&"‘}
OPEN (72 ACCESS
© International Journal of Innovations in Science & Technology

RESEARCH & INNOVATION ®
-l 4
— IJIST

Design and Validation of a Quantum Software Engineering

Lifecycle Framework
Islam Zada'!, Abid Jameel', Huma Mumtaz’, Faisal Hayat', Jalal Ahmad’, Sherish Bibi*, Laiba
Shehryar!
'Department of Computer Science & Software Engineering, International Islamic University
Islamabad, Pakistan,
*Department of Computer Science, Virtual University, Peshawar, Pakistan
’Department of Information Technology, The University of Haripur; Pakistan
“Department of Software Engineering, Foundation University Islamabad, Islamabad,
Pakistan;
*Cotrespondence: islam.zada@iiu.edu.pk
Citation | Zada. I, Jameel. A, Mumtaz. H, Hayat. F, Ahmad. |, Bibi. S, Shehryar. L, “Design
and Validation of a Quantum Software Engineering Lifecycle Framework”, IJIST, Vol. 07,
Issue. 04 pp 3133-3150, December 2025
Received | November 10, 2025 Revised | November 30, 2025 Accepted | December 07,
2025 Published | December 13, 2025.

NOISIAI

absence of structured and standardized software engineering significantly limits its

practical scalability. Quantum Software Engineering (QSE) remains fragmented, tool-
centric, and largely experimental. This paper proposes a structured Quantum Software
Engineering Lifecycle Framework that systematically integrates requirements engineering,
hybrid design, quantum development, verification, deployment, and governance. To validate
the proposed lifecycle, a two-stage evaluation was conducted. First, a Delphi-based expert
validation involving 15 domain experts assessed clarity, feasibility, scalability, and hybrid
applicability. Second, a simulation-based comparative analysis using Qiskit and PennyLane
evaluated the lifecycle against ad-hoc development workflows across variational and search-
based quantum algorithms. Results demonstrate a 24% reduction in development time, 15—
18% improvement in execution fidelity, and significant gains in modularity, reusability, and
tool interoperability. These findings confirm that adopting a structured lifecycle enables more
reliable, scalable, and sustainable quantum software development, positioning QSE as a
mature engineering discipline rather than purely experimental practice.
Keywords: Data Analytics, Quantum Software Engineering (QSE), Quantum Computing,
Software Lifecycle, Quantum Programming Languages, Quantum Error Correction, Quantum
Security and Governance.

Quantum computing promises transformative computational capabilities; however, the

) IPIndexin XU el R RESEARCHBIB () "
Q Indexing Purtalg .-.-.5..:: ClteFaCtor m e B ;{' @ I DEAS
JOURNALS R@TINDEXIN(ili iINFOBASE INDEX
e I@ MASTER LIST @ SCI Ilt
ol = G I—" 11 [][]
== esearchGate WIKIDATA
DRJI Crossref

December 2025 | Vol 7 | Issue 4 Page | 3133

mailto:islam.zada@iiu.edu.pk

OPEN (5) ACCESS

International Journal of Innovations in Science & Technology

Introduction:

Quantum computing represents a fundamental shift in computation by exploiting
quantum-mechanical principles such as superposition, entanglement, and interference to solve
classes of problems that remain infeasible for classical systems. In recent years, significant
advances in quantum hardware have enabled experimental progress in domains including
cryptography, optimization, simulation, and machine learning. However, transforming these
advances into reliable, scalable, and real-world quantum applications depends not only on
hardware improvements but also on the maturity of software engineering practices tailored to
quantum systems. This necessity has led to the emergence of Quantum Software Engineering
(QSE) as a critical interdisciplinary field.

Unlike classical software systems, quantum programs are inherently probabilistic, non-
deterministic, and highly sensitive to noise and decoherence. These characteristics challenge
conventional software engineering practices related to requirements specification, system
design, testing, verification, and deployment. Current quantum software development is
largely driven by hardware-specific tools and low-level programming frameworks, requiring
developers to reason directly about circuits, gates, and noise models. As a result, quantum
software development remains fragmented, difficult to maintain, and heavily dependent on
individual expertise rather than standardized engineering processes.

Research Gap:

Despite growing research on quantum algorithms, programming languages, and
development toolkits, there is no empirically validated, process-oriented lifecycle model for
Quantum Software Engineering. Existing studies primarily focus on tools, languages, or
isolated technical challenges and often propose high-level conceptual roadmaps without
systematic validation. Moreover, most existing approaches lack explicit support for hybrid
quantum-—classical systems, offer limited guidance on verification and governance, and fail to
integrate sustainability and ethical considerations into the development process. This gap
significantly limits the transition of quantum programming from ad-hoc experimentation to a
mature, repeatable, and scalable software engineering discipline.

Obijectives of the Study:

To address the identified gap, this study pursues the following objectives:

To analyze foundational challenges and limitations in current Quantum Software Engineering
practices.

To design a structured, hybrid-aware Quantum Software Engineering lifecycle tailored to
NISQ-era constraints.

To validate the proposed lifecycle through expert consensus using a Delphi-based evaluation
approach.

To quantitatively assess the effectiveness of the proposed lifecycle through simulation-based
comparative analysis against ad-hoc quantum development workflows.

To provide actionable recommendations for researchers, practitioners, and tool developers to
support process-centric QSE adoption.

Novelty and Contributions:

The novelty of this work lies in advancing Quantum Software Engineering beyond
tool-centric experimentation toward a process-centric and empirically grounded engineering
discipline. Specifically, this paper proposes a comprehensive Quantum Software Engineering
lifecycle that integrates requirements engineering, hybrid system design, quantum
development, verification, deployment, and evolution. Explicitly incorporates governance,
ethics, and sustainability considerations within the lifecycle rather than treating them as post-
development concerns. Provides dual validation through expert-based Delphi analysis and
quantitative simulation-based benchmarking. Demonstrates measurable improvements in
development efficiency, execution fidelity, modularity, and reusability compared to

December 2025 | Vol 7 | Issue 4 Page | 3134

OPEN () ACCESS
International Journal of Innovations in Science & Technology

conventional ad-hoc quantum development practices. By emphasizing structured processes
rather than isolated tools, this work positions QSE as a disciplined software engineering field
capable of supporting scalable, reliable, and responsible quantum software systems.
Organization of the Paper:

The remainder of this paper is organized as follows. Section 2 reviews the evolution
and foundational concepts of Quantum Software Engineering. Section 3 analyzes the core
technical, organizational, and ethical challenges in QSE. Section 4 presents the proposed
Quantum Software Engineering lifecycle framework. Section 5 describes the materials and
methods used for expert validation and simulation-based evaluation. Section 6 reports and
analyzes the validation results. Section 7 discusses implications for research and practice.
Section 8 presents targeted recommendations, and Section 9 concludes the paper with
directions for future research.

Evolution and Foundations of Quantum Software Engineering:

Quantum Software Engineering (QSE) has evolved alongside advances in quantum
computing hardware, algorithms, and execution platforms. While early quantum computing
research was largely theoretical, recent progress in noisy intermediate-scale quantum (NISQ)
devices has transformed quantum computing into an experimental yet accessible engineering
domain [1]]2][3]. As a result, research attention has gradually shifted from purely algorithmic
breakthroughs toward the practical challenges of developing, testing, deploying, and
maintaining quantum software systems [4][5].

The foundational principles of quantum computation differ fundamentally from
classical computing. Classical systems operate on deterministic binary logic, whereas quantum
systems manipulate qubits that can exist in superposed and entangled states. Measurement
collapses these states probabilistically, introducing inherent non-determinism into program
execution [6][7]. These characteristics significantly complicate traditional software engineering
activities such as debugging, testing, and verification, which assume repeatable and predictable
behavior [3][8§].

Historically, the emergence of QSE can be traced back to landmark quantum
algorithms that demonstrated theoretical quantum advantage, motivating the need for
software abstractions capable of expressing quantum logic [9][10][11][12][13][14]. However,
as quantum hardware platforms became accessible through cloud-based services, the
limitations of ad-hoc and low-level programming approaches became increasingly evident
[15][16][17]. Developers were required to manage hardware constraints, noise characteristics,
and hybrid classical-quantum workflows manually, highlighting the absence of systematic
engineering processes [18][19][20].

In contrast to mature classical software engineering, which benefits from well-
established lifecycle models, design patterns, and quality assurance practices, QSE remains
fragmented and largely tool-driven [1][3]. Most existing quantum development efforts rely
heavily on platform-specific software development kits and simulators, with limited support
for requirements traceability, modular design, automated testing, or lifecycle governance [21].
This gap has prompted growing interest in defining foundational QSE concepts that align the
software engineering discipline with quantum-specific constraints [2]8].

Classical vs. Quantum Software Engineering Paradigms:

To contextualize these differences, Table 1 presents a comparative overview of
classical and quantum software engineering across key dimensions, including computation
models, programming paradigms, error handling, verification practices, lifecycle maturity,
tooling, and security considerations [22].

December 2025 | Vol 7 | Issue 4 Page | 3135

International Journal of Innovations in Science & Technology

Table 1. Classical vs Quantum Software Engineering: Key Differences [1][2][6][22]

Aspect Classical Software Engineering | Quantum Software Engineering
Computation Turing machines, binary logic Quantum circuits, qubit states,
Model superposition, entanglement
Programming Deterministic, imperative, or Probabilistic, gate-level, non-
Paradigm object-oriented deterministic
Error Handling Standard debugging, exceptions Quantum noise, decoherence,

quantum error correction (QEC)
Verification & Unit/integration/system testing Probabilistic validation, limited
Testing formal verification
Lifecycle Models | Agile, Waterfall, DevOps Evolving or undefined lifecycle
processes
Tool Support Mature IDEs, CI/CD tools, rich Fragmented, simulation-focused
ecosystems toolkits (Qiskit, Cirg, etc.)
Security Models | Symmetric/asymmetric Post-quantum cryptography,
encryption, access control quantum key distribution (QKD)

This comparison highlights that QSE is not a straightforward extension of classical
software engineering but rather a paradigm that requires new abstractions, methodologies, and
validation strategies [4][3]. In particular, the lack of standardized lifecycle models and the
dependence on experimental toolchains underscore the need for process-centric approaches
that can scale with hardware improvements and application complexity [5][8].

Recent research published between 2021 and 2025 increasingly emphasizes that
without structured engineering workflows, advances in quantum hardware, hybrid algorithms,
and variational techniques will not translate into reliable or maintainable software systems
[23]]24]. Consequently, QSE is now viewed as a foundational discipline that must integrate
software engineering principles with quantum-aware design, verification, deployment, and
governance mechanisms. This evolving perspective sets the stage for examining the core
challenges currently constraining Quantum Software Engineering, which are discussed in the
next section.

Core Challenges in Quantum Software Engineering:

Quantum Software Engineering (QSE) operates at the intersection of immature
hardware, probabilistic execution models, and evolving software practices. While quantum
computing has progressed significantly at the algorithmic and hardware levels, the lack of
mature engineering methodologies continues to hinder the development of scalable, reliable,
and maintainable quantum software systems. This section systematically examines the core
technical, organizational, and governance challenges that motivate the need for a structured
QSE lifecycle. Table 2 shows the categorization of Core Challenges in Quantum Software

Engineering.
Table 2. Categorization of Core Challenges in Quantum Software Engineering
Category Specific Challenge Impact Status
Programmatic | Probabilistic execution | Difficult to debug and test Active
Research
Structural Undefined lifecycle | Low reusability and | Lacks
standards maintainability Formalization
Technical Decoherence, hardware | Unreliable computation, error | Hardware
noise propagation Dependent
Tooling Fragmented SDKs and | High learning curve, vendor | Highly
toolchains lock-in Fragmented

December 2025 | Vol 7 | Issue 4 Page | 3136

OPEN (5) ACCESS

International Journal of Innovations in Science & Technology

Operational | Absence of CI/CD and | Inefficient deployment Missing
version control Integration

Ethical & | No governance, privacy, | Legal and ethical | Emerging

Security or audit models vulnerabilities Concern

Programming Non-Determinism and Lack of Abstractions:

Unlike classical programs that execute deterministically, quantum programs operate
on qubits whose states exist in superposition and entanglement until measurement. As a result,
identical executions of a quantum program may produce different outputs, even under the
same input conditions [25]. This inherent non-determinism complicates debugging, testing,
and reasoning about correctness.

Furthermore, most current quantum programming frameworks expose developers to
low-level circuit and gate representations, requiring deep knowledge of quantum mechanics.
The absence of standardized, high-level abstractions increases cognitive load, limits
maintainability, and restricts participation to highly specialized developers. These limitations
significantly reduce productivity and make large-scale quantum software development
impractical.

Quantum Noise, Error Sources, and Reliability Constraints:

Quantum computations are highly sensitive to environmental disturbances, imperfect
gate operations, and measurement errors. Decoherence and noise introduce errors that
accumulate rapidly as circuit depth increases, often rendering computation results unreliable
[26]]27]. Managing these error sources is one of the most critical challenges in QSE.

Error Correction vs. Error Mitigation in the NISQ Era:

It is important to distinguish between quantum error correction and quantum error
mitigation, particularly in the context of current NISQ devices:

Quantum Error Correction (QEC) relies on encoding logical qubits into multiple physical
qubits to detect and correct errors. While theoretically robust, QEC requires substantial qubit
overhead and fault-tolerant hardware that remains largely unavailable in practice [26].
Quantum Error Mitigation, in contrast, aims to reduce the impact of errors without full
fault tolerance. Techniques such as zero-noise extrapolation, readout error mitigation, and
probabilistic error cancellation are more feasible on current hardware and are widely adopted
in NISQ-era applications [27].

Most practical quantum software today relies on error mitigation rather than full error
correction. However, existing QSE practices offer limited guidance on when and how to
incorporate these techniques systematically within the development lifecycle.

Absence of Standardized Lifecycle Methodologies:

Classical software engineering benefits from well-established lifecycle models such as
Waterfall, Agile, and DevOps, which provide structured guidance for requirements
engineering, design, testing, deployment, and evolution. In contrast, QSE lacks a universally
accepted lifecycle model that accounts for quantum-specific constraints.

Current quantum projects are often developed using ad-hoc, code-centric workflows
driven by experimentation rather than architecture or process. This results in poor traceability
between requirements and implementation, limited reuse of quantum components, and fragile
systems that are difficult to scale or maintain. The absence of lifecycle standards is a major
barrier to industrial adoption of quantum software.

Verification and Validation Limitations:

Verification and validation (V&V) of quantum software pose unique challenges due to
probabilistic execution, limited observability, and the lack of classical ground truth for many
quantum problems [28]. Traditional testing approaches, such as unit testing and regression
testing, are often insufficient or inapplicable.

December 2025 | Vol 7 | Issue 4 Page | 3137

International Journal of Innovations in Science & Technology

Quantum software validation typically relies on repeated sampling and statistical
analysis of output distributions, which increases execution cost and complicates result
interpretation. Although formal methods such as quantum Hoare logic and quantum model
checking have been proposed, they remain largely theoretical and are not yet integrated into
mainstream quantum development toolchains [28][24]. This gap leaves developers with limited
assurance of correctness and reliability.

Fragmented Toolchains and Vendor Lock-In:

The current quantum software ecosystem is characterized by fragmented, hardware-
specific toolchains. Platforms such as Qiskit, Cirq, Q#, and t|ket) provide powerful
capabilities but are often tightly coupled to specific hardware backends [29]. This
fragmentation results in limited interoperability, steep learning curves, and vendor lock-in.

Moreover, essential software engineering infrastructure—such as integrated
development environments, continuous integration pipelines, configuration management, and
automated testing frameworks—is largely absent or underdeveloped in quantum contexts.
These limitations hinder collaborative development and long-term sustainability.
Governance, Security, and Ethical Challenges:

As quantum software begins to be deployed in cloud environments and applied to
sensitive domains such as finance, healthcare, and national security, governance and ethical
considerations become increasingly critical [30][31]. Unlike classical software systems,
quantum software lacks standardized frameworks for access control, auditability, compliance,
and accountability.

Additionally, the emergence of post-quantum cryptography and quantum key
distribution introduces new security requirements that must be addressed at the software
engineering level. Ethical concerns, including transparency, explainability, and equitable access
to quantum technologies, further complicate QSE practices. Without explicit governance
mechanisms embedded in the development process, quantum software risks becoming
insecure, opaque, and socially unaccountable.

Summary of Core Challenges:

Figure 1 summarizes the relative severity of the key challenges discussed in this section,
highlighting the interdependence of technical, structural, and organizational issues in Quantum
Software Engineering.

Algorithm)) Hardware
j

Development i /‘ Development
> A

Classical Computer
Interfaces

Quantum 3
Decoherence 1<) -
w Challenges of

Quantum

Computing

—

)
L

-

06
Error Correction @ // @

Scalability @ J @ j Trained Talent
_i~ > I
Figure 1. Severity of Key Challenges in Quantum Software Engineering

The analysis in this section demonstrates that QSE challenges are notisolated technical
problems but interconnected issues spanning programming models, error management,
lifecycle design, tooling, and governance. Addressing these challenges requires a holistic,
process-centric approach, which motivates the structured Quantum Software Engineering
lifecycle proposed in the next section.

Standards and
Protocols

December 2025 | Vol 7 | Issue 4 Page | 3138

International Journal of Innovations in Science & Technology

Proposed Quantum Software Engineering Lifecycle and Framework:

The challenges identified in Section 3 demonstrate that current quantum software
development practices are fragmented, tool-centric, and largely experimental. To address these
limitations, this paper proposes a structured, process-centric Quantum Software Engineering
(QSE) lifecycle framework that aligns the classical software engineering discipline with the
unique constraints of quantum computation. The proposed lifecycle is designed to support
NISQ-era development, hybrid quantum-—classical execution, and future fault-tolerant
evolution.

Unlike existing conceptual roadmaps that describe challenges in isolation, the
proposed framework provides actionable lifecycle guidance, explicitly linking requirements,
design, development, verification, deployment, and governance into a coherent engineering
process.

Overview of the Proposed Lifecycle:

The proposed QSE lifecycle consists of six interrelated phases, each addressing
specific technical and organizational challenges inherent to quantum software systems:
Quantum Requirements Engineering.

Quantum System Design.

Quantum Algorithm and Circuit Development.

Hybrid Integration and Simulation.

Quantum Testing and Verification.

Deployment, Monitoring, and Evolution.

Figure 2 illustrates the complete lifecycle and the iterative feedback loops between phases.

Quantum
Requiremeents

Engineering
Define hardware-aware
and domain-specific

requirements

Deployment, Quantum
Monitoring, System De-
and Evolution sign
Deploy to Model hybrid
quantum architecture and
platforms, mon- circuit abstractions

itor, and update

s l

Validate Quantum Algorithm
quantum and Circuit Develop-
software using Implement and
sampling and optimize quantum
formal methods circuits and algorithms

Hybrid
Integration
and Simulation

Combine quantum
and classical
components, test in
simulators

Figure 2. Quantum Software Engineering Lifecycle (Proposed)

The lifecycle is iterative rather than linear, enabling continuous refinement as quantum
hardware capabilities evolve and new algorithms or mitigation techniques become available.
Phase 1: Quantum Requirements Engineering:

Quantum Requirements Engineering (QRE) extends classical requirements practices
by incorporating quantum-specific feasibility and hardware constraints. Key activities include:
Assessing whether the problem admits a potential quantum advantage.

Defining acceptable probabilistic outcomes rather than deterministic outputs.
Capturing hardware-aware constraints such as qubit count, circuit depth, and noise tolerance.
Identifying ethical, security, and sustainability risks early in the development process.

By explicitly addressing feasibility and constraints at this stage, QRE reduces costly

redesign efforts later in the lifecycle.
Phase 2: Quantum System Design:
This phase focuses on high-level architectural design and abstraction. Core activities include:

December 2025 | Vol 7 | Issue 4 Page | 3139

OPEN (5) ACCESS

International Journal of Innovations in Science & Technology

Defining hybrid quantum—classical architectures
Partitioning functionality between classical preprocessing, quantum execution, and post-
processing
Selecting algorithm families and circuit topologies compatible with hardware limitations
Designing interfaces between quantum and classical components
Design artifacts produced at this stage promote modularity, reuse, and portability
across platforms.
Phase 3: Quantum Algorithm and Circuit Development:
In this phase, developers implement selected quantum algorithms and construct
optimized quantum circuits. Activities include:
Selecting or adapting algorithms such as VQE, QAOA, or Grover’s search
Implementing circuits using frameworks like Qiskit or PennylLane
Applying circuit optimization techniques to reduce depth and noise sensitivity
Incorporating error mitigation strategies suitable for NISQ devices
This phase emphasizes engineering discipline over experimental coding, supporting
traceability from requirements to implementation.
Phase 4: Hybrid Integration and Simulation:
Most practical quantum applications are hybrid in nature. This phase addresses:
Integration of classical and quantum components
Orchestration of hybrid execution workflows
Performance evaluation using noiseless and noisy simulators
Iterative refinement based on simulation feedback
Early and systematic simulation helps identify performance bottlenecks and noise-
related issues before deployment to real hardware.
Phase 5: Quantum Testing and Verification:
Quantum Testing and Verification (QTV) adapts classical validation concepts to
probabilistic execution models. Key practices include:
Sampling-based validation across multiple executions
Statistical comparison of output distributions
Functional equivalence checks against classical baselines (where available)
Limited use of emerging formal methods such as quantum Hoare logic
Although tooling support remains immature, explicitly incorporating QTV as a
lifecycle phase ensures that correctness and reliability are treated as first-class engineering
concerns.
Phase 6: Deployment, Monitoring, and Evolution:
The final phase addresses real-world deployment and long-term sustainability:
Deployment to quantum cloud platforms
Monitoring execution fidelity, latency, and error rates
Managing access control, audit logs, and compliance
Updating software as hardware capabilities and algorithms evolve.
Continuous monitoring enables feedback-driven lifecycle evolution, supporting
scalability and maintainability.
Governance, Ethics, and Security Integration Across Lifecycle Phases:
A key contribution of this framework is the explicit operationalization of governance and
ethical controls across lifecycle phases:
Requirements: ethical risk assessment, data sensitivity classification
Design: security threat modeling and compliance checks
Development: secure coding practices and access controls
Testing: auditability and reproducibility verification
Deployment: authentication, authorization, and monitoring

December 2025 | Vol 7 | Issue 4 Page | 3140

OPEN () ACCESS
International Journal of Innovations in Science & Technology

Evolution: periodic ethical and compliance reviews

This integration ensures that ethical and security considerations are not treated as post-
deployment concerns but are embedded throughout the development process.

Comparison with Existing QSE Models:

Existing QSE approaches primarily provide descriptive roadmaps or focus on tooling
and languages. In contrast, the proposed lifecycle differs in three fundamental ways:
Process-Centric Orientation: Emphasizes structured engineering workflows rather than
tool usage.

Empirical Validation: Supported by expert consensus and quantitative simulation results.
Operational Governance: Explicitly embeds ethics, security, and sustainability into lifecycle
phases.

This comparison demonstrates that the proposed framework advances QSE from
conceptual discussion toward a practical, adoptable engineering methodology.

Summary:

The proposed Quantum Software Engineering lifecycle framework provides a
structured response to the challenges identified in Section 3. By integrating hybrid design,
probabilistic validation, governance, and continuous evolution into a unified process, the
framework establishes a foundation for scalable, reliable, and responsible quantum software
development. The effectiveness of this lifecycle is empirically evaluated in the following
sections.

Materials and Methods:

A proposed lifecycle or framework in software engineering, particularly in an emerging
tield such as Quantum Software Engineering (QSE), must be subjected to rigorous validation
to demonstrate its relevance, feasibility, and potential improvement over existing development
practices [29]. This study adopts a dual-method validation strategy, combining expert-based
qualitative validation and simulation-based quantitative evaluation, to comprehensively assess
the proposed QSE lifecycle framework.

Research Design:

The validation methodology follows a two-phase design. In the first phase, a Delphi-
based expert evaluation is conducted to assess the conceptual soundness, completeness, and
practical applicability of the proposed lifecycle. In the second phase, a simulation-based
comparative evaluation is performed to benchmark the proposed lifecycle against baseline, ad-
hoc quantum development workflows. This mixed validation approach enables both
subjective expert consensus and objective performance assessment.

Expert-Based Validation via the Delphi Method:

To evaluate the conceptual validity and real-world relevance of the proposed QSE
lifecycle, a Delphi-style expert validation was conducted involving 15 domain experts drawn
from academia, industry, and national quantum research initiatives. The selection criteria
required participants to have demonstrable experience in quantum computing, software
engineering, or hybrid quantum—classical system development.

The Delphi process was conducted in two iterative rounds. In each round, experts
independently evaluated each phase of the proposed lifecycle using a five-point Likert scale
based on the following criteria:

Clarity of phase objectives

Alignment with real-world quantum software workflows
Adaptability to hybrid quantum—classical systems

Scalability for large-scale quantum software projects

Practical implement ability using current quantum tool chains

After the first round, anonymized aggregated feedback was shared with participants to
allow reflection and reassessment in the second round. A consensus threshold of 75%

December 2025 | Vol 7 | Issue 4 Page | 3141

OPEN ACCESS
8 International Journal of Innovations in Science & Technology

agreement was adopted, in line with established Delphi methodology practices. The expert

evaluation setup and assessment dimensions are illustrated in Figure 3.
5.00

Clarity
. Workflow Alignment
4,75 = Hybrid Adaptability
mmm Scalability
== Tool Compatibility

IIT1 Y]

onits eno: qf auon \gaUQ o o\ut\"
o‘i‘“e

Average Expert Rating {1-5)
w w B & IS
w ~ o N ur
=] w =] v o

w
<}
wn

&\ erifl

D 5
et e e
Syst Ngo ayorid ! festing &

Tl
eauire
e pep

Lifecycle Phases

Figure 3. Expert Validation Results of QSE Lifecycle Model
Simulation Setup and Baseline Comparison Design:

To complement expert validation with empirical evidence, a simulation-based
comparative evaluation was conducted. Representative quantum software project scenarios
were implemented using the IBM Qiskit and Pennylane frameworks. These frameworks were
selected due to their widespread adoption and support for hybrid quantum-—classical
workflows.

Three representative quantum algorithms were considered:

Variational Quantum Eigensolver (VQE)

Grover’s Search Algorithm

Quantum Approximate Optimization Algorithm (QAOA)

Each algorithm was implemented under two development conditions:

Baseline condition: ad-hoc, developer-driven workflows without a structured lifecycle
Proposed condition: structured development following the proposed QSE lifecycle

Both noiseless and noisy simulation backends were used to reflect realistic NISQ-era
execution environments. Multiple independent runs were conducted for each configuration to
account for probabilistic execution behavior.

Evaluation Metrics and Statistical Handling:

The comparative evaluation focused on the following metrics:
Development time

Execution fidelity

Error traceability

Code reusability

Tool interoperability

For each metric, results were aggregated across repeated simulation runs. Mean values
were computed to reduce the impact of stochastic variability inherent in quantum execution.
This statistical handling approach ensures that observed differences reflect systematic trends
rather than single-run artifacts. The comparative evaluation workflow is summarized in Figure
4.

Methodological Scope and Limitations:

While the adopted validation strategy provides both qualitative and quantitative
insights, it is important to note that the simulation-based evaluation reflects controlled
experimental conditions rather than full-scale industrial deployments. Nevertheless, this
methodology provides a reproducible and transparent foundation for assessing the
effectiveness of the proposed QSE lifecycle under current technological constraints.

December 2025 | Vol 7 | Issue 4 Page | 3142

A
OPEN () ACCESS
International Journal of Innovations in Science & Technology

100
Baseline
Proposed QSE Lifecycle

80

60

40

Performance Score (%)

20

Tne ety ey Ty oty
De:ve“““mgn'L grecsion rror 127 cote R oot ine™® o

Figure 4. Comparative Simulation Outcomes: Baseline vs. Proposed Lifecycle
Results:

This section presents the empirical findings obtained from the expert-based Delphi
validation and the simulation-based comparative evaluation of the proposed Quantum
Software Engineering (QSE) lifecycle. Results are organized to first report expert consensus
outcomes and then present quantitative performance improvements observed through
simulation experiments.

Results of Expert-Based Delphi Validation:

The Delphi-based expert validation aimed to assess the conceptual soundness,
completeness, and practical relevance of the proposed QSE lifecycle. Fifteen experts evaluated
each lifecycle phase across five criteria using a five-point Likert scale. Consensus was achieved
after two Delphi rounds, with agreement levels exceeding the predefined threshold of 75%
for all phases.

As illustrated in Figure 3, the Quantum Requirements Engineering and Hybrid
Integration and Simulation phases received the highest average ratings. Experts highlighted
that early feasibility analysis, hardware-aware requirement specification, and hybrid
orchestration are critical for successful quantum software development in the NISQ era.

The Quantum Testing and Verification phase received comparatively lower ratings.
Expert feedback indicated that this result reflects current limitations in automated quantum
testing tools and formal verification support, rather than deficiencies in the lifecycle structure
itself. Overall, the expert evaluation confirms that the proposed lifecycle is comprehensive,
logically structured, and well aligned with current practitioner needs.

Results of Simulation-Based Comparative Evaluation:

The simulation-based evaluation compared quantum software projects developed
using the proposed lifecycle against baseline ad-hoc development workflows. Three
representative quantum algorithms—VQE, Grover’s algorithm, and QAOA—were
implemented under both conditions. All reported results represent mean values across
repeated simulation runs, ensuring robustness against probabilistic variability.
Development Time:

Adoption of the proposed QSE lifecycle resulted in an average 24% reduction in
development time compared to baseline workflows. This reduction is attributed to clearer
phase separation, improved traceability from requirements to implementation, and reduced
rework during integration and debugging activities.

These results demonstrate that structured lifecycle guidance can significantly improve
productivity, even in experimental quantum development environments.

December 2025 | Vol 7 | Issue 4 Page | 3143

OPEN (5) ACCESS

International Journal of Innovations in Science & Technology

Execution Fidelity:

Execution fidelity under noisy simulation conditions improved by approximately 15—
18% when the proposed lifecycle was applied. Systematic circuit optimization, early
consideration of noise constraints, and disciplined integration of error mitigation strategies
contributed to more stable output distributions.

Improved execution fidelity reduces the number of repeated executions required to
obtain reliable results, which is particularly valuable given the limited availability and cost of
quantum backend resources.

Error Traceability:

Projects developed using the proposed lifecycle exhibited notably improved error
traceability. Errors could be localized to specific lifecycle phases—such as design, integration,
or execution—whereas baseline workflows often made fault isolation difficult due to tightly
coupled and unstructured development practices. This result highlights the role of process
structure in managing the inherent non-determinism of quantum software systems.

Code Reusability and Modularity:

The proposed lifecycle led to substantial improvements in code reusability and
modularity. Explicit separation between classical and quantum components, along with
standardized design artifacts, enabled the reuse of quantum circuits and hybrid orchestration
logic across different algorithmic scenarios.

Enhanced reusability supports long-term maintainability and reduces vendor lock-in,
both of which are critical for industrial-scale quantum software development.

Tool Interoperability:

Lifecycle-guided implementations demonstrated higher tool interoperability across
quantum development frameworks and simulators. Abstracted interfaces and modular design
practices reduced dependence on platform-specific features, facilitating smoother migration
between quantum toolchains.

This result indicates that the proposed lifecycle can support heterogeneous quantum
ecosystems more effectively than ad-hoc development approaches.

Result Stability and Variability Analysis:

Across all evaluated metrics, observed variability between repeated simulation runs
remained low, typically below 5%. This consistency indicates that the reported improvements
are stable and systematic, rather than artifacts of individual executions. Despite the
probabilistic nature of quantum computation, the structured lifecycle contributed to more
predictable and reproducible development outcomes.

Summary of Results:

The combined qualitative and quantitative results demonstrate that the proposed QSE
lifecycle delivers measurable engineering benefits beyond conceptual guidance alone. Expert
consensus confirms its relevance and feasibility, while simulation-based evaluation reveals
significant improvements in development efficiency, execution fidelity, error traceability, code
reusability, and tool interoperability.

These findings provide strong empirical support for adopting process-centric lifecycle
methodologies in Quantum Software Engineering and motivate the discussion presented in
the following section.

Discussion:

The results presented in the previous sections demonstrate that Quantum Software
Engineering (QSE) requires a fundamental shift from experimental, tool-centric development
toward structured, process-centric engineering practices. This section discusses how the
proposed lifecycle advances the QSE conceptually and practically, interprets the empirical
findings, examines deployment feasibility in real-world environments, and outlines current
limitations.

December 2025 | Vol 7 | Issue 4 Page | 3144

OPEN (5) ACCESS

International Journal of Innovations in Science & Technology
Advancing QSE from Tool-Centric to Process-Centric Engineering:

One of the central contributions of this work is repositioning QSE as a software
engineering discipline, rather than a collection of programming tools and algorithms. Current
quantum development practices are predominantly driven by platform-specific SDKs and
experimental workflows, where success depends heavily on individual expertise. The proposed
lifecycle introduces explicit phases, responsibilities, and feedback loops that mirror the
maturity of classical software engineering while remaining adaptable to quantum constraints.
The empirical results confirm that this process-centric orientation leads to tangible benefits.
Improvements in development time, execution fidelity, and reusability indicate that disciplined
workflows reduce rework, improve traceability, and support scalable collaboration. This shift
is particularly important for industrial adoption, where repeatability, maintainability, and
governance are critical success factors.

Interpretation of Empirical Results and Practical Implications:

The Delphi validation results indicate strong expert agreement on the relevance and
feasibility of the proposed lifecycle, particularly in early and mid-stage phases such as
requirements engineering and hybrid integration. Lower ratings for testing and verification
reflect current ecosystem limitations rather than conceptual deficiencies, highlighting areas
where future tooling and research are required. The simulation-based comparison further
demonstrates that structured lifecycle adoption yields measurable engineering improvements,
including reduced development effort and enhanced execution stability under noisy
conditions. For practitioners, these findings imply fewer costly trial-and-error cycles, better
utilization of limited quantum backend access, and increased confidence in deployment
decisions. Importantly, the low variance observed across repeated runs suggests that these
improvements are robust despite inherent quantum probabilistic behavior.

Deployment Feasibility in Quantum Cloud Environments:

A key concern raised by reviewers is the real-world applicability of the proposed
lifecycle. In practice, the lifecycle maps naturally onto existing quantum cloud platforms such
as IBM Quantum, Amazon Braket, and Azure Quantum. Requirements engineering aligns
with backend selection and resource estimation; hybrid integration corresponds to classical
orchestration layers; and deployment and monitoring are supported through cloud-based
execution, logging, and access control mechanisms.

However, limitations remain. Current platforms provide limited support for lifecycle-
aware testing automation, continuous integration, and cross-platform portability. While the
proposed lifecycle does not eliminate these constraints, it offers a structured framework within
which such capabilities can be systematically developed and integrated as platform maturity
increases. Thus, the lifecycle is both immediately applicable and future-compatible.
Governance, Ethics, and Sustainability in Practice:

Unlike many existing QSE approaches, this work explicitly embeds governance and
ethical considerations within lifecycle phases. Operationalizing these concerns ensures that
security, compliance, and accountability are addressed proactively rather than retrospectively.
This is particularly relevant as quantum software increasingly targets sensitive domains and
cloud-based multi-tenant environments.

From a sustainability perspective, the lifecycle encourages modularity, reuse, and early
performance evaluation, which collectively reduce unnecessary computation and repeated
simulation. While energy modeling in quantum computing remains an open research problem,
disciplined development processes represent a practical first step toward sustainable quantum
software practices.

Limitations and Open Challenges:

Despite its strengths, the proposed lifecycle has limitations. First, it operates at a

methodological level and does not yet provide automated tooling support for all phases,

December 2025 | Vol 7 | Issue 4 Page | 3145

OPEN (5) ACCESS

International Journal of Innovations in Science & Technology

particulatly testing and verification. Second, while simulation-based evaluation provides
valuable insight, full-scale industrial case studies are required to assess long-term operational
robustness. Third, as quantum hardware evolves toward fault tolerance, lifecycle phases related
to error management and optimization will require further refinement.

These limitations do not undermine the validity of the framework but rather highlight
future research directions necessary for QSE maturation.

Summary:

Opverall, the discussion confirms that the proposed QSE lifecycle addresses both
conceptual and practical gaps in current quantum software development. By emphasizing
structured processes, empirical validation, and governance integration, this work advances
QSE beyond experimental tooling toward a sustainable engineering discipline. The insights
gained here provide a foundation for standardization efforts, educational curricula, and
industrial adoption in the rapidly evolving quantum computing landscape.
Recommendations:

The empirical findings of this study demonstrate that adopting a structured, process-
centric Quantum Software Engineering (QSE) lifecycle leads to measurable improvements in
development efficiency, execution fidelity, and software sustainability. In light of these results,
this section presents actionable recommendations for key stakeholders involved in the
quantum software ecosystem, including researchers, industry practitioners, and tool
developers.

Recommendations for Academic Researchers:

Academic research in quantum computing has traditionally emphasized algorithmic
design and hardware advancement, often overlooking systematic software engineering
practices. Recent studies increasingly highlight that the absence of disciplined engineering
workflows limits reproducibility and long-term impact. Based on the findings of this work,
academic researchers are encouraged to:

Adopt structured QSE lifecycles when developing experimental quantum software to enhance
reproducibility and methodological rigor.

Explicitly document requirements, architectural decisions, and validation strategies in
quantum software publications [4][3].

Integrate hybrid system design, lifecycle modeling, and governance concepts into graduate-
level quantum computing and software engineering curricula [7][23].

Use empirically validated lifecycle frameworks as a foundation for benchmarking and
comparative evaluation in QSE research [29][5].

These practices can help move quantum research beyond isolated demonstrations
toward cumulative, engineering-driven progress.
Recommendations for Industry Practitioners:

For industry practitioners seeking to deploy quantum solutions, ad-hoc
experimentation is insufficient for ensuring reliability, scalability, and regulatory compliance.
Prior work emphasizes that industrial adoption of quantum computing requires disciplined
engineering processes similar to those used in classical systems [3][30]. Accordingly,
practitioners should:

Treat quantum software as a long-term engineering asset rather than a disposable
experimental artifact. Integrate QSE lifecycle phases such as requirements engineering,
structured testing, and monitoring into existing software development workflows [1][5].
Leverage hybrid quantum-—classical architectures to extract near-term value from NISQ
devices while maintaining compatibility with future fault-tolerant systems [19][20]. Establish
governance, security, and compliance checks early in the lifecycle, particularly for cloud-based
and multi-tenant quantum deployments [32][33][34]. Applying these recommendations can
reduce technical risk and improve predictability in real-world quantum projects.

December 2025 | Vol 7 | Issue 4 Page | 3146

OPEN () ACCESS
International Journal of Innovations in Science & Technology

Recommendations for Tool and Platform Developers:

Quantum software tools play a decisive role in shaping development practices.
However, current toolchains remain fragmented and largely lifecycle-agnostic. To support
sustainable QSE adoption, tool and platform developers are encouraged to:

Extend quantum SDKs with lifecycle-aware features, including requirement traceability,
modular design support, and validation utilities [21].

Develop testing and debugging tools that incorporate error mitigation strategies and statistical
validation mechanisms suitable for NISQ devices [24][27]. Promote interoperability across
platforms to reduce vendor lock-in and support software portability [29]. Embed governance,
auditability, and security mechanisms directly into development environments and execution
platforms [30][34]. Such enhancements would significantly lower adoption barriers and foster
robust quantum software ecosystems.

Directions for Future Research:

Although this study provides a validated QSE lifecycle, several research directions remain
open:

Development of automated testing and verification tools aligned with lifecycle phases
[28][24]. Large-scale industrial case studies to assess lifecycle effectiveness under sustained
operational conditions. Extension of lifecycle practices to fault-tolerant quantum computing
as hardware capabilities mature [26][27]. Integration of quantitative sustainability and energy-
efficiency metrics into QSE evaluation frameworks. Addressing these directions will further
strengthen QQSE as a mature, standardized, and responsible engineering discipline.
Conclusion:

Quantum Software Engineering (QSE) is rapidly emerging as a critical discipline that
must mature alongside advances in quantum hardware and algorithms. However, the current
landscape of quantum software development remains fragmented, tool-centric, and largely
experimental, limiting scalability, reliability, and real-world adoption. This paper addressed
these limitations by proposing a structured, process-centric Quantum Software Engineering
lifecycle framework tailored to NISQ-era constraints and future fault-tolerant evolution.

The study began by identifying foundational gaps in existing QSE practices,
highlighting the absence of standardized lifecycle methodologies, limited verification support,
fragmented toolchains, and underdeveloped governance mechanisms. To address these
challenges, a six-phase QSE lifecycle was designed, integrating requirements engineering,
hybrid system design, quantum development, testing and verification, deployment,
monitoring, and evolution, with explicit consideration of ethics, security, and sustainability.

The proposed lifecycle was empirically validated using a dual evaluation strategy. First,
a Delphi-based expert validation involving 15 domain experts confirmed the conceptual
soundness, feasibility, and practical relevance of the framework. Second, a simulation-based
comparative analysis using Qiskit and Pennylane demonstrated quantifiable engineering
benefits over ad-hoc quantum development workflows. Specifically, adoption of the proposed
lifecycle resulted in an average 24% reduction in development time, a 15—18% improvement
in execution fidelity under noisy conditions, and substantial gains in code reusability, error
traceability, and tool interoperability. These improvements were consistent across repeated
simulation runs, indicating robustness despite inherent quantum probabilistic behavior.

Beyond performance gains, this work advances QSE by shifting the focus from
isolated tools and algorithms toward disciplined, repeatable engineering processes. By
embedding governance, ethical checks, and lifecycle-aware validation into development
workflows, the proposed framework supports trustworthy and sustainable quantum software
deployment, particulatly in cloud-based and multi-tenant environments. This process-centric
perspective is essential for transitioning quantum software from experimental prototypes to
production-ready systems.

December 2025 | Vol 7 | Issue 4 Page | 3147

0
OPEN °) ACCESS

International Journal of Innovations in Science & Technology

While the proposed lifecycle represents a significant step toward QSE maturation, it
is not without limitations. Automated tooling support for lifecycle phases—particulatly testing
and verification—remains limited, and large-scale industrial case studies are still needed to
assess long-term operational impact. Nevertheless, the framework provides a solid foundation
upon which future tooling, standards, and educational initiatives can be built.

In conclusion, this work contributes a validated, structured, and forward-looking
Quantum Software Engineering lifecycle that bridges the gap between quantum computing
innovation and the software engineering discipline. By providing empirical evidence of its
benefits and practical guidance for adoption, the proposed framework lays the groundwork
for scalable, reliable, and responsible quantum software systems, supporting the continued
evolution of QSE as a mature engineering field.

Disclosure Section:

Data Availability Statement:

The data produced during this study are included in this paper. No supplementary data is

available.

Competing Interests Declaration:

The authors have no competing interests.

References:

[1] T.Y. Shaukat Ali, “When software engineering meets quantum computing,” Commun.
ACM, vol. 65, no. 4, pp. 84-88, 2022, [Online|. Available:
https://dl.acm.org/doi/10.1145/3512340

[2] M. A. Serrano, R. Pérez-Castillo, and M. Piattini, “Quantum Software Engineering,”
Quantum Softw. Eng., pp. 1-302, Oct. 2022, doi: 10.1007/978-3-031-05324-5/COVER.

[3] J. G.-A. Juan Manuel Murillo, “Quantum Software Engineering: Roadmap and
Challenges Ahead,” ACM Trans. Softw. Eng. Methodol., vol. 34, no. 5, 2025, [Online].
Available: https://dl.acm.org/doi/10.1145/3712002

(4] A. K. Mandal, M. Nadim, C. K. Roy, B. Roy, and K. A. Schneider, “Quantum
software engineering and potential of quantum computing in software engineering
research: a review,” Autom. Softw. Eng. 2025 321, vol. 32, no. 1, pp. 27-, Mar. 2025,
doi: 10.1007/S10515-025-00493-\.

[5] A. A. K. Muhammad Azeem Akbar, “A systematic decision-making framework for
tackling quantum software engineering challenges,” Autom. Softw. Eng., vol. 30, 2023,
[Online]. Available: https://link.springer.com/article/10.1007/s10515-023-00389-7

[6] J. Zhao, “Quantum Software Engineering: Landscapes and Horizons,”
arXiv:2007.07047, 2020, [Online]. Available: https://arxiv.org/abs/2007.07047

[7] D. D. N. Manuel De Stefano, Fabiano Pecorelli, Fabio Palomba, Davide Taibi,
“Quantum Software Engineering Issues and Challenges: Insights from Practitioners,”
Quantum Softw., pp. 337-355, 2024, [Online]. Available:
https://link.springer.com/chapter/10.1007 /978-3-031-64136-7_13

[8] M. Piattini, M. Serrano, R. Perez-Castillo, G. Petersen, and J. L. Hevia, “Toward a
Quantum Software Engineering,” IT Prof., vol. 23, no. 1, pp. 62—60, Jan. 2021, dot:
10.1109/MITP.2020.3019522.

[91 P.W. Shor, “Algorithms for quantum computation: Discrete logarithms and
tactoring,” Proc. - Annu. IEEE Symp. Found. Comput. Sci. FOCS, pp. 124—134, 1994,
doi: 10.1109/SFCS.1994.365700.

[10] P.W. Shor, “Quantum Computing,” Doc. Math. |]. DM/, 1998, [Online|. Available:
https:/ /www2.math.upenn.edu/~ted/210S14/References/Shor. MAN.pdf

[11] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer,” SLAM J. Comput., vol. 26, no. 5, pp. 1484—
1509, Aug. 1995, doi: 10.1137/S0097539795293172.

December 2025 | Vol 7 | Issue 4 Page | 3148

OPEN

ﬁ%}

yACCESS
' International Journal of Innovations in Science & Technology

[12]

[13]
[14]

[15]

18]

[19]

[20]

21]

22]

23]

[20]

27]

L. K. Grover, “A fast quantum mechanical algorithm for database search,” Proc. Annu.
ACM Symp. Theory Comput., 1996, [Online]. Available:
https://dl.acm.org/doi/10.1145/237814.237866

L. K. Grover, “A different kind of quantum search,” arXiv:guant-ph/ 0503205, 2005,
[Online]. Available: https://arxiv.org/abs/quant-ph/0503205

Lov K. Grover, Apoorva D. Patel, “Quantum Search,” Encycl. Algorithm, 2015,
[Online]. Available: https://chep.iisc.ac.in/Personnel/adpatel/QS_treview.pdf

S. G. Subrata Das, Avimita Chatterjee, “A First Order Survey of Quantum Supply
Dynamics and Threat Landscapes,” Quantum Phys., 2023, [Online]. Available:
https://arxiv.org/abs/2308.09772

Francesco Tacchino, “Digital quantum simulations and machine learning on near-
term quantum processors,” UNITED, 2020, [Online]. Available:
https://tesidottorato.depositolegale.it/handle/20.500.14242 /84523

M. S. C. R. Garrelt J. N. Alberts, M. Adriaan Rol, Thorsten Last, Benno W. Broer,
Cornelis C. Bultink, “Accelerating quantum computer developments,” EP] Quantum
Technol., 2021, [Online]. Available:
https://link.springer.com/article/10.1140/epjqt/s40507-021-00107-w

T. Ehmer, G. Karemore, and H. Melo, “The Quantum Computing Paradigm,”
Comput. Drug Discov. Methods Appl. 17ol. 1-2, pp. 627-678, Jan. 2024, doi:
10.1002/9783527840748.CH206;

D. P. Jake Zappin, Trevor Stalnaker, Oscar Chaparro, “When Quantum Meets
Classical: Characterizing Hybrid Quantum-Classical Issues Discussed in Developer
Forums,” arXiw:2411.16884, 2024, [Online|. Available:

https:/ /arxiv.org/abs/2411.16884

A. L. Saiyed, “Hybrid Quantum-Classical Cryptographic Protocols: Enhancing
Security in the Era of Quantum Supremacy,” Spectr. Res., vol. 5, no. 1, Jan. 2025,
Accessed: Jan. 09, 2026. [Online]. Available:
http://spectrumofresearch.com/index.php/st/atticle/view/12

J. A. C.-L. Manuel A. Serrano, “Quantum Software Components and Platforms:
Overview and Quality Assessment,” ACM Comput. Surv., vol. 55, no. 8, 2022,
[Online]. Available: https://dl.acm.org/doi/10.1145/3548679

T. B. Mark Fingerhuth, “Open source software in quantum computing,” PLoS Ore,
2018, [Online]. Available:

https://journals.plos.org/plosone/article?id=10.1371 /journal. pone.0208561
“SheQuantum QSESC Whitepaper: Universalization of Quantum Software
Engineering — SheQuantum.” Accessed: Jan. 09, 2026. [Online|. Available:
https://shequantum.org/2024/12/15/shequantum-qsesc-whitepapet-
universalization-of-quantum-softwate-engineering/

M. P. Antonio Garcia de la Barrera, Ignacio Garcia-Rodriguez de Guzman, Macario
Polo, “Quantum software testing: State of the art,” |. Softw. Evol. Process, 2023,
[Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/smt.2419

D. P. Jake Zappin, Trevor Stalnaker, Oscar Chaparro, “Challenges and Practices in
Quantum Software Testing and Debugging: Insights from Practitioners,” ACM Ref.
Format, 2025, [Online]. Available: https://arxiv.org/abs/2506.17306

D. Gottesman, “An Introduction to Quantum Error Correction and Fault-Tolerant
Quantum Computation,” arXi:0904.2557, 2009, [Online|. Available:

https:/ /arxiv.org/abs/0904.2557

T. K. Njoku, “Quantum Software Engineering: Algorithm Design, Error Mitigation,
and Compiler Optimization for Fault-Tolerant Quantum Computing,” Int. |. Comput.
Appl. Technol. Res., vol. 14, no. 4, pp. 30—42, 2025, [Online]. Available:

December 2025 | Vol 7 | Issue 4 Page | 3149

0
OPEN (4 ACCESS
International Journal of Innovations in Science & Technology

https:/ /www.tesearchgate.net/publication/389978011_Quantum_Software_Engineer
ing_Algorithm_Design_Error_Mitigation_and_Compiler_Optimization_for_Fault-
Tolerant_Quantum_Computing

[28] P.Z.Marco Lewis, Sadegh Soudjani, “Formal Verification of Quantum Programs:
Theory, Tools and Challenges,” arX7:2110.071320, 2022, [Online]. Available:
https://arxiv.org/abs/2110.01320

[29] A. C. Samuel Sepulveda, “Systematic Review on Requirements Engineering in
Quantum Computing: Insights and Future Directions,” Electronics, vol. 13, no. 15, p.
2989, 2024, [Online]. Available: https://www.mdpi.com/2079-9292/13/15/2989

[30] “Professional Issues in Software Engineering - 3rd Edition - Frank Bott.” Accessed:
Jan. 09, 2026. [Online]. Available: https://www.routledge.com/Professional-Issues-
in-Software-Engineering/Bott-Coleman-Eaton-Rowland/p/book/9780748409518

[31] M.]J. H. Faruk, S. Tahora, M. Tasnim, H. Shahriar, and N. Sakib, “A Review of
Quantum Cybersecurity: Threats, Risks and Opportunities,” 2022 1st Int. Conf. Al
Cybersecurity, ICAIC 2022, 2022, doi: 10.1109/ICAIC53980.2022.9896970.

[32] Ludovica llari(PalermoU.), “Navigating Ethical Challenges in Cybersecurity: From
Risk Assessment to Quantum-Al Applications,” Thesis PhD Univ. degli Stud. di
Macerata, 2025, [Online]. Available: https://inspirehep.net/literature /2959489

[33] R. K. B. Anisha Kumari, “Quantum Cloud Computing: Key Technologies,
Challenges, and Opportunities,” Adp. Quantum Inspired Artif. Intell., 2025, [Online].
Available: https://link.springer.com/chapter/10.1007/978-3-031-89905-8_6

[34] A. G. Yaser Baseri, Vikas Chouhan, “Cybersecurity in the Quantum Era: Assessing
the Impact of Quantum Computing on Infrastructure,” arX:w:2404.10659, 2024,
[Online]. Available: https://arxiv.org/abs/2404.10659

® Copyright © by authors and 50Sea. This work is licensed under the
Creative Commons Attribution 4.0 International License.

December 2025 | Vol 7 | Issue 4 Page | 3150

