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aluchistan, the largest province of Pakistan, hosts abundant metallic and non-metallic 
mineral resources, particularly copper, gold, chromite, lead-zinc, and rare earth 
elements, making it a strategic region for mineral exploration and geological 

characterization. Despite such potential, mineral exploration in the province’s ophiolitic belts 
remains limited by sparse ground surveys, logistical challenges, and incomplete spatial 
coverage. To address this gap, the present study aimed to (1) Key ophiolitic minerals 
(chromite, serpentine, magnesite) and associated lithologies with high spectral precision, and 
(2) Compare hyperspectral and multispectral sensors for mineral identification and mapping. 
The methodology integrated ZiYuan-1 02D (ZY-1E) hyperspectral satellite data (spectral 
range 0.4–2.5 µm) with advanced spectral analysis techniques i.e. Diagnostic Absorption 
Feature extraction, Spectral Matching against the United States Geological Survey (USGS) 
Spectral Library, and multiple classifiers including Spectral Angle Mapper (SAM), Spectral 
Feature Fitting (SFF), Random Forest (RF), and targeted band ratios/indices. Mineral point 
data and lithological maps from the Geological Survey of Pakistan (GSP) were used for 
accuracy assessment. For comparative analysis, multispectral datasets from ASTER, Landsat-
8 OLI, and Sentinel-2 MSI were processed, with a focus on the efficacy of SWIR coverage for 
mineral detection. Results indicated that ZY-1E hyperspectral data achieved 81.82% mineral 
classification accuracy and 86.11% lithology mapping accuracy, with Band Ratio techniques 
emerging as a rapid detection tool. Among multispectral datasets, ASTER outperformed 
Landsat-8 and Sentinel-2 due to its six SWIR bands, enabling superior discrimination of OH-
, Al-, and carbonate-bearing minerals. The study concludes that hyperspectral imagery, due to 
its high spectral resolution, is indispensable for precise mapping of minerals and lithology in 
rugged, inaccessible terrains. However, ASTER remains a cost-effective alternative for 
targeted mapping of alteration minerals where hyperspectral coverage is unavailable. It is 
recommended to integrate hyperspectral mapping in strategic exploration campaigns to 
accelerate mineral resource assessment in underexplored regions of the world. 
Keywords: Ophiolites, Hyperspectral, Multispectral, Diagnostic Absorption Features, 
Alteration Minerals, USGS Spectral Library. 
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Introduction: 
At the time of independence of Pakistan back in August 1947, it was perceived that 

Pakistan lacks in mineral potential, despite having occurrences of large deposits of salt, 
gypsum, limestone, marble, etc [1] The geological community of Pakistan should be credited 
for the discovery of major gas fields in Baluchistan, uranium from the foothills of the Sulaiman 
Range in Punjab and southern Khyber Pakhtunkhwa (KP), barite from Baluchistan and KP, 
chromite and China clay in KP, famous emerald in KP, copper-gold and lead-zinc in 
Baluchistan and KP. Numerous studies have been conducted showing the potential of 
Pakistan’s economic minerals [2], with abundant resources at various locations [3][4][5][6]. 
Moreover, recent studies and reports [7][8] present a comprehensive detail on the mineral 
potential of Pakistan. Additionally, province-wise minerals as well as basin details have also 
been updated [9]. 

Baluchistan is abundantly enriched with metallic as well as non-metallic resources, 
making it a focal point for multiple minerals, ranging from economic to Rare Earth Elements 
(REE) and precious metals [10][11][1]. The Baluchistan basin consists of Cretaceous to recent 
sediments, as well as metamorphic and igneous rocks. The first pioneering geological work in 
the Baluchistan Basin was done by [12] where mapping of the first ever sedimentary, igneous, 
and metamorphic rock units across large tracts; delineation of major fold-thrust belts and 
mélanges was performed. In lines with production report from Baluchistan during 2007-08 
[13], 36,583 tons (t) copper, 245 t antimony, 49,268 t barite, 331 t basalt, 33,815 t chromite, 
25t clay, 2,325,220 t coal, 291 t granite, 259 t rhyolite, 134 t diorite, 183 t gabbro, 2431 t 
serpentinite, 98 t gneiss, 323 t quartzite, 360 t Sulphur, 176 t dolomite, 424 t fluorite, 75 t 
galena, 15,808 t iron ore, 727,951 t limestone, 70,740 t marble (onyx), 267,312 t marble 
(ordinary), 790 t magnesite, 1385 t manganese, 5060 t pumice and 1,306,764 t shale have been 
reported. It is pertinent to mention that what has been found so far is still too small than what 
is expected to be discovered, which indeed is not too distant future [14]. 
Remote Sensing and Minerals Exploration: 

A convenient and cost-effective approach for mineral deposits exploration is the use 
of remote sensing [15][16]. Lithological mapping, together with mineralized zone detection, 
has proven the benefits of remote sensing data [17][18][19][20][21]. The use of spatial data for 
tracing and analyzing lithological maps to recognize the geological characteristics associated 
with the target mineralization is the key step in the mineral exploration process [22]. Generated 
maps include a variety of features, including minor and major structures, alteration types, 
diagnostic minerals, and lithological units [23][24][25]. Several workers tested different remote 
sensing techniques on the Oman ophiolite (Abrams and Rothery, 1988), [26], ophiolites in 
Egypt [27] and ophiolites in the Yarlung suture zone in Tibet [28] using mainly Thematic 
Mapper data sets. Ninomiya (2002) [29] used ASTER (Advanced Spaceborne Thermal 
Emission and Reflection Radiometer) data to discriminate carbonate, mafic, and ultramafic 
rocks. But there is not a single good technique to map ophiolites, mainly because ophiolites 
consist of a wide range of lithologies. Moreover, secondary minerals produced in different 
climatic zones, along with variable amounts of vegetation, may cover the characteristic spectral 
signals of the rocks.  
Geological Settings of Baluchistan: 

Geologically, Baluchistan is dominated by accreted fragments of the Tethyan belt, 
comprising ophiolites, sedimentary basins, and magmatic arcs [30]. The Tethyan collision belt 
consists of the Mediterranean, the Middle East, the Himalayas, and Southeast Asia, and 
includes at least 20 ‘megacities’ and hosts more than half of the world’s population [31]. As 
described in Ref 1, the western Indus suture is a suture between the Baluchistan basin (a part 
of Tethys) and the Indus Basin (a part of Gondwana). The western Indus suture is jointed just 
east of the Baluchistan basin, which is the reason being described here. It includes the 



                                 International Journal of Innovations in Science & Technology 

December 2025|Vol 7 | Issue 4                                                          Page |3229 

ophiolitic mélanges and sedimentary Mesozoic and Cenozoic sedimentary sequences. The 
ultrabasic rocks consist of altered pyroxenite, serpentinized peridotite, and amorphous and 
sheared serpentinite. The rocks of intermediate compositions are diorite and gabbro. The 
gabbro is a dark green rock spotted with large crystals of white feldspar, which is kaolinized. 
Some types are pegmatitic and exhibit crystals up to 4 inches across of biotite and pyroxene. 

Muslimbagh Ophiolite Complex consists mainly of serpentinized ultrabasic rocks that 
include saxoniter, dunite, and pyroxenite. It also consists of dolerite, gabbro, and diorite, but 
these seem to be slightly later phases. The age is Late Cretaceous-Early Paleocene [32][33][34]. 

Chromite was first reported by R. H. Nagell [35] and its mining was started in 1903 in 
the Khanozai area and extended to Muslimbagh in 1915. In the early twenties, mining started 
in the Sra Salwat area, 29 km south of Muslimbagh. The following deposits, like Muslimbagh 
chromite (Qila Saifullah District) and Wad, Sonaro, and Ornach chromite (Khuzdar District), 
are significant [36]. The Muslim bagh area chromite (Qila Saifullah District) extends from 
Gwal to Nisai, about 100 km. This region boasts the most extensive deposits in Pakistan. 
Hyperspectral Imagery and Minerals Exploration: 

Since the inception of hyperspectral technology towards identification and exploration 
of minerals back in 1985 [37][38] (e.g., Goetz and Srivastava, 1985; Kruse, 1988), numerous 
studies and research have been conducted along with field validations to extract the naturally 
occurring minerals most efficiently. Ahmad et al. (2025) [39] ZY1-02D hyperspectral satellite 
imagery, which offers moderate spectral and high spatial resolution to perform lithological 
mapping in the Kohat–Pothohar Plateau, located along Pakistan’s Main Boundary Thrust 
(MBT). The study combined spectral indices, false color composites (FCC), principal 
component analysis (PCA), support vector machine (SVM) classification, and spatial–spectral 
transformer (SSTF) deep learning models to classify key lithological units. PCA significantly 
enhanced lithological discrimination by extracting the highest eigenvalues. The generated 
lithological maps, validated through field surveys and laboratory analyses (XRD, 
photomicrographs, spectral profiles), successfully identified limestone, gypsum, sandstone, 
clay, and conglomerates. SVM and SSTF classification methods achieved high accuracies of 
89.7% and 92.1%, respectively, demonstrating strong reliability in matching mapped geological 
boundaries. The study highlights the effectiveness of ZY1-02D hyperspectral data combined 
with machine and deep learning approaches for accurate geological mapping, with direct 
applications in mineral, oil, gas, coal, and uranium exploration. 

Tong et al. (2023) [40] demonstrated that hyperspectral remote sensing technology 
enables rapid extraction of alteration minerals and linear structures based on spectral 
characteristics. The study areas of Zhaojinggou and Hutoushan in Wuchuan County, Inner 
Mongolia, were selected. Using ZY-1-02D satellite hyperspectral data, alteration minerals and 
linear structures were extracted based on spectral analysis techniques. The spatial distribution 
characteristics of these features were analyzed. Eight alteration minerals (hematite, low-
aluminum sericite, medium-aluminum sericite, lepidolite, biotite, chlorite, carbonate, and 
kaolinite) and 127 linear structures were extracted. These features were closely related to 
lithology, concentrated in specific geological units. Linear structures were distributed along 
tonal boundaries and linear anomalies. Six prospecting areas were delineated, four of which 
coincided with known ore veins, confirming the reliability of remote sensing for mineral 
exploration.  

Saeid Asadzadeh et al. (2024) [40] demonstrated the enhanced mineral mapping 
potential of the Environmental Mapping and Analysis Program (EnMAP) satellite, which 
captures 224 contiguous spectral bands between 420–2450 nm at a 30-meter spatial resolution. 
Unlike conventional multispectral sensors (e.g., ASTER, Sentinel-2), which are limited by 
broad spectral bands, EnMAP’s fine spectral sampling (8.1 nm in VNIR and 12.5 nm in SWIR) 
enables precise identification of mineral absorption features. The authors applied a polynomial 
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fitting technique to EnMAP’s Level 2A data to extract diagnostic absorption parameters, 
including minimum wavelength, depth, width, and asymmetry for key alteration minerals in 
the Reko Diq porphyry Cu-Au deposit (Chagai Belt, Pakistan). This study successfully mapped 
white micas (2195–2210 nm), chlorite, epidote, calcite, kaolinite, gypsum, jarosite, and 
ferric/ferrous iron minerals, revealing distinct zonation patterns associated with 
mineralization. Notably, Al-rich white micas (shorter wavelengths) were found proximal to 
mineralized zones, while ferrous iron and chlorite-epidote-calcite assemblages marked potassic 
and propylitic alteration zones, respectively. The study underscored EnMAP’s superiority over 
multispectral sensors in delineating alteration mineralogy, providing a robust tool for porphyry 
copper exploration in exposed terrains worldwide. 

Mahboob et al. (2024) [41] demonstrated the efficacy of integrating satellite remote 
sensing data with ML algorithms, specifically Random Forest (RF), Support Vector Machine 
(SVM), and Convolutional Neural Networks (CNN), for predictive modeling of copper (Cu) 
deposits in Pakistan’s North Waziristan region. The critical gap in mineral exploration, the 
underutilization of ML techniques in processing multi-parameter datasets, including 
hydrothermal alteration maps derived from satellite imagery and limited field data, is 
highlighted in the study. By developing nine predictor maps and evaluating model 
performance using confusion matrices, statistical measures, and ROC curves, they found that 
the RF algorithm outperformed SVM and CNN in predictive accuracy, consistency, and 
interpretability. Notably, the RF model successfully delineated high-potential zones that 
aligned with known Cu deposits, thereby validating its robustness for targeting exploration. 
Their prospectivity map, which classified regions into low to very-high potential zones, led to 
the discovery of a new deposit, hence underscoring the practical utility of their approach. 

Jan et al. (2024) [42] proposed a hybrid 1-Dimensional CNN-SVM model for mineral 
classification using Sentinel-2 multispectral data, achieving a classification accuracy of 95.3% 
with a polynomial kernel degree of 12. Their study demonstrated that combining CNN-based 
feature extraction with SVM classification outperformed traditional methods such as ANN-
Softmax (93.4% accuracy) and CNN-RF (94.01% accuracy) in delineating carbonate minerals, 
rocks, vegetation, water, and urban areas in Pakistan’s MARDAN and BUNER regions. The 
hybrid model’s success was attributed to SVM’s ability to capture complex, non-linear 
relationships in high-dimensional spectral data, while CNN layers efficiently extracted 
discriminative features from 1D reflectance values. This work aligns with broader trends in 
mineral exploration where ML/DL hybrids are increasingly adopted to address limitations of 
conventional methods. 

Anees et al. (2022) [43] demonstrated the efficacy of integrating ASTER (multispectral) 
and Hyperion (hyperspectral) data in mapping lithological units and identifying mineralized 
zones in Chitral, NW Pakistan. This study employed band ratios, spectral indices (e.g., calcite, 
dolomite, hydroxyl, ferrous), principal component analysis (PCA), and spectral angle mapper 
(SAM) to discriminate rock types and alteration minerals. ASTER’s superior spectral 
resolution enabled mapping of carbonates and granites, while Landsat-8’s radiometric strength 
distinguished metamorphic rocks. Hyperion’s hyperspectral data identified alteration minerals 
such as montmorillonite, muscovite, and pyrite, pinpointing potential mineralization zones in 
the Drosh-Shishi Valley. The study highlighted the complementary strengths of multi-sensor 
data, with ASTER excelling in carbonate detection and Hyperion in alteration mineral 
mapping, despite challenges like topographic noise and spectral mixing. 

Lobo et al. (2021) [44] evaluated the effectiveness of HSI combined with ML 
classifiers, Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), and 
Random Forest (RF) for distinguishing key minerals (e.g., cassiterite, wolframite, chalcopyrite) 
in tin–tungsten deposits. Their study compared two imaging scenarios: (1) laboratory-based 
HSI under controlled conditions and (2) a simulated mine face scan replicating field 
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conditions. Key findings include: Laboratory HSI achieved 98% classification accuracy, 
underscoring the precision of hyperspectral data under ideal conditions. Performance declined 
slightly when analyzing spectral ranges (450–950 nm and 950–1650 nm) independently and 
dropped significantly (74.5% accuracy) for conventional RGB imagery, thereby highlighting 
the limitations of broadband sensors. In the simulated mine face scan, accuracy remained high 
(85%), though reduced spatial resolution and field-like conditions introduced challenges, 
particularly in distinguishing cassiterite from wolframite (70% user accuracy). Random Forest 
(RF) marginally outperformed LDA and SVM in classification robustness, with a lumped ore 
category achieving 94.9% user accuracy, demonstrating practical utility for ore mapping. 

Khan et al. (2018) [45] highlight the evolution of HSI over three decades, emphasizing 
its enhanced spatial, spectral, and temporal resolutions that enable precise identification of 
materials with visually similar but spectrally distinct signatures. The review categorizes modern 
HSI applications into: (1) food quality/safety inspection, where it detects contaminants and 
chemical composition; (2) medical diagnostics, including surgical guidance and disease 
detection; (3) forensic science, particularly document forgery detection; (4) defense/security 
for threat identification; and (5) remote sensing applications like precision agriculture and 
water resource management. Notably, the authors underscore the growing role of deep 
learning in advancing HSI analysis, particularly for complex tasks such as forgery detection in 
questioned documents. This synthesis aligns with broader trends in HSI research. The review 
also identifies gaps, such as the need for real-time processing algorithms and miniaturized HSI 
systems for field deployment, suggesting directions for future research. 

Ahmad et al. (2025) (as shown in Ref. 42) leveraged ZY1-02D hyperspectral data (with 
high spatial resolution) combined with machine learning (SVM) and deep learning (SSTF) 
methods to achieve exceptional lithological classification accuracy (89.7% for SVM, 92.1% for 
SSTF). The methodology integrated spectral indices, PCA, and field-validated techniques 
(XRD, photomicrographs) to discriminate limestone, gypsum, sandstone, and conglomerate 
units critical for hydrocarbon and mineral exploration near the Main Boundary Thrust. This 
work builds on foundational HSI applications in geology while advancing the field in three key 
ways: 1. Sensor Innovation: First demonstrated application of China's ZY1-02D satellite data 
for lithological mapping, showcasing its superior spatial-spectral capabilities. 2. Algorithm 
Comparison: Quantitative validation of SSTF's superiority (92.1% accuracy) over traditional 
SVM for geological classification 3. Exploration Utility: Direct linkage between mapped units 
and economic deposits (oil, gas, gypsum), bridging academic research and industry needs. The 
study further suggests integration with geophysical data for 3D reservoir modeling, Extension 
to other tectonic regions with complex stratigraphy, and Real-time processing pipelines for 
exploration campaigns. 

Giri et al. (2024) [46] used AVIRIS-NG data from Jahazpur, Rajasthan, developing a 
stacked ensemble learning framework combining multiple base learners (Naïve Bayes, KNN, 
ANN, Decision Tree, SVM) with a Random Forest meta-learner, achieving exceptional 
performance metrics (98.96% overall accuracy, 0.9628 Kappa coefficient) for mapping key 
minerals including talc, montmorillonite, and kaolinite. This work makes three significant 
contributions to the field: 1. Algorithm Innovation by introducing a novel stacked ensemble 
approach that outperforms individual ML models in mineral classification, 2. Application 
Precision, which demonstrates AVIRIS-NG's capability for discriminating between spectrally 
similar phyllosilicate minerals, 3. Methodological Rigor to establish a replicable framework for 
mineral mapping with quantified accuracy metrics. 

Islam et al. (2024) [47] utilized ASTER multispectral data and employed an integrated 
approach that combined FCC, PCA, Decorrelation Stretch, and machine learning (TRTC) to 
successfully map lithological units and identify five new mineralization targets associated with 
copper and iron deposits. Their methodology achieved precise discrimination of alteration 
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minerals (chlorite, limonite, muscovite) and validated findings through field campaigns, XRD 
analysis, and spectral measurements. This work significantly advances previous studies in three 
key aspects: Methodological Integration: Combines traditional image processing (PCA, FCC) 
with modern ML techniques (TRTC) for enhanced lithological discrimination Exploration 
Breakthroughs: Identifies new mineralization zones in Shishi, Maroi and Drunil valleys - 
expanding known mineral potential in collisional belts Validation Protocol: Establishes 
rigorous ground truthing through petrography, XRD and spectral analysis. The study builds 
upon foundational work in ASTER applications (Ninomiya & Fu, 2003), [48] while addressing 
critical gaps in: High-relief terrain mapping challenges, Phyllosilicate mineral discrimination, 
Metallogenic potential assessment in orogenic belts. Future research directions include: 
Integration with hyperspectral data for improved alteration mapping. 

Bedini (2017) [49] provides a seminal and comprehensive review of hyperspectral 
remote sensing applications in mineral exploration, systematically evaluating three decades of 
technological advancements and their practical implementation across diverse deposit types. 
The study categorizes ore deposits by genetic processes (magmatic, hydrothermal, 
sedimentary, supergene). It assesses hyperspectral effectiveness for each, establishing critical 
benchmarks for proven applications, documents successful case studies for Kimberlite/ 
carbonatite diamond/REE exploration, Hydrothermal deposits (porphyry, epithermal, 
VHMS), Sedimentary-exhalative (SEDEX) Pb-Zn-Ag systems, underexplored potentials, 
identifies key gaps for Ni-sulfide deposits in mafic/ultramafic rocks, Sedimentary uranium and 
MVT Pb-Zn deposits, Lateritic bauxite and banded iron formations, technology assessment, 
contrasts capabilities of airborne vs. spaceborne systems, VNIR-SWIR vs. emerging thermal 
infrared sensors, Spatial resolution requirements for deposit-scale mapping, etc. This work 
builds upon foundational hyperspectral principles while providing the first systematic 
framework for matching sensor capabilities to deposit types, optimizing spatial/spectral 
resolution tradeoffs. Integrating hyperspectral data with exploration workflows. 
Novelty of the Study: 

Maiden application of ZY-1E hyperspectral imagery for mineral and lithological 
mapping of underexplored ophiolitic belts of Baluchistan. Previously, no such study in 
Pakistan has utilized full-range (0.4–2.5 µm) of satellite based hyperspectral data and made use 
of diagnostic absorption features of chromite, serpentine, and magnesite within ophiolitic 
collections. Further, direct, quantitative comparison of hyperspectral and multispectral sensors 
(ASTER, Landsat-8 OLI, Sentinel-2 MSI) under identical geological and validation conditions 
allowed us to isolate the role of spectral resolution, particularly the SWIR region, for minerals 
discrimination. Unlike earlier research, which only relied on multispectral indices or visual 
interpretation, this research integrates diagnostic absorption feature extraction, USGS spectral 
library matching, physics-based classifiers (SAM and SFF), machine-learning classification 
(Random Forest), and targeted band ratios within a single, unified framework. 
Notwithstanding, a rigorous accuracy assessment strategy using known mineral occurrence 
point data and lithological maps from the Geological Survey of Pakistan (GSP), providing 
statistically defensible validation rarely reported in regional ophiolite studies, is also explained. 
Study reveals that ZY1E hyperspectral data achieves substantially higher mineral and 
lithological mapping accuracies than multispectral sensors in rugged and inaccessible terrains, 
thereby making hyperspectral satellite imagery an operational exploration tool rather than an 
experimental approach. 
Materials and Methods: 
Study Area: 

The diverse geology of the Qilla Saifullah district gives rise to a variety of mineral 
resources, where deposits of chromite are well known with the Muslim Bagh ophiolites 
together with several other minerals of economic interest. Currently, chromite and magnesite 
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are actively mined in the district, while other minerals are present as prospects or small 
occurrences [50][51]. Potential minerals include Chromite, Magnesite, Manganese, Asbestos, 
and Calcite.  

The Muslim Bagh ophiolite (earlier called Hindu Bagh) is located in the Zhob Valley 
northeast of Quetta and is one of the well-exposed ophiolites of Pakistan. The closure of the 
Neo-Tethys finally ended with the collision of the Indian plate with the Asian, Afghan, and 
Luth-continental blocks, which is dated at approximately 40 Ma ago [52]. The Muslim Bagh 
ophiolite was first reported on maps by Vredenburg (1901), [53]. The Muslim Bagh ophiolite 
comprises two main bodies known as Jang Tor Ghar (JTG) and Saplai Tor Ghar (STG). These 
two bodies are structurally related and belong to the same ophiolite nappe and overlay a zone 
of subophiolitic ‘‘melange’’ and Mesozoic sediments (Hunting Survey Corporation Ltd., 1960) 
[12]. The Jang Tor Ghar massif consists of partially serpentinized peridotites (harzburgite and 
dunite) and covers an area of about 150 km2. The best preserved series of sub-ophiolitic 
metamorphic rocks is located at the north-western side of the Jang Tor Ghar massif [30]. 

The Eastern Block (Saplai Tor Ghar) has an area of about 600 sq km,  showing nearly 
a complete ophiolitic sequence, as defined by the Penrose Conference (1972) [54]. Only the 
uppermost unit consisting of extrusive rocks and related sediments is missing. The 
metamorphic sole below the Saplai Tor Ghar block is lithologically similar to Jang Tor Ghar, 
though less complete, and is tectonically sheared off at the top and at the base of the sequence 
[55][56].  

In the Muslim Bagh ophiolites, the mantle-crust transition section ranges in thickness 
from several meters to over one kilometer. It is composed of dunites, chromites, wehrlites, 
and troctolites containing pyroxenites and/or gabbros as discontinuous bands or lenses 
[57][58].  The study area map of our research is shown in Figure 1. 

 
Figure 1. Study area map of research. 

Datasets and Software: 
Multiple datasets, including hyperspectral to multispectral imagery, USGS spectral 

libraries, minerals point data for validation/ ground truthing, and the geological maps of the 
Geological Survey of Pakistan (GSP), were used. In contrast, software including ArcMap, 
ENVI, and open-source Google Colab for Python coding were also utilized for the 
identification of minerals and lithological mapping. To ensure quick analysis by leveraging 
available computing resources and avoiding unnecessary data processing, not only were the 
unwanted/ bad bands from the hyperspectral dataset eliminated, but also the unnecessary 
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bands of multispectral sensors were removed to limit our analysis to minerals detection only. 
Time of datasets acquisition also plays an important role in avoiding unwanted cloud cover 
and capturing the imagery covering maximum details [58][59]. Considering the fact that our 
primary dataset for minerals extraction and lithological mapping was hyperspectral, concerted 
efforts were made to acquire multispectral datasets on the same date and time. However, 
acquisition of similar data and time imagery of some sensors could not be materialized due to 
no coverage during that desired timeframe. It is worth mentioning that old imagery of ASTER 
was acquired due to the issuance of NASA advisory/ alert [60] that says ASTER SWIR 
detectors got defect since April 2008, and despite rigorous efforts, faults could not be rectified; 
therefore, data acquired after April 2008 for ASTER SWIR sensors are not reliable. Hence, a 
dataset of old date i.e May 2007, was acquired for ASTER. Details of data acquisition dates, 
level of processing performed by the service provider, and details of bands being used are 
shown in Table 1. Whereas collective details of all required datasets and their sources are 
summarized in Table 2.  
Methodology: 

A step-by-step comprehensive methodology spanning over data acquisition, 
preprocessing, end member extraction, analysis, and finally accuracy assessment was 
formulated (Figure 2). Primarily, the methodology consists of these steps i.e. (1) Data 
acquisition including geological map of Baluchistan and field samples data of minerals in the 
form of point data from Geological Survey of Pakistan (2) Data preprocessing (3) Images 
stacking (VNIR and SWIR) (4) Endmember Extraction through Minimum Noise Fraction 
Transformation (MNFT), Pixel Purity Index (PPI) and n-Dimension Visualization. (5) 
Collection of diagnostic absorption features of expected minerals in our study area (6) Spectral 
Matching with USGS library (7) Minerals identification & Lithological Zoning based on 
alteration zones (8) Accuracy assessment and (9) Formulation of maps for minerals and 
lithologies. Details of the datasets acquisition are already explained in para 2.2, whereas a brief 
description of the relevant steps being followed is described in the ensuing paragraphs. 

Table 1. Datasets acquisition dates, processing levels, and bands details. 

Satellites Acquisition 
Date 

Processing 
level 

Useful Bands Removed Bands 

ZY1E 30 Jul 2020 1A 140 (Total bands 
166) 

VNIR: 63 – 76 
SWIR: 20 – 25 & Bands 50 – 
55 

ASTER 22 May 2007 1T All 14 bands were 
used 

The old dataset of ASTER is 
used due to the introduction 
of a defect in the SWIR 
sensor since April 2008. No 
bands were removed 

Sentinel-2 30 Jul 2020 2A 10 bands were used, 
08 VNIR & 02 
SWIR 

 

Landsat-8 20 Jul 2020 2SP 07 bands were used, 
5 VNIR & 2 SWIR 

 

Table 2. Summary of all datasets being used and their sources. 

Data Type Description Source 

Satellite Imagery 

ZY1E Hyperspectral ZY1E Hyperspectral ZY1E Hyperspectral 

ASTER ASTER ASTER 

Sentinel-2 (A, B) Sentinel-2 (A, B) Sentinel-2 (A, B) 
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Landsat-8 Landsat-8 Landsat-8 

Spectral Reference Data 

USGS Spectral Library USGS Spectral Library USGS Spectral Library 

Geological Maps Geological Maps Geological Maps 

Field Validation Data Field Validation Data Field Validation Data 

Software & Tools Software & Tools Software & Tools 

 
Figure 2. The complete methodology flowchart used in the study/ research. 

Data Preprocessing: 
Data pre-processing is the fundamental step or heart of Remote Sensing before the 

commencement of any analysis [61][62][63]. Here, satellite-observed raw Digital Number 
(DN) values are converted into meaningful units such as radiance or reflectance, thereby 
enabling accurate quantitative analysis and comparison for mineral identification. Pre-
processing steps include:  
Geometric Corrections: to rectify spatial distortions in raw imagery and ensure that all 
features are accurately georeferenced and align with real-world coordinates for precise 
mapping and analysis [64][65]. Geometric corrections details include Projection: UTM, 
 Zone: 42 N,  Units: Meters,  Datum: WGS 1984, and Spatial Resolution: 30m. 
Radiometric Corrections: Radiometric error is influenced by sensor calibration, sun 
illumination, and atmospheric interference. Therefore, in order to extract distinct spectral 
absorption and reflection features of specific minerals, radiometric correction is performed, 
which transforms the raw Digital Number (DN) values into accurate radiance values 
[66][67][68]. 
Atmospheric Corrections: To remove the scattering and absorption effects of atmospheric 
gases and aerosols and accurately represent the true reflectance properties of the Earth's 
surface [69][70][71][72]. In Envi, 02 x Tools exist for Atmospheric Corrections, i.e., QUAC 
[73][74] and FLAASH [75][76]. QUAC, an empirical in-scene atmospheric correction, was run 
on all images for atmospheric corrections. 
Bad Bands Removal: Bad bands are spectral bands that contain little or no useful 
information amid severe atmospheric absorption (e.g., water absorption bands) or sensor 
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malfunctions [77][78][79]. Such bands are removed to prevent the introduction of noise or 
erroneous details. These bands could include overlapping bands as well. Accordingly, these 
bands are removed before further analysis. Multispectral datasets do not need this step due to 
limited spectral coverage. Figure 3 shows the details of the preprocessing steps. 

  

 
(a) 

  
(b) 
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Figure 3. Data preprocessing steps (a) Image georeferencing, projection, and spatial 
resolution details, (b) Radiometric corrections showing spectral profile transformation, (c) 
QUAC Atmospheric corrections with spectral profile of vegetation pixel, (d) Removal of 

water absorption/ band bands. 
Image Stacking: 

An essential preprocessing step in multispectral and hyperspectral analysis, which 
allows spectral signatures to be analyzed across all wavelengths simultaneously by combining 
multiple single-band images into a single, multi-layered file, creating a composite dataset 
essential for integrated analysis, visualization, and the application of multi-spectral techniques 
[80][81] (Ref. 66, 68, 73, and 86 are also relevant). Both hyperspectral and multispectral bands 
were combined after pre-processing (Figure 4) to get a single composite imagery for 
subsequent detailed analysis. 
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Figure 4. Spectral profile of vegetation pixel after stacking VNIR & SWIR images. 

End Member Extraction: 
Endmember extraction is a process of identifying the pure spectral signatures of 

materials from hyperspectral or multispectral imagery [82][83][84][85]. It is something like 
finding the ingredient colors in a mixed-color pixel and, hence, helping to map specific 
materials across an image. For end members extraction, we followed these 3 steps: 1. Minimum 
Noise Fraction Transformation (MNFT) 2. Pixel Purity Index (PPI) 3. N-Dimensional 
Visualization. MNF Transformation is the initial step that is applied to reduce data 
dimensionality and separate noise from the spectral signal [86][83]. It orders the bands by 
signal-to-noise ratio, i.e., effectively concentrating the spectral information into a few clean 
MNF bands. MNF curve plots data values, i.e., variance or eigenvalues, on the Y-axis against 
component index/ band index on the X-axis. It is a diagnostic output from the MNF 
transformation and is commonly used in hyperspectral image processing. The first few 
components i.e left side of the curve, have high variance and contain most of the signal/ 
information. Components with low variance, dominated by noise, are subsequently 
highlighted on the right side, which highlights the most informative and noisy band details. In 
hyperspectral image processing, the MNF curve helps to reduce dimensionality [80] by keeping 
only the most informative bands and suppressing noise by removing components having 
minimal signal [87]. Consequent upon completion of MNF, Pixel Purity Index (PPI) is 
performed on MNF output to identify the spectrally most extreme pixels in the transformed 
data, i.e., highly uncorrelated, which are strong candidates for pure endmembers. PPI 
iteratively projects n-Dimensional data onto random unit vectors and counts how many times 
each pixel falls/ moves at the extreme ends of these projections (same as Ref. 96). Those pixels 
that are consistently at extreme ends are considered as pure pixels and are therefore flagged as 
potential endmembers [88]. Hence, representing the distinct mineral spectra in our study area. 
A total of 10,000 iterations is run to get the purest signals. Accordingly, it is evident that after 
10,000 iterations, the curve starts to flatten, i.e., no more distinct pure pixels exist afterwards 
[89].  

Subsequent to MNF and PPI, n-Dimensional Visualization is performed as part of end 
members extraction. It is an interactive environment to visually analyze the pure pixels 
identified by PPI and select the conclusive endmembers [90][91]. It allows you to plot the 
MNF-transformed data in a multi-dimensional scatterplot, where each axis represents an MNF 
band. We selected a 3-dimensional axis for the selection of pixels. Accordingly, the most 



                                 International Journal of Innovations in Science & Technology 

December 2025|Vol 7 | Issue 4                                                          Page |3239 

extreme pixels carrying maximum information and no noise are selected as new classes in 
ENVI. Extreme pixels highlighted in red indicate the selected purest pixels. Details of the 
steps are shown in Figure 5. 

It is pertinent to note that multiple studies validate that this visualization technique 
allows to rotate and exploring the data cloud, identifying clusters of spectrally similar pure 
pixels and manually selecting the most representative endmember spectra for your target 
minerals, thereby ensuring accuracy for mapping of minerals and their lithologies. Therefore, 
using the same principle and step-by-step procedure, spectra of all sensors were collected. i.e 
hyperspectral as well as multispectral. 
Diagnostic Absorption Features: 

Diagnostic absorption features are unique/ wavelength-specific dips in the reflectance 
spectrum of different materials that act as fingerprints, i.e., a primary source for identifying 
minerals using hyperspectral remote sensing data [92]. These specific dips or fingerprints arise 
from the unique ways electromagnetic radiations interact with the atomic and molecular bonds 
within a material [93]. Precise position, depth, width, and unique shape represent specific 
minerals or chemical compounds. For example, Serpentine shows a weak dip at 1400 nm and 
strong absorption features between 2300 and 2320 nm, which help to identify these minerals. 
A detailed summary of diagnostic absorption features of all expected minerals of our study 
area is placed in Table 3. 
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(a) 

  

(c) 

Figure 5. End member extraction steps (a) MNF Transformation and variance curve 
showing most informative bands, (b) MNF transformed image is processed for PPI, and 

1000 iterations are run to get pure pixels. 
Table 2. Diagnostic absorption features of desired materials. 

Material/ 
Material 

Wavelengths (nm) Diagnostic Absorption 
Features 

Serpentine 1400 nm (weak), 2300–2320 nm 
(strong/doublet) 

Strong doublet in the 2.3 µm 
region 

Chromite 400–500 nm, 1000–1200 nm Broad dip toward shorter λ beyond 
1100 nm 

Magnesite 1890 nm (weak), 2320–2350 nm, 2520 
nm (strong) 

Sharp 2.3–2.5 µm carbonate 
absorptions 
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Magnetite Very low reflectance, dip at 850–1000 
nm 

Flat dark spectrum across VNIR 

Quartz High, flat reflectance in VNIR–
SWIR; strong features in TIR (8–10 
µm) 

Featureless in VNIR–SWIR; used 
as spectral reference 

Kaolinite 1400 nm, 2165–2175 nm, 2200–2210 
nm (doublet) 

Sharp doublet near 2.2 µm 

Montmorillonite 1900 nm (broad), 2200–2210 nm Broader 2.2 µm feature than 
kaolinite 

Calcite 1950 nm (weak), 2330–2340 nm, 2550 
nm (strong) 

2.34 µm carbonate dip; deeper 
than dolomite 

Dolomite 1880 nm, 2320–2325 nm, 2520 nm 2.32 µm dip (slightly blue-shifted 
vs calcite) 

Vegetation 450, 670 nm (absorb); 550 nm 
(reflect); rise at 680–750 nm dips at 
1400, 1900, 2100–2300 nm 

Red-edge + high NIR + SWIR 
water absorption 

Spectral Matching: 
Spectral matching is the process of comparing an unknown spectrum (from a pixel in 

the image or a lab sample) to a known library of reference spectra, e.g., from the USGS spectral 
library, to determine its identity [38]. Spectral matching critically relies on the presence and 
characteristics of diagnostic absorption features. Accordingly, based on Geological settings 
together with known lithologies of the study area (as acquired from the Geological Survey of 
Pakistan), exploration of minerals including chromite, serpentine, magnetite, magnesite, 
quartz, kaolinite, montmorillonite, calcite, and dolomite was envisaged. First of all, spectral 
profiles of individual minerals duly matching the USGS library were collected, and finally, the 
cumulative spectra were prepared. Separate spectral libraries for the USGS library and 
individual spectra of expected minerals in our study area, using ZY1E satellite imagery and 
multispectral datasets, were prepared.  
Minerals Identification and Lithologies Zoning: 

Based on peculiar diagnostic absorption features and spectral matching [94], spectral 
libraries of pixels extracted from hyperspectral and multispectral imageries are prepared 
[95][96]. These libraries served as training datasets for subsequent classification and mapping 
of minerals and lithologies. Traditionally, geologists used to identify lithologies through field 
observations and physical samples, followed by geochemical analysis [97]. Nevertheless, owing 
to acute difficulties in accessing hilly, rugged terrain areas, limited resources, and security 
threats, physical visits are very difficult [98]. Therefore, using a verified means of Remote 
Sensing, the principle of alteration minerals is used for minerals & lithologies identification. 
In geology, alteration is the mineralogical as well as chemical alteration of a rock amid its 
interaction/ reaction with hydrothermal fluids, heat, or gases, which leads to the formation of 
distinct alteration minerals & lithologies serving as fingerprints or pathfinders to discover 
underlying original/ actual deposits. The most common alteration types, their key minerals, 
and lithological settings are summarized in Table 4. A geological map showing the lithologies 
of Baluchistan province was acquired from GSP in JPEG format and then digitized (shapefile) 
in ArcMap. Thereafter, a lithological map was created having different polygons showing 
different lithologies of the study area (Figure 6) in line with GSP provided geological map of 
Pakistan. Most of the areas contain ophiolites, limestone, sandstone, and shale types of 
lithology. 

Table 4. Alteration minerals types and common settings. 

Alteration Type Key Minerals Common Setting 
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Potassic (K-silicate) K-feldspar, Biotite, Magnetite, Quartz Porphyry Cu-Au core 

Phyllic (Sericitic) Sericite, Quartz, Pyrite, Chlorite Porphyry halo 

Propylitic Chlorite, Epidote, Calcite, Albite, Hematite Distal ore halo 

Argillic Kaolinite, Montmorillonite, Illite Shallow epithermal 

Advanced Argillic Alunite, Pyrophyllite, Dickite, Quartz High-sulfidation epithermal 

Silicification Microcrystalline Quartz, Chalcedony, Opal Veins/Stockworks 

Carbonatization Calcite, Dolomite, Ankerite, Siderite Shear zones/Greenstones 

Greisenization Quartz, Muscovite, Topaz, Fluorite Sn, W, Mo deposits 

Skarn Formation Garnet, Pyroxene, Epidote, Wollastonite Intrusion-carbonate contact 

Chloritization Chlorite, Epidote, Actinolite Propylitic zones 

Serpentinization Chrysotile, Lizardite, Antigorite Ultramafic rocks 

Hematitization Hematite, Goethite Oxidized zones 

Results: 

Efficacy of hyperspectral (ZY1E) vis-à-vis multispectral (ASTER, Sentinel‑2, 

Landsat‑8) datasets for alteration minerals detection as well as lithological mapping was 
evaluated in the Qilla Saifullah district with a deep focus on the Muslim Bagh ophiolite 
complex. Spectral signatures were collected for each imagery (training samples) and different 
classification/ minerals identification techniques, i.e., Spectral Angle Mapper (SAM), Spectral 
Feature Fitting (SFF), Support Vector Machine (SVM), Random Forest (RF), and Band Ratios 
were used, particularly for ZY1E/ hyperspectral dataset. However, for multispectral datasets, 
SAM, SFF, and Band Ratios were used for the identification/ extraction of minerals. 
Continuous spectral coverage of ZY1E hyperspectral imagery, i.e., 400nm to 2500nm (Table 
5), proved convenient for near actual/ perfect extraction of spectral profiles of expected 
minerals. A comparative chart (Figure 7) showing spectral coverage of all datasets used reveals 
the absence of a vast SWIR region in multispectral imagery. 

 (a) 
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(b) 

Figure 6. a. Geological Survey of Pakistan provided a geological map, b. Digitized study 
area map with lithologies. 

Table 3. ZY1E satellite specifications. 

Satellite Payloads ZY1E 

Launch date 2019-09-12 

Orbit altitude (km) 778 

Number of bands 76 (VNIR), 90 (SWIR) 

Spectral range (μm) 0.4-1.0 (VNIR), 1.0-2.5 (SWIR) 

Spectral resolution (nm) 10 (VNIR), 20 (SWIR) 

Spatial resolution (m) 30 

Revisit period (days) 55 

Swath width (km) 60 

Signal-to-noise ratio 
(SNR) 

≥240 (0.4-0.9 μm) 
≥180 (0.9-1.75 μm) 
≥120 (1.75-2.50 μm) 
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Figure 7. Comparative chart showing spectral coverage of all datasets being used in 
research. 

A spectral library of expected minerals in our study area was generated using diagnostic 
absorption features and spectral matching principles, followed by classification using SAM, 
SVM, and RF. Spectral profiles of USGS and ZY1E imageries are shown in Figure 8. Ground 
truthing data (point data) acquired from the field survey by GSP was overlaid on the classified 
images to visualize how many mineral points (field survey data) exactly fall on classified 
minerals. SAM showed strong performance due spectral based classification. Nevertheless, 
SVM and RF also yielded higher accuracy against tuned parameters. For minerals classification, 
81.82% accuracy was achieved, 86.11% accuracy was observed towards lithologies 
classification. Here, SAM turned out to be the best classifier with 81.82% accuracy. A 
comparative table showing different classifiers' accuracy and kappa coefficients is shown in 
Table 6. It is to be noted that the spatial resolution of ZY1E imagery is 30m, and each pixel 
and its spectral profile were generated of 30m ground distance. Each pixel represents a 30m x 
30m area. Whereas ground sampling was done on small points (2-3m distance). Hence, it is 
deduced that low spatial resolution is one of the reasons for low accuracy for mineral 
classification. By increasing the spatial resolution, accuracy could be improved effectively. 
Minerals and lithology maps were also generated (Figure 9) from ZY1E imagery. Additionally, 
SFF and band ratios were also used to ascertain the minerals' presence through different 
techniques. It focuses on the depth and shape of absorption features in mineral-diagnostic 
wavelengths, rather than the entire spectral curve. Higher Scale value & Low RMS values are 
desired for accurate identification of minerals. Results of SFF and band ratios also validate the 
presence of desired minerals in our study area. Montmorillonite, Kaolinite, Chromite, and 
Magnesite showed higher scale values. SFF classification results for ZY1E are shown in Table 
7. Band ratio showed excellent results for the identification of magnesite, magnetite, 
serpentine, and chromite. A detailed summary of band ratios/ indices along with wavelengths 
for hyperspectral and multispectral datasets is shown in Table 8. Only hyperspectral covers 
the desired minerals' diagnostic absorption wavelength range. Comparative assessment of 
band ratios results is also shown in Figure 12. 
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Figure 8. Spectral Libraries a. Spectral profiles of expected minerals, b. USGS Spectral 

library of expected minerals. 
Table 6. Comparative summary of different classifiers' accuracy. 

Classifier Accuracy Kappa Factor 

Original SAM 73.91 % 0.636 

Initial RF 72.73 % 0.633 

Tuned RF 63.64 % 0.532 

Tuned SVM 81.82 % 0.761 
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Figure 9. Maps generated using spectral angle mapper classifier, a. ZY1E minerals map, b. 

ZY1E lithology map. 
Table 4. SFF classification (ZY1E) showing scale and RMS values, generated using spectral 

signatures. 

Mineral Scale RMS 

MIN MAX MEAN SD MIN MAX MEAN SD 

Quartz 0.15 3.00 1.01 0.17 0.01 0.61 0.09 0.06 

Serpentine 0.10 2.23 0.60 0.17 0.00 0.45 0.12 0.05 

Magnetite 0.12 2.63 0.87 0.16 0.00 0.65 0.12 0.07 
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Magnesite 0.16 3.24 1.06 0.19 0.00 0.57 0.09 0.05 

Chromite 0.13 2.86 0.94 0.17 0.00 0.58 0.09 0.05 

Vegetation 0.10 1.79 0.28 0.10 0.00 0.61 0.23 0.04 

 Kaolinite 0.15 3.49 1.00 0.25 0.00 0.48 0.11 0.04 

 Calcite 0.12 2.50 0.85 0.15 0.00 0.65 0.11 0.0 5 

Dolomite 0.10 2.32 0.79 0.14 0.00 0.65 0.11 0.07 

Montmorillonite 0.17 3.76 1.11 0.26 0.02 0.49 0.10 0.04 

Among multispectral imageries, except for ASTER, the remaining multispectral 
sensors (Sentinel-2 and Landsat-8) could not identify the expected minerals with higher 
accuracy in our study area due to limited SWIR coverage. ASTER proved to be the most 

effective dataset due to its six SWIR bands, enabling superior detection of OH‑, Al‑, and 

carbonate‑bearing minerals. Serpentine, magnetite, carbonates (calcite, dolomite, magnesite), 
and uniquely enabling quartz identification due to its TIR coverage proved helpful in ASTER 
Imagery. Landsat-8 delivered balanced yet moderate performance, detecting carbonates 
(calcite, dolomite, magnesite) and Mg–OH minerals (serpentine) reasonably well but was 
limited by its broader bands and shorter SWIR cutoff at 2.30 μm. Sentinel-2 performed best 
as a complementary dataset, offering acceptable detection for clays (kaolinite, 
montmorillonite) and some carbonates (calcite, dolomite), but underperforming for minerals 
with absorption features beyond 2.19μm. Mineral maps using spectral profiles from these 
multispectral sensors/ images were also generated (Figures 10 to 12). Spectral Feature Fitting 
(SFF) and band ratios further confirmed ASTER’s relative advantage. SFF results (Scale and 
RMS values) are shown in Tables 8 to 9. Higher scale value and low RMS value indicate better 
detection of minerals. Overall, magnesite, chromite, and magnetite were identified accurately. 
Band ratios/ indices (already shown in Table 8) are shown in Figure 13. These results validate 
the absence of precise identification of spectral profiles in multispectral datasets due to limited 
bands/ spectral coverage. Band ratios proved helpful for chromite and serpentine 
identification. Alteration minerals were used as proxies to delineate the lithologies of the study 
area. Overall comparison of all sensors with respect to performance/ detection of minerals 
(rated out of 10) is also explained in Figure 14. 
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Figure 10. Spectral signatures collected from ASTER imagery, Minerals map generated 

using spectral angle mapper classifier (ASTER) 
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Table 5. Band ratios/ indices of all datasets being used in research. 

Minerals ZY1E ASTER Sentinel-2 Landsat-8 

Band Ratios Wavelengths Band 
Ratios 

Wavelengths Band 
Ratios 

Wavelengths Band 
Ratios 

Wavelengths 

Chromite b21/b6 600/450 b2/b1 660/560 b4/b3 - b4/b2 562/443 

Magnetite (b5-b10)/ 
(b5+b10) 

(1100 -1200)/ 
(1100 + 1200) 

b5/b4 - (b4/b2) - (b10-b11)/ 
(b10+b11) 

10.89-
12.00/ 

10.89-12.00 

Magnesite (b67-b72)/ 
(b67+b72) 

(2340 -2440)/ 
(2340 + 2440) 

(b8-b9)/ 
(b8+b9) 

(2330-2395/ 
(2330+2395) 

(b11/b12) - b6/b7 - 

Serpentine (b60-b49)/ 
(b60+b49) 

(2200-2000)/ 
(2200+2000) 

(b6+b9)/ 
(b7+b8) 

- (b11/b12) - (b6+b7)/b5 - 

Quartz (b55-b60)/ 
(b55+b60) 

(2100 -2200)/ 
(2100 + 2200) 

(b11/ 
(b10+b12)) 

- b12-b11/ 
b12+b11 

2190-1610/ 
2190+1610 

- - 

Kaolinite (b144-136)/ 
(b144+b136) 

(2200-2100)/ 
(2200+2100) 

b4/b6 - b11/b12 - - - 

Montmorillonite (b144-151)/ 
(b144+b151) 

(2200- 2300)/ 
(2200+2300) 

b7/b6 - b11/b12 - - - 

Calcite (b154-163)/ 
(b154+b163) 

(2340 -2450)/ 
(2340+2450) 

(b6+b8)/b7 - (b11/b12 - b6/b7 - 

Dolomite (b154-163)/ 
(b154+b163) 

(2340-2450)/ 
(2340 + 2450) 

b8/b7 - - - - - 
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Figure 11. a. Spectral signatures collected from Sentinel-2 imagery, b. Minerals map 

generated using spectral angle mapper classifier (Sentinel-2) 
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Figure 12. a. Spectral signatures collected from Landsat-8 imagery, b. Minerals map 

generated using spectral angle mapper classifier (Landsat-8) 
Table 9. Spectral Feature Fitting classification (ASTER) showing scale and RMS values. 

Mineral Scale RMS 

MIN MAX MEAN SD MIN MAX MEAN SD 

Quartz 0.15 3.00 1.01 0.17 0.01 0.61 0.09 0.06 

Serpentine 0.10 2.23 0.60 0.17 0.00 0.45 0.12 0.05 

Magnetite 0.12 2.63 0.87 0.16 0.00 0.65 0.12 0.07 

Magnesite 0.16 3.24 1.06 0.19 0.00 0.57 0.09 0.05 
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Chromite 0.13 2.86 0.94 0.17 0.00 0.58 0.09 0.05 

Vegetation 0.10 1.79 0.28 0.10 0.00 0.61 0.23 0.04 

 Kaolinite 0.15 3.49 1.00 0.25 0.00 0.48 0.11 0.04 

 Calcite 0.12 2.50 0.85 0.15 0.00 0.64 0.12 0.07 

Dolomite 0.10 2.32 0.79 0.14 0.00 0.65 0.11 0.07 

Montmorillonite 0.17 3.76 1.11 0.26 0.02 0.49 0.10 0.04 

Table 10. Spectral Feature Fitting classification (Sentinel-2) showing scale and RMS values. 

Mineral Scale RMS 

MIN MAX MEAN SD MIN MAX MEAN SD 

Quartz 0.00 28.73 0.85 1.96 0.00 0.28 0.01 0.01 

Serpentine 0.00 14.51 0.36 0.70 0.00 0.23 0.01 0.01 

Magnetite 0.00 11.63 0.19 0.57 0.00 0.28 0.01 0.02 

Magnesite 0.00 19.13 0.71 0.75 0.00 0.33 0.01 0.02 

Chromite 0.00 18.77 0.36 0.53 0.00 0.31 0.01 0.02 

Vegetation 0.00 1.19 0.03 0.08 0.00 0.24 0.01 0.01 

 Kaolinite 0.00 46.73 1.33 2.46 0.00 0.25 0.01 0.01 

 Calcite 0.00 23.40 0.81 1.63 0.00 0.32 0.01 0.01 

Dolomite 0.00 21.54 0.90 0.99 0.00 0.32 0.01 0.02 

Montmorillonite 0.00 19.48 0.62 1.25 0.00 0.30 0.01 0.02 

Table 11. Spectral Feature Fitting classification (Landsat-8) showing scale and RMS values. 

Mineral Scale RMS 

MIN MAX MEAN SD MIN MAX MEAN SD 

Quartz 0.15 3.00 1.01 0.17 0.01 0.61 0.09 0.06 

Serpentine 0.10 2.23 0.60 0.17 0.00 0.45 0.12 0.05 

Magnetite 0.12 2.63 0.87 0.16 0.00 0.65 0.12 0.07 

Magnesite 0.16 3.24 1.06 0.19 0.00 0.57 0.09 0.05 

Chromite 0.13 2.86 0.94 0.17 0.00 0.58 0.09 0.05 

Vegetation 0.10 1.79 0.28 0.10 0.00 0.61 0.23  0.04 

 Kaolinite 0.13 1.87 0.94 0.17 0.00 0.68 0.09 0.05 

 Calcite 0.10 1.32 0.60 0.17 0.00 0.65 0.12 0.05 

Dolomite 0.12 1.53 0.87 0.16 0.00 0.85 0.12 0.07 

Montmorillonite 0.11 1.66 0.28 0.10 0.00 0.64 0.23 0.04 

 
Figure 13. Band ratios/ indices performance w.r.t minerals detection in multispectral 

sensors. 
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Figure 14. Overall minerals detection performance of all sensors. 

Discussion: 

Although ASTER provided a cost‑effective alternative for alteration minerals 
mapping, yet hyperspectral imagery outperformed multispectral sensors (ASTER, Sentinel-2 
& Landsat-8) in mineral discrimination due to continuous, high-spectral-resolution coverage 
(0.4µm – 2.5µm) across the VNIR and SWIR regions using Diagnostic Absorption Features 
of ophiolitic minerals. Ophiolites show narrow, mineral-specific absorption features/ bands, 
which cannot be distinguished through multispectral sensors due to limited spectral coverage. 
Whereas, hundreds of contiguous narrow bands of hyperspectral sensor (ZY1E) enable us to 
precisely extract absorption band position, depth, width, and asymmetry through diagnostic 
absorption feature analysis. Thereby, allowing for direct spectral matching with laboratory-
measured reference spectra from the USGS spectral library. Therefore, reducing spectral 
mixing and misclassification. Additionally, ZY1E imagery combined with physics-based 
spectral classifiers such as Spectral Angle Mapper (SAM) and Spectral Feature Fitting (SFF) 
gives more precise results because these classifiers rely on full spectral shape rather than band-
integrated reflectance values. These classifiers are inherently constrained when applied to 
multispectral datasets due to insufficient spectral dimensionality. It also implies that although 
machine-learning approaches (e.g., Random Forest) give improved outcomes for multispectral 
classification, their performance remains limited due to the absence of key diagnostic SWIR 
bands. Thus, it further shows that complex algorithms cannot compensate for inadequate 
spectral resolution. The band ratio approach proved a rapid and effective tool for preliminary 
detection, but lacked hyperspectral precision. Key findings of this research can be summarized 

as (1) Hyperspectral (ZY1E) imagery is indispensable for high‑accuracy mineral and 
lithological mapping in ophiolitic terrains. (2) ASTER provides the most reliable multispectral 
alternative when hyperspectral data is unavailable. (3) Integration of SAM, SVM, RF, and SFF 
enhances classification robustness. (4) Diagnostic absorption features and spectral libraries 
remain critical for validating remote sensing mineral maps. Hence, it is established that 
hyperspectral datasets serve as a benchmark for mineral exploration in inaccessible regions, 
with multispectral data serving as complementary resources. 
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Recommendations: 
Future studies should incorporate ground-based spectral calibration using handheld 

spectroradiometers and laboratory-analyzed rock samples to develop context-specific 
reference spectra that better represent mineral aggregates and improve classification reliability. 
Establishing a local spectral library at the institutional level (e.g., NUST) or through industry 
collaboration is strongly recommended to support long-term mineralogical research and 
advanced 3D mapping initiatives in Pakistan. Emerging hyperspectral missions such as 
EnMAP and EMIT, with improved spectral fidelity, should be prioritized for detailed mineral 
discrimination, while ASTER can serve as a cost-effective first-line dataset for preliminary 
exploration and target prioritization. Finally, broader access to licensed geospatial software 
(e.g., ENVI) and its integration with GIS platforms such as ArcGIS would enable the 
development of customized analytical workflows, enhancing operational efficiency and 
exploration decision-making. 
Conclusion: 

Comparative efficacy of hyperspectral (ZY1E) and multispectral (ASTER, Landsat-8, 
Sentinel-2) datasets is demonstrated in this study for mineral detection and lithological 
inference. Comprehensive preprocessing, i.e., geometric, radiometric, and atmospheric 
corrections, followed by dimensionality reduction (MNFT, PPI, nD Visualization) ensured 
reliable data quality. Among classification techniques, both Spectral Angle Mapper (SAM) and 
Support Vector Machine (SVM) yielded promising results, with SVM achieving the highest 
overall accuracy (81.82%) against mineral point data. Lithological classification, inferred 
through hydrothermal alteration minerals, attained an accuracy of 86.11%. Secondary 
methods, including Spectral Feature Fitting (SFF) and band ratios, further strengthened these 
results, particularly for clays, carbonates, and Mg–OH minerals. 

Sensor-wise, ZY1E proved superior due to its contiguous narrow spectral bands (0.4–
2.5 µm), enabling precise species-level mineral identification. Among multispectral sensors, 
ASTER emerged as the strongest alternative candidate offering consistent detection of 
carbonates, Mg–OH minerals, and a unique capability for quartz through its TIR coverage. 
Owing to limited spectral coverage, Landsat-8 and Sentinel-2 demonstrated complementary 
participation against minerals determination; however, these sensors could be helpful against 
spatial and temporal coverages for other applications. Collectively, these findings reiterate that 
strategic integration of hyperspectral and multispectral datasets provides a cost-effective and 
reliable framework for mineral exploration, particularly in geologically complex terrains. It is 
worth mentioning that these findings also align with previous researches, hence, emphasizing 
the diagnostic power of hyperspectral sensors (Kruse et al., 1993; Clark et al., 2003) [99], the 
utility of ASTER [100] in alteration mineral mapping (Rowan & Mars, 2003; Pour & Hashim, 
2015), and the continued importance of Landsat and Sentinel-2 for broad-scale geological 
applications (Van der Meer et al., 2012; Kirsch et al., 2018) [101][102]. 
Disclosures: 

The authors declare that they have no known competing financial interests or personal 
relation- ships that could have appeared to influence the work reported in this paper. 
Code, Data, and Materials Availability: 

The raw data supporting the conclusions of this paper can be obtained from the 
corresponding author. 
Acknowledgments: 

We are thankful for support from the Geological Survey of Pakistan (GSP) for the 
provisioning of field data & geological maps, and step-by-step guidance from supervisors and 
university staff for technical resources and institutional support. Their cooperation 
significantly facilitated the research process and enhanced the credibility of the findings. 
 



                                 International Journal of Innovations in Science & Technology 

December 2025|Vol 7 | Issue 4                                                          Page |3255 

References: 
[1] M. S. Malkani, “Revised Stratigraphy and Mineral Resources of Balochistan Basin, Pakistan: 

An Update,” Open J. Geol., vol. 10, no. 7, pp. 784–828, 2020, [Online]. Available: 
https://www.researchgate.net/publication/343284097_Revised_Stratigraphy_and_Miner
al_Resources_of_Balochistan_Basin_Pakistan_An_Update 

[2] “Heron, A.M. (1950) Directory of Economic Minerals. Geological Survey of Pakistan, 
Record, 1, Part II, 1-69. - References - Scientific Research Publishing.” Accessed: Jan. 11, 
2026. [Online]. Available: 
https://www.scirp.org/reference/referencespapers?referenceid=3921348 

[3] “Ahmad, Z. (1969) Directory of Mineral Deposits of Pakistan. Geological Survey of 
Pakistan, Record, 15, 1-200. - References - Scientific Research Publishing.” Accessed: Jan. 
11, 2026. [Online]. Available: 
https://www.scirp.org/reference/referencespapers?referenceid=2766118 

[4] “Gauher, S.H. (1969) Economic Minerals of Pakistan A Brief Review. Geological Survey 
of Pakistan, Pre Publication Issue 88, 1-110. - References - Scientific Research Publishing.” 
Accessed: Jan. 11, 2026. [Online]. Available: 
https://www.scirp.org/reference/referencespapers?referenceid=2805555 

[5] M. Abrams and Y. Yamaguchi, “Twenty years of ASTER contributions to lithologic 
mapping and mineral exploration,” Remote Sens., vol. 11, no. 11, Jun. 2019, doi: 
10.3390/RS11111394. 

[6] “Metallogeny and Mineral Potential of Pakistan.” Accessed: Jan. 11, 2026. [Online]. 
Available:https://www.researchgate.net/publication/393744495_Metallogeny_and_Mine
ral_Potential_of_Pakistan 

[7] “Mineral Resources of Pakistan: A Review.” Accessed: Jan. 11, 2026. [Online]. Available: 
https://www.researchgate.net/publication/305942087_Mineral_Resources_of_Pakistan_
A_Review 

[8] “Mineral Resources of Pakistan: Provinces and Basins wise.” Accessed: Jan. 11, 2026. 
[Online].Available:https://www.researchgate.net/publication/315834509_Mineral_Resou
rces_of_Pakistan_Provinces_and_Basins_wise 

[9] “Mineral Resources of Pakistan-an update.” Accessed: Jan. 11, 2026. [Online]. Available: 
https://www.researchgate.net/publication/315707448_Mineral_Resources_of_Pakistan-
an_update 

[10] “Stratigraphy, Mineral Potential, Geological History and Paleobiogeography of Balochistan 
Province, Pakistan.” Accessed: Jan. 11, 2026. [Online]. Available: 
https://www.researchgate.net/publication/282330367_Stratigraphy_Mineral_Potential_
Geological_History_and_Paleobiogeography_of_Balochistan_Province_Pakistan 

[11] “Mineral Resources of Balochistan Province, Pakistan.” Accessed: Jan. 11, 2026. [Online]. 
Available:https://www.researchgate.net/publication/315834485_Mineral_Resources_of_
Balochistan_Province_Pakistan 

[12] “Reconnaissance geology of part of west Pakistan.” Accessed: Jan. 11, 2026. [Online]. 
Available: https://nla.gov.au/nla.obj-234411506/view 

[13] “Islam, N.U., Hussain, S.A., Abbas, S.Q. and Ashraf, M. (2010) Mineral Statistics of 
Pakistan. Geological Survey of Pakistan, Special Issue. - References - Scientific Research 
Publishing.” Accessed: Jan. 11, 2026. [Online]. Available: 
https://www.scirp.org/reference/referencespapers?referenceid=2805698 

[14] “Jan, M.Q. and Gauhar, S.H. (2013) Earth Sciences and Mineral Exploration History of 
Pakistan with Reference to Khyber Pakhtunkhwa and Its Adjacent Tribal Areas. Abstract 
Volume, Sustainable Utilization of Natural Resources of the Khyber Pakhtunkhwa and” 
Accessed: Jan. 11, 2026. [Online]. Available: 

https://www.scirp.org/%28S%28mllvtr455ztxky45opcgzyis%29%29/reference/referencespaper
s?referenceid=2791351 

[15] H. M. Rajesh, “Application of remote sensing and GIS in mineral: Resource mapping - An 



                                 International Journal of Innovations in Science & Technology 

December 2025|Vol 7 | Issue 4                                                          Page |3256 

overview,” J. Mineral. Petrol. Sci., vol. 99, no. 3, 2024, [Online]. Available: 
https://www.researchgate.net/publication/45363148_Application_of_remote_sensing_a
nd_GIS_in_mineral_Resource_mapping_-_An_overview 

[16] R. Rajan Girija and S. Mayappan, “Mapping of mineral resources and lithological units: a 
review of remote sensing techniques,” Int. J. Image Data Fusion, vol. 10, no. 2, pp. 79–106, 
Apr. 2019, doi: 10.1080/19479832.2019.1589585. 

[17] M. H. Amin B. Pour, “Detection of hydrothermal alteration zones in a tropical region using 
satellite remote sensing data: Bau goldfield, Sarawak, Malaysia,” Ore Geol. Rev., vol. 54, 2013, 
[Online]. Available: 

https://www.researchgate.net/publication/236179595_Detection_of_hydrothermal_alteration_
zones_in_a_tropical_region_using_satellite_remote_sensing_data_Bau_goldfield_Sarawa
k_Malaysia 

[18] Seyed Mohammad Bolouki, Hamid Reza Ramazi, Amin Beiranvand Pour, “A Remote 
Sensing-Based Application of Bayesian Networks for Epithermal Gold Potential Mapping 
in Ahar-Arasbaran Area, NW Iran,” Remote Sens, vol. 12, no. 1, p. 105, 2020, doi: 
https://doi.org/10.3390/rs12010105. 

[19] Mamadou Traore, Jonas Didero Takodjou Wambo, “Lithological and alteration mineral 
mapping for alluvial gold exploration in the south east of Birao area, Central African 
Republic using Landsat-8 Operational Land Imager (OLI) data,” J. African Earth Sci., vol. 
170, p. 103933, 2020, [Online]. Available: 
https://www.sciencedirect.com/science/article/abs/pii/S1464343X20301849 

[20] F. D. Amr Abd El-Raouf, “Utilizing Remote Sensing and Satellite-Based Bouguer Gravity 
data to Predict Potential Sites of Hydrothermal Minerals and Gold Deposits in Central 
Saudi Arabia,” Minerals, vol. 13, no. 8, p. 1092, 2023, doi: 
https://doi.org/10.3390/min13081092. 

[21] Y. L. Chuntao Yin, “Mapping Ni-Cu-Platinum Group Element-Hosting, Small-Sized, 
Mafic-Ultramafic Rocks Using WorldView-3 Images and a Spatial-Spectral Transformer 
Deep Learning Method,” Econ. Geol., vol. 119, no. 3, pp. 665–680, 2024, [Online]. Available: 
https://pubs.geoscienceworld.org/segweb/economicgeology/article/119/3/665/634488
/Mapping-Ni-Cu-Platinum-Group-Element-Hosting-Small 

[22] Amin Beiranvand Pour, Yongcheol Park, “Mapping Listvenite Occurrences in the Damage 
Zones of Northern Victoria Land, Antarctica Using ASTER Satellite Remote Sensing 
Data,” Remote Sens, vol. 11, no. 2, p. 1408, 2019, [Online]. Available: 
https://www.mdpi.com/2072-4292/11/12/1408 

[23] L. L. Nazir Ul Islam, “Mapping Alteration Zones for Detection of Economic Minerals 
using Integrated Tools in District Lower Dir, Northwest Khyber Pakhtunkhwa, Pakistan,” 
Int. J. Econ. Environ. Geol., vol. 14, no. 2, 2023, [Online]. Available: https://www.econ-
environ-geol.org/index.php/ojs/article/view/135 

[24] J. C. Guanyun Zhou, “Three-dimensional mineral prospectivity mapping based on natural 
language processing and random forests: A case study of the Xiyu diamond deposit, 
China,” Ore Geol. Rev., vol. 169, p. 106082, 2024, [Online]. Available: 
https://www.sciencedirect.com/science/article/pii/S0169136824002154 

[25] A. E. M. Reda Amer, “ASTER spectral analysis for alteration minerals associated with gold 
mineralization,” Ore Geol. Rev., vol. 75, pp. 239–251, 2016, [Online]. Available: 
https://www.sciencedirect.com/science/article/abs/pii/S0169136815302675 

[26] Z. M. Martin Flower, “Project targets mantle dynamics and Tethyan Hazard mitigation,” 
Eos Trans. Am. Geophys. Union, vol. 81, no. 49, 2000. 

[27] “Lithologic mapping in arid regions with Landsat Thematic Mapper data: Meatiq Dome, 
Egypt.” Accessed: Jan. 11, 2026.  

[28] R. B. R. Hébert, “The Indus–Yarlung Zangbo ophiolites from Nanga Parbat to Namche 
Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and 
geochronology with incidences on geodynamic reconstructions of Neo-Tethys,” Gondwana 



                                 International Journal of Innovations in Science & Technology 

December 2025|Vol 7 | Issue 4                                                          Page |3257 

Res., vol. 22, no. 2, pp. 377–397, 2012, [Online]. Available: 
https://www.sciencedirect.com/science/article/abs/pii/S1342937X11002838 

[29] Y. Ninomiya, “Mapping quartz, carbonate minerals, and mafic-ultramafic rocks using 
remotely sensed multispectral thermal infrared ASTER data</title>,” Thermosense XXIV, 
vol. 4710, pp. 191–202, Mar. 2002, doi: 10.1117/12.459566. 

[30] K. M. Shuhab D. Khan, “Mapping of Muslim Bagh ophiolite complex (Pakistan) using new 
remote sensing, and field data,” J. Asian Earth Sci., vol. 30, no. 2, pp. 333–343, 20073, 
[Online]. Available: 
https://www.sciencedirect.com/science/article/abs/pii/S1367912006002768 

[31] M. E. Brian E. Tucker, “Issues in Urban Earthquake Risk,” Issues Urban Earthq. Risk, 1994, 
doi: 10.1007/978-94-015-8338-1. 

[32] “Petrology of the mantle rocks from the Muslim Bagh Ophiolite, Balochistan, Pakistan.” 
Accessed: Jan. 11, 2026. [Online]. Available: 
https://www.researchgate.net/publication/269628837_Petrology_of_the_mantle_rocks_
from_the_Muslim_Bagh_Ophiolite_Balochistan_Pakistan 

[33] “Bilgrami, S.A. (1956) Mineralogy and Petrology of Muslimbagh Igneous Complex. Ph.D. 
Thesis, University of Manchester, UK. - References - Scientific Research Publishing.” 
Accessed: Jan. 11, 2026. [Online]. Available: 
https://www.scirp.org/reference/referencespapers?referenceid=2791485 

[34] S. A BILGRAMI, “Distribution of Cu, Ni, Co, V, and Cr in Rocks of the Hindubagh 
Igneous Complex, Zhob Valley, West Pakistan ,” GSA Bulletin. Accessed: Jan. 11, 2026. 
[Online]. Available: https://pubs.geoscienceworld.org/gsa/gsabulletin/article-
abstract/72/12/1729/5279/Distribution-of-Cu-Ni-Co-V-and-Cr-in-Rocks-of-
the?redirectedFrom=fulltext 

[35] Raymond H. Nagell, “Sulfur, fluorspar, magnesite, and aluminous chromite in Pakistan,” 
Open-File Rep., 1975, [Online]. Available: https://pubs.usgs.gov/publication/ofr75496 

[36] Asrarullah, “Chromite and mining in Pakistan,” Geogr. Rec, vol. 16, pp. 1–13, 1961. 
[37] “Mineralogical mapping in the Cuprite Mining District, Nevada.” Accessed: Jan. 11, 2026. 

[Online].Available:https://www.researchgate.net/publication/24323153_Mineralogical_
mapping_in_the_Cuprite_Mining_District_Nevada 

[38] Fred A. Kruse, “Use of airborne imaging spectrometer data to map minerals associated 
with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and 
California,” Remote Sens. Environ., vol. 24, no. 1, pp. 31–51, 1988, [Online]. Available: 
https://www.sciencedirect.com/science/article/abs/pii/0034425788900041 

[39] L. L. Waqar Ahmad, “Lithological Classification Using ZY1-02D Hyperspectral Data by 
Means of Machine Learning and Deep Learning Methods in the Kohat–Pothohar Plateau, 
Khyber Pakhtunkhwa, Pakistan,” Remote Sens., vol. 17, no. 8, p. 1356, 2025, doi: 
https://doi.org/10.3390/rs17081356. 

[40] X. S. Li Chen, “Mapping Alteration Minerals Using ZY-1 02D Hyperspectral Remote 
Sensing Data in Coalbed Methane Enrichment Areas,” Remote Sens., vol. 15, no. 14, p. 3590, 
2023, [Online]. Available: https://www.mdpi.com/2072-4292/15/14/3590 

[41] T. C. Muhammad Ahsan Mahboob, “Predictive modelling of mineral prospectivity using 
satellite remote sensing and machine learning algorithms,” Remote Sens. Appl. Soc. Environ., 
vol. 36, p. 101316, 2024, [Online]. Available: 

https://www.sciencedirect.com/science/article/pii/S2352938524001800 
[42] M. W. Nazir Jan, Nasru Minallah, Madiha Sher, “Advanced Mineral Deposit Mapping via 

Deep Learning and SVM Integration With Remote Sensing Imaging Data,” Eng. Reports, 
2024, [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/eng2.13031 

[43] Muhammad Anees, Muaaz Shoukat, “Integration of Multi and Hyperspectral Satellite Data 
for Identification of Potentially Mineralized Zones in the Southern Metamorphic Belt of 
Chitral (NW Pakistan),” J. Sp. Technol., vol. 22, no. 1, pp. 57–69, 2022,  

[44] E. G. Agustin Lobo, “Machine Learning for Mineral Identification and Ore Estimation 



                                 International Journal of Innovations in Science & Technology 

December 2025|Vol 7 | Issue 4                                                          Page |3258 

from Hyperspectral Imagery in Tin–Tungsten Deposits: Simulation under Indoor 
Conditions,” Remote Sens, vol. 13, no. 16, p. 3258, 2021, [Online]. Available: 
https://www.mdpi.com/2072-4292/13/16/3258 

[45] H. S. K. Muhammad Jaleed Khan, “Modern Trends in Hyperspectral Image Analysis: A 
Review,” IEEE Access, 2018, [Online]. Available: 

 https://ieeexplore.ieee.org/document/8314827 
[46] R. N. Giri, R. R. Janghel, H. Govil, and G. Mishra, “A stacked ensemble learning-based 

framework for mineral mapping using AVIRIS-NG hyperspectral image,” J. Earth Syst. Sci. 
2024 1332, vol. 133, no. 2, pp. 107-, May 2024, doi: 10.1007/S12040-024-02317-Z. 

[47] N. U. Islam et al., “Mineralogical mapping and lithological discrimination by using ASTER 
remote sensing data in the Chitral region, Khyber Pakhtunkhwa, Northern Pakistan,” Earth 
Sci. Informatics 2024 176, vol. 17, no. 6, pp. 6075–6094, Oct. 2024, doi: 10.1007/S12145-
024-01483-4. 

[48] “Extracting lithologic information from ASTER multispectral thermal infrared data in the 
northeastern Pamirs.” Accessed: Jan. 11, 2026. [Online]. Available: 
https://www.researchgate.net/publication/281162879_Extracting_lithologic_informatio
n_from_ASTER_multispectral_thermal_infrared_data_in_the_northeastern_Pamirs 

[49] Enton Bedini, “The use of hyperspectral remote sensing for mineral exploration: a review,” 
J. Hyperspectral Remote Sens., vol. 7, no. 4, p. 189, 2017, [Online]. Available: 
https://www.researchgate.net/publication/363465665_The_use_of_hyperspectral_remot
e_sensing_for_mineral_exploration_a_review 

[50] “Small & Medium Enterprise Development Authority, Government of Pakistan Report on 
Killa Saifullah District Profile,” Gov. Pakistan, Islam., 2004, [Online]. Available: 
https://smeda.org/phocadownload/Balochistan/killa_saifullah_profile.pdf 

[51] D. D. P. 2021 Government of Baluchistan, “UNICEF and Planning & Development 
Department,” Kill. Saifullah, UNICEF, Quetta, 2021, [Online]. Available: 
https://www.unicef.org/pakistan/media/2966/file/Profiles of Underserved Areas of 
Quetta City of Balochistan, Pakistan.pdf 

[52] P. Molnar and P. Tapponnier, “Cenozoic tectonics of Asia: Effects of a continental 
collision,” Science (80-. )., vol. 189, no. 4201, pp. 419–426, 1975, doi: 

 10.1126/SCIENCE.189.4201.419. 
[53] “Vredenburg, E. (1901) A Geological Sketch of Balochistan Desert and Part of Eastern 

Persia. Geological Survey of India, Memoir, 31, 179-302. - References - Scientific Research 
Publishing.” Accessed: Jan. 11, 2026. [Online]. Available: 

 https://www.scirp.org/reference/referencespapers?referenceid=2791434 
[54] Dilek and Yildirim, “Penrose Conference on "Ophiolites and Oceanic Crust: New Insights 

from Field Studies and Ocean Drilling Program,” nsf, vol. 98, no. 9813451, p. 13451, 1998, 
Accessed: Jan. 11, 2026. [Online]. Available: 
https://ui.adsabs.harvard.edu/abs/1998nsf....9813451D/abstract 

[55] Z. A. E. M. Moores, D. H. Roeder, S. G. Abbas, “Geology and emplacement of the Muslim 
Bagh ophiolite complex,” A. Panayiotou (Ed.), Ophiolites Symp. Geol. Surv. Dep. Cyprus, pp. 
424–429, 1980. 

[56] F. B. Khalid Mahmood, “40Ar/39Ar dating of the emplacement of the Muslim Bagh 
ophiolite, Pakistan,” Tectonophysics, vol. 220, no. 1–3, pp. 169–181, 1995, [Online]. Available: 
https://www.sciencedirect.com/science/article/abs/pii/0040195195000175 

[57] A. N. K. Benn, “Mantle—crust transition zone and origin of wehrlitic magmas: Evidence 
from the Oman ophiolite,” Tectonophysics, vol. 151, no. 1–4, pp. 75–85, 1988, [Online]. 
Available: https://www.sciencedirect.com/science/article/abs/pii/0040195188902417 

[58] F. Boudier and A. Nicolas, “Nature of the moho transition zone in the Oman ophiolite,” 
J. Petrol., vol. 36, no. 3, pp. 777–796, Jun. 1995, doi: 10.1093/PETROLOGY/36.3.777. 

[59] J. A. Richards and X. Jia, “Remote sensing digital image analysis: An introduction,” Remote 
Sens. Digit. Image Anal. An Introd., pp. 1–439, 2006, doi: 10.1007/3-540-29711-1. 



                                 International Journal of Innovations in Science & Technology 

December 2025|Vol 7 | Issue 4                                                          Page |3259 

[60] “SWIR - ASTER User Advisory.” Accessed: Jan. 11, 2026. [Online]. Available: 
https://asterweb.jpl.nasa.gov/swir-alert.asp 

[61] J. R. Jensen and K. Lulla, “Introductory digital image processing: A remote sensing 
perspective,” Geocarto Int., vol. 2, no. 1, p. 65, 1987, doi: 
10.1080/10106048709354084;CSUBTYPE:STRING:SPECIAL;PAGE:STRING:ARTIC
LE/CHAPTER. 

[62] A. Shaban, “Fundamentals of Satellite Remote Sensing,” Springer Water, pp. 1–14, 2022, doi: 
10.1007/978-3-031-15549-9_1. 

[63] C. E. W. Conghe Song, “Classification and Change Detection Using Landsat TM Data: 
When and How to Correct Atmospheric Effects?,” Remote Sens. Environ., vol. 75, no. 2, pp. 
230–244, 2001, [Online]. Available: 

 https://www.sciencedirect.com/science/article/abs/pii/S0034425700001693 
[64] T. Toutin, “Geometric processing of remote sensing images: Models, algorithms and 

methods,” Int. J. Remote Sens., vol. 25, no. 10, pp. 1893–1924, May 2004, doi: 
10.1080/0143116031000101611;PAGE:STRING:ARTICLE/CHAPTER. 

[65] C. S. Fraser and H. B. Hanley, “Bias compensation in rational functions for Ikonos satellite 
imagery,” Photogramm. Eng. Remote Sensing, vol. 69, no. 1, pp. 53–57, Jan. 2003, doi: 
10.14358/PERS.69.1.53. 

[66] B. L. M. Gyanesh Chander, “Summary of current radiometric calibration coefficients for 
Landsat MSS, TM, ETM+, and EO-1 ALI sensors,” Remote Sens. Environ., vol. 113, no. 5, 
pp. 893–903, 2009, [Online]. Available: 

 https://www.sciencedirect.com/science/article/abs/pii/S0034425709000169 
[67] N. Z. E. S. Eric F. Vermote, “Atmospheric correction of MODIS data in the visible to 

middle infrared: first results,” Remote Sens. Environ., vol. 83, no. 1–2, pp. 97–111, 2002, 
[Online]. Available:  

 https://www.sciencedirect.com/science/article/abs/pii/S0034425702000895 
[68] K. J. Thome, S. F. Biggar, and P. N. Slater, “Effects of assumed solar spectral irradiance 

on intercomparisons of Earth-observing sensors,” Sensors, Syst. Next-Generation Satell. V, 
vol. 4540, p. 260, Dec. 2001, doi: 10.1117/12.450668. 

[69] E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation 
of the satellite signal in the solar spectrum, 6s: an overview,” IEEE Trans. Geosci. Remote 
Sens., vol. 35, no. 3, pp. 675–686, 1997, doi: 10.1109/36.581987. 

[70] Y. J. Kaufman and C. Sendra, “Algorithm for automatic atmospheric corrections to visible 
and near-ir satellite imagery,” Int. J. Remote Sens., vol. 9, no. 8, pp. 1357–1381, 1988, doi: 
10.1080/01431168808954942. 

[71] R. S. Fraser and Y. J. Kaufman, “The Relative Importance of Aerosol Scattering and 
Absorption in Remote Sensing,” IEEE Trans. Geosci. Remote Sens., vol. GE-23, no. 5, pp. 
625–633, 1985, doi: 10.1109/TGRS.1985.289380. 

[72] R. Richter and D. Schläpfer, “Geo-atmospheric processing of airborne imaging 
spectrometry data. Part 2: Atmospheric/topographic correction,” Int. J. Remote Sens., vol. 
23, no. 13, pp. 2631–2649, Jul. 2002, doi: 10.1080/01431160110115834. 

[73] L. S. Bernstein et al., “A new method for atmospheric correction and aerosol optical 
property retrieval for VIS-SWIR multi- and hyperspectral imaging sensors: QUAC (QUick 
Atmospheric Correction),” Int. Geosci. Remote Sens. Symp., vol. 5, pp. 3549–3552, 2005, doi: 
10.1109/IGARSS.2005.1526613. 

[74] L. S. Bernstein, “Quick atmospheric correction code: algorithm description and recent 
upgrades,” Opt. Eng., vol. 51, no. 11, p. 111719, Jul. 2012, doi: 10.1117/1.OE.51.11.111719. 

[75] S. M. Adler-Golden et al., “Atmospheric correction for shortwave spectral imagery based 
on MODTRAN4</title>,” Imaging Spectrom. V, vol. 3753, pp. 61–69, Oct. 1999, doi: 
10.1117/12.366315. 

[76] M. W. Matthew et al., “Atmospheric correction of spectral imagery: Evaluation of the 
FLAASH algorithm with AVIRIS data,” Proc. - Appl. Imag. Pattern Recognit. Work., vol. 2002-



                                 International Journal of Innovations in Science & Technology 

December 2025|Vol 7 | Issue 4                                                          Page |3260 

January, pp. 157–163, 2002, doi: 10.1109/AIPR.2002.1182270. 
[77] M. L. E. Robert O. Green, “Imaging Spectroscopy and the Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS),” Remote Sens. Environ., vol. 65, no. 3, pp. 227–248, 1998, 
[Online]. Available: 
https://www.sciencedirect.com/science/article/abs/pii/S0034425798000649 

[78] R. N. Clark, T. V. V. King, M. Klejwa, G. A. Swayze, and N. Vergo, “High spectral 
resolution reflectance spectroscopy of minerals,” J. Geophys. Res., vol. 95, no. B8, pp. 12653–
12680, Aug. 1990, doi: 
10.1029/JB095IB08P12653;WGROUP:STRING:PUBLICATION. 

[79] F. A. Kruse, A. B. Lefkoff, “The spectral image processing system (SIPS)—interactive 
visualization and analysis of imaging spectrometer data,” Remote Sens. Environ., vol. 44, no. 
2–3, pp. 145–163, 1993, [Online]. Available: 
https://www.sciencedirect.com/science/article/abs/pii/003442579390013N 

[80] F. A. K. Joseph W. Boardman, “Mapping target signatures via partial unmixing of AVIRIS 
data,” Summ. Fifth Annu. JPL Airborne Earth Sci. Work. Vol. 1 AVIRIS Work., 1995, 
[Online]. Available: https://ntrs.nasa.gov/citations/19950027316 

[81] J. M. P. Nascimento and J. M. B. Dias, “Vertex component analysis: A fast algorithm to 
unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898–910, 
Apr. 2005, doi: 10.1109/TGRS.2005.844293. 

[82] M. E. Winter, “N-FINDR: an algorithm for fast autonomous spectral end-member 
determination in hyperspectral data,” https://doi.org/10.1117/12.366289, vol. 3753, pp. 
266–275, Oct. 1999, doi: 10.1117/12.366289. 

[83] A. Plaza, P. Martínez, R. Pérez, and J. Plaza, “A quantitative and comparative analysis of 
endmember extraction algorithms from hyperspectral data,” IEEE Trans. Geosci. Remote 
Sens., vol. 42, no. 3, pp. 650–663, Mar. 2004, doi: 10.1109/TGRS.2003.820314. 

[84] A. A. Green, M. Berman, P. Switzer, and M. D. Craig, “A Transformation for Ordering 
Multispectral Data in Terms of Image Quality with Implications for Noise Removal,” 
IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65–74, 1988, doi: 10.1109/36.3001. 

[85] Joseph W. Boardman, “Automating spectral unmixing of AVIRIS data using convex 
geometry concepts,” JPL, Summ. 4th Annu. JPL Airborne Geosci. Work. Vol. 1 AVIRIS Work., 
1993, [Online]. Available: https://ntrs.nasa.gov/citations/19950017428 

[86] G. A. Licciardi and F. Del Frate, “Pixel unmixing in hyperspectral data by means of neural 
networks,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11 PART 1, pp. 4163–4172, Nov. 
2011, doi: 10.1109/TGRS.2011.2160950. 

[87] Boardman J W, “Automated spectral analysis: a geological example using AVIRIS data, 
north Grapevine Mountains, Nevada,” Proc. 10th Themat. Conf. Geol. Remote Sens., 1994, 
[Online]. Available: 
https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902187647539097 

[88] C. I. Chang and A. Plaza, “A fast iterative algorithm for implementation of pixel purity 
index,” IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 63–67, Jan. 2006, doi: 
10.1109/LGRS.2005.856701. 

[89] C. I. Chang, “Hyperspectral Data Processing: Algorithm Design and Analysis,” Hyperspectral 
Data Process. Algorithm Des. Anal., Mar. 2013, doi: 10.1002/9781118269787. 

[90] J. B. Adams, M. O. Smith, and P. E. Johnson, “Spectral mixture modeling: A new analysis 
of rock and soil types at the Viking Lander 1 Site,” J. Geophys. Res. Solid Earth, vol. 91, no. 
B8, pp. 8098–8112, Jul. 1986, doi: 10.1029/JB091IB08P08098. 

[91] G. R. Hunt, “Spectral signatures of particulate minerals in the visible and near infrared,” 
Geophysics, vol. 42, no. 3, pp. 501–513, Apr. 1977, doi: 10.1190/1.1440721. 

[92] R. N. Clark, “Spectroscopy of rocks and minerals and principles of spectroscopy,” 1999. 
[93] R. N. Clark and T. L. Roush, “Reflectance spectroscopy: quantitative analysis techniques 

for remote sensing applications.,” J. Geophys. Res., vol. 89, no. B7, pp. 6329–6340, Jul. 1984, 
doi: 10.1029/JB089IB07P06329;CTYPE:STRING:JOURNAL. 



                                 International Journal of Innovations in Science & Technology 

December 2025|Vol 7 | Issue 4                                                          Page |3261 

[94] Freek van der Meer, “Analysis of spectral absorption features in hyperspectral imagery,” 
Int. J. Appl. Earth Obs. Geoinf., vol. 5, no. 1, pp. 55–68, 2004, [Online]. Available: 
https://www.sciencedirect.com/science/article/abs/pii/S0303243403000382 

[95] Hugh R. Rollinson, “Using Geochemical Data: Evaluation, Presentation, Interpretation - 
1st,” Routledge. Accessed: Jan. 11, 2026. [Online]. Available: 
https://www.routledge.com/Using-Geochemical-Data-Evaluation-Presentation-
Interpretation/Rollinson/p/book/9780582067011 

[96] A. Streckeisen, “To each plutonic rock its proper name,” Earth-Science Rev., vol. 12, no. 1, 
pp. 1–33, 1976, [Online]. Available: 
https://www.sciencedirect.com/science/article/abs/pii/0012825276900520 

[97] Fred A. Kruse, “Mapping surface mineralogy using imaging spectrometry,” Geomorphology, 
vol. 137, no. 1, pp. 41–56, 2012, [Online]. Available: 
https://www.sciencedirect.com/science/article/abs/pii/S0169555X11001516 

[98] Floyd F Sabins, “Remote sensing for mineral exploration,” Ore Geol. Rev., vol. 14, no. 3–4, 
pp. 157–183, 1999, [Online]. Available: 
https://www.sciencedirect.com/science/article/abs/pii/S0169136899000074 

[99] K. E. L. Roger N. Clark, Gregg A. Swayze, “Imaging spectroscopy: Earth and planetary 
remote sensing with the USGS Tetracorder and expert systems,” J. Geophys. Res. Planets, 
2003, [Online]. Available: 
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2002JE001847 

[100] A. B. Pour and M. Hashim, “The application of ASTER remote sensing data to porphyry 
copper and epithermal gold deposits,” Ore Geol. Rev., vol. 44, pp. 1–9, Feb. 2012, doi: 
10.1016/J.OREGEOREV.2011.09.009. 

[101] H. M. A. van der W. Freek D. van der Meer, “Multi- and hyperspectral geologic remote 
sensing: A review,” Int. J. Appl. Earth Obs. Geoinf., vol. 14, no. 1, pp. 112–128, 2012, 
[Online].Available:https://www.sciencedirect.com/science/article/abs/pii/S0303243411
001103 

[102] S. L. Moritz Kirsch, “Integration of Terrestrial and Drone-Borne Hyperspectral and 
Photogrammetric Sensing Methods for Exploration Mapping and Mining Monitoring,” 
Remote Sens, vol. 10, no. 9, p. 1366, 2018, [Online]. Available: 
https://www.mdpi.com/2072-4292/10/9/1366 

 

Copyright © by authors and 50Sea. This work is licensed under the 
Creative Commons Attribution 4.0 International License.  

 


