 |0.01
Serpentine 0.00 | 14.51 036 | 0.70 | 0.00 | 0.23 0.01 |0.01
Magnetite 0.00 | 11.63 | 0.19 ]0.57| 0.00 | 0.28 0.01 ]0.02
Magnesite 0.00 | 19.13 | 0.71 ]0.75| 0.00 | 0.33 0.01 |0.02
Chromite 0.00 | 18.77 | 0.36 ] 0.53 | 0.00 | 0.31 0.01 |0.02
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Table 11. Spectral Feature Fitting classification (Landsat-8) showing scale and RMS values.
Mineral Scale RMS
MIN | MAX | MEAN | SD | MIN | MAX | MEAN | SD
Quartz 0.15 | 3.00 1.01 [0.17 | 0.01 | 0.61 0.09 | 0.06
Serpentine 0.10 | 2.23 0.60 ]0.17] 0.00 | 0.45 0.12 | 0.05
Magnetite 0.12 | 2.63 0.87 10.16| 0.00 | 0.65 0.12 | 0.07
Magnesite 0.16 | 3.24 1.06 [ 0.19 | 0.00 | 0.57 0.09 | 0.05
Chromite 0.13 | 2.86 094 10.17] 0.00 | 0.58 0.09 | 0.05
Vegetation 0.10 | 1.79 0.28 ]0.10] 0.00 | 0.61 0.23 0.04
Kaolinite 0.13 | 1.87 094 10.17] 0.00 | 0.68 0.09 | 0.05
Calcite 0.10 | 1.32 0.60 ]0.17] 0.00 | 0.65 0.12 | 0.05
Dolomite 0.12 | 1.53 0.87 10.16] 0.00 | 0.85 0.12 | 0.07
Montmorillonite | 0.11 | 1.66 0.28 ]0.10] 0.00 | 0.64 0.23 ] 0.04
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Discussion:

Although ASTER provided a cost-effective alternative for alteration minerals
mapping, yet hyperspectral imagery outperformed multispectral sensors (ASTER, Sentinel-2
& Landsat-8) in mineral discrimination due to continuous, high-spectral-resolution coverage
(0.4pum — 2.5um) across the VNIR and SWIR regions using Diagnostic Absorption Features
of ophiolitic minerals. Ophiolites show natrow, mineral-specific absorption features/ bands,
which cannot be distinguished through multispectral sensors due to limited spectral coverage.
Whereas, hundreds of contiguous narrow bands of hyperspectral sensor (ZY1E) enable us to
precisely extract absorption band position, depth, width, and asymmetry through diagnostic
absorption feature analysis. Thereby, allowing for direct spectral matching with laboratory-
measured reference spectra from the USGS spectral library. Therefore, reducing spectral
mixing and misclassification. Additionally, ZY1E imagery combined with physics-based
spectral classifiers such as Spectral Angle Mapper (SAM) and Spectral Feature Fitting (SFF)
gives more precise results because these classifiers rely on full spectral shape rather than band-
integrated reflectance values. These classifiers are inherently constrained when applied to
multispectral datasets due to insufficient spectral dimensionality. It also implies that although
machine-learning approaches (e.g., Random Forest) give improved outcomes for multispectral
classification, their performance remains limited due to the absence of key diagnostic SWIR
bands. Thus, it further shows that complex algorithms cannot compensate for inadequate
spectral resolution. The band ratio approach proved a rapid and effective tool for preliminary
detection, but lacked hyperspectral precision. Key findings of this research can be summarized
as (1) Hyperspectral (ZY1E) imagery is indispensable for high-accuracy mineral and
lithological mapping in ophiolitic terrains. (2) ASTER provides the most reliable multispectral
alternative when hyperspectral data is unavailable. (3) Integration of SAM, SVM, RF, and SFF
enhances classification robustness. (4) Diagnostic absorption features and spectral libraries
remain critical for validating remote sensing mineral maps. Hence, it is established that
hyperspectral datasets serve as a benchmark for mineral exploration in inaccessible regions,
with multispectral data serving as complementary resources.
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Recommendations:

Future studies should incorporate ground-based spectral calibration using handheld
spectroradiometers and laboratory-analyzed rock samples to develop context-specific
reference spectra that better represent mineral aggregates and improve classification reliability.
Establishing a local spectral library at the institutional level (e.g., NUST) or through industry
collaboration is strongly recommended to support long-term mineralogical research and
advanced 3D mapping initiatives in Pakistan. Emerging hyperspectral missions such as
EnMAP and EMIT, with improved spectral fidelity, should be prioritized for detailed mineral
discrimination, while ASTER can serve as a cost-effective first-line dataset for preliminary
exploration and target prioritization. Finally, broader access to licensed geospatial software
(e.g., ENVI) and its integration with GIS platforms such as ArcGIS would enable the
development of customized analytical workflows, enhancing operational efficiency and
exploration decision-making.

Conclusion:

Comparative efficacy of hyperspectral (ZY1E) and multispectral (ASTER, Landsat-8,
Sentinel-2) datasets is demonstrated in this study for mineral detection and lithological
inference. Comprehensive preprocessing, i.e., geometric, radiometric, and atmospheric
corrections, followed by dimensionality reduction (MNFT, PPI, nD Visualization) ensured
reliable data quality. Among classification techniques, both Spectral Angle Mapper (SAM) and
Support Vector Machine (SVM) yielded promising results, with SVM achieving the highest
overall accuracy (81.82%) against mineral point data. Lithological classification, inferred
through hydrothermal alteration minerals, attained an accuracy of 86.11%. Secondary
methods, including Spectral Feature Fitting (SFF) and band ratios, further strengthened these
results, particularly for clays, carbonates, and Mg—OH minerals.

Sensor-wise, ZY1E proved superior due to its contiguous narrow spectral bands (0.4—
2.5 pm), enabling precise species-level mineral identification. Among multispectral sensors,
ASTER emerged as the strongest alternative candidate offering consistent detection of
carbonates, Mg—OH minerals, and a unique capability for quartz through its TIR coverage.
Owing to limited spectral coverage, Landsat-8 and Sentinel-2 demonstrated complementary
participation against minerals determination; however, these sensors could be helpful against
spatial and temporal coverages for other applications. Collectively, these findings reiterate that
strategic integration of hyperspectral and multispectral datasets provides a cost-effective and
reliable framework for mineral exploration, particularly in geologically complex terrains. It is
worth mentioning that these findings also align with previous researches, hence, emphasizing
the diagnostic power of hyperspectral sensors (Kruse et al., 1993; Clark et al., 2003) [99], the
utility of ASTER [100] in alteration mineral mapping (Rowan & Mars, 2003; Pour & Hashim,
2015), and the continued importance of Landsat and Sentinel-2 for broad-scale geological
applications (Van der Meer et al., 2012; Kirsch et al., 2018) [101][102].
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