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recise short-term forecasting of building cooling demand is a necessary facilitator of 
power-efficient operation, economic planning, and carbon-conscious decision-making 
in modern power systems. Nevertheless, many of the current data-driven methods 

are based on a  few input variables, ignore forecast-based exogenous data, or are affected 
by information leakage in time-series learning pipelines. In order to address these drawbacks, 
this paper suggests a high-fidelity deep learning model to forecast short-term cooling demand 
by jointly combining past load patterns, dynamic electricity price signals, grid carbon intensity 
signals, and multi-horizon weather forecasts. The suggested framework uses a multi-layer 
Long Short-Term Memory (LSTM) structure that will learn intricate temporal 
relationships in hourly building energy data throughout a complete annual period. The 
preprocessing strategy embraces a leakage-free approach and includes the alignment of data 
with time consistency, normalization of features, and the generation of sliding-window 
sequences in order to guarantee realistic and reliable performance assessment. The 
CityLearn dataset is used to train and test the model, and this data is a high-resolution 
simulated urban building energy environment of 8,760 hourly observations under various 
seasonal and operational conditions. The results of the experiment indicate that the 
given approach produces very accurate cooling demand forecasts, as the coefficient of 
determination (R2) is 0.9823, and the mean error of absolute percentage is below 1, which is 
much higher than that of traditional baseline models. Additional studies prove that the 
combination of forecast consistent weather variables, electricity pricing signals, and 
carbon intensity indicators can significantly boost prediction accuracy and operational 
relevance. The evaluated leakage-free building energy management system is simulated, but 
the leakage-free learning pipeline and multi-source input design can be directly applied 
to real-world systems, enabling the intelligent HVAC control, demand response, and 
low-carbon operational practices. Altogether, this article may help to fill the gap 
between deep learning approaches and sustainability-conscious decision-making in the 
contemporary energy infrastructure. The proposed model is designed for direct multi-step 
(multi-horizon) prediction of demand for cooling in the form of predictions of demand 
for several time steps in the future using forecast-aligned input features. 
Keywords: Building Cooling Demand Forecasting; Deep Learning; Long Short-Term 
Memory (LSTM); Weather-Assisted Energy Prediction; Carbon-Aware Building Energy 
Management 
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Introduction: 
The ongoing population increase in cities, as well as the extensive use of energy-

demanding building infrastructures, has placed buildings as one of the biggest electricity and 
a significant carbon source around the planet [1][2]. Cooling systems are one of the many 
end-use components with a huge proportion of building energy consumption, especially 
those in areas with hot climates with increasing ambient temperatures and extending cooling 
seasons [3][4]. With the escalation of the climatic stress and energy demand patterns getting 
more dynamic, precise short-term prediction of building cooling demand has become a very 
important requirement of efficient and sustainable operation of the energy system [5]. 

Accurate cooling demand forecasting is central to the current energy management 
systems in buildings since it allows the efficient scheduling of heating, ventilation, and air-
conditioning systems, enhances the participation in demand response, lowers the expense 
of operations, and softens peak electricity demand [6][7]. Moreover, the increased 
integration of renewable sources of energy and the implementation of time- varying 
electricity prices have added more uncertainty and variability to the power systems [8][9]. In 
these circumstances, accurate short-term demand prediction is crucial, both to optimize the 
economy, and to ensure grid stability and to minimize generation that is carbon-intensive 
during peak times [10] 

Traditional cooling demand forecasting models have either been based on physics-
based approaches to modeling or classical statistical models, such as linear regression, 
autoregressive integrated moving average, and rule-of-thumb simulations [2]. Although 
these methods provide both transparency and theoretical interpretability, they tend to miss 
the highly nonlinear, time-dependent, and multi-factor interactions that define the building 
energy behavior in the real world [11]. The cooling demand is a complex interdependency 
of historical load patterns, weather conditions, humidity, and solar radiation, operating 
schedules, signals of electricity prices, and behavioral influences of users [4][12]. The 
dimensionality and time dependence of these variables are a major constraint to the 
predictive power of the conventional models, especially in operational and environmental 
settings that have a significant rate of variation [13]. 

The progress in machine learning has seen more flexible data-driven forecasting 
models constructed that can model complex nonlinear relationships [14]. Such approaches 
like support vector regression, ensemble learning, and tree-based algorithms have shown 
better results compared to classical statistical models in different energy prediction 
problems [15]. In more recent times, deep learning methods, especially recurrent neural 
networks and Long Short-Term Memory models, have been broadly discussed because they 
already have the property of being able to represent long-range temporal dependencies in time-
series data [11][16]. These models have been effectively used to develop electricity 
consumption forecasting, HVAC energy estimation, and district cooling load prediction 
with significant enhancement in the accuracy and strength [6][1]. 

Although the methods based on deep learning demonstrate positive results, a 
number of limitations are still present in the current literature [17]. A significant percentage 
of the previous research concentrate on the past load and measured weather conditions, and 
they do not take into account other essential exogenous dynamics, including the electricity 
pricing dynamics and carbon intensity signals [18][10]. With energy systems progressively 
converting to a market-oriented and low-carbon mode of operation, the omission of these 
variables makes forecasting models less practical [7][19]. Also, numerous published works 
are based on short-term horizons or simplified data, which are not capable of reflecting 
seasonal changes and long-term operational patterns of real-life building energy systems 
[5][2]. 

The other major challenge, which is critical, is the experimental design of short-term 
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forecasting models [8]. The future cooling demand in an operational environment should 
be forecasted based on forecasted data as opposed to the actual future data, which is perfect 
[20]. Nevertheless, accessible information on future weather or external variables, as 
assumed implicitly by many existing studies when assessing a model, creates information 
leakage and falsely inflated estimates of model performance [17][16]. Poor data 
preprocessing (e.g., not adequately normalizing training and testing intervals in time-series, 
or randomly splitting data in time-series) also contributes to the lack of reliability and 
generalizability of reported findings [14]. 

The gaps as outlined need to be filled by means of forecasting frameworks that are 
not only highly predictive in nature but also representative of the realistic operational 
conditions, as well as including information related to sustainability [10][9]. With the 
combination of heterogeneous data sources, such as historical cooling demand, electricity 
pricing signals, carbon intensity indicator, and predicted weather variables, there is a chance 
to increase the quality of short-term cooling demand prediction as well as its value in 
decision-making [3][1]. Due to their integration with carefully-crafted leakage-free 
preprocessing pipelines and realistic evaluation strategies, deep learning models can be a 
potent base for next-generation building energy forecasting systems [17][21]. 

Inspired by this, this work constructs a high-fidelity deep learning-based model of 
short-term building cooling demand prediction that puts an emphasis on operational 
realism, the combination of multiple sources of data, and sustainability consciousness.  
Utilizing a multi-layer Long Short-Term Memory architecture and introducing various 
exogenous input signals into a time-consistent learning pipeline, the suggested method will 
enhance the precision of the forecasts and still be practically applicable to the strategies of 
intelligent building energy management and the operation based on low-carbon principles. 
Novelty of the Proposed Study: 

In contrast to most of the existing short-term building cooling demand forecasting 
studies, which have mainly relied on historical load profiles and weather variables, this study 
shows the explicit and standalone integration of dynamic electricity pricing and time-varying 
grid carbon intensity indicators directly in the forecasting framework. The novelty is not 
only in the use of these economic and environmental signals as further input features, but 
in redefining the problem of cooling demand forecasting as a sustainability-aware decision 
support problem, as opposed to an accuracy-driven task. To the best of current knowledge, 
this work can be considered as one of the few attempts to jointly fuse the forecast-aligned 
weather information, dynamic price signals, and carbon intensity indicators in a leakage-free 
deep learning-based learning pipeline for short-term cooling demand forecasting. This 
explicit integration allows the forecasting model to support cost and carbon-awareness and 
therefore extend the role of demand prediction from numerical performance to market 
responsiveness and low-carbon building energy management. 
Objectives of the Study: 

The key aim of the research is to come up with a deep learning model that is leakage-
zero, sustainability- conscious, and capable of predicting building cooling demand over a 
short period of time in the presence of realistic data availability limitations. To accomplish 
this general purpose, the following are the research objectives: 

To develop a short-term cooling demand forecasting system that inherently 
combines the past cooling load patterns, forecast-consistent weather data, dynamic price 
signals on electricity, and grid carbon intensity information with a single deep learning 
framework. 

The presence of leakage in the data preprocessing and learning pipeline must be 
prevented to achieve the following: time-consistent feature alignment, realistic normalization, 
and effective sequence generation to make meaningful evaluation of performance. 
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To determine how economic (price of electricity) and environmental (carbon intensity) 
signals influence forecasting performance and practicality in comparison with conventional 
weather- and load-based forecasting. 

In order to make quantitative comparisons between the suggested framework and 
benchmark models based on the quantitative measures of performance, pinpointing the 
advantages of performance in terms of predictive accuracy and robustness. 

To show the possibility of the proposed solution to facilitate cost-conscious and carbon-
conscious decision-making in intelligent building energy management, demand response, and 
low-carbon operational planning. 
Related Work: 

The short-term cooling demand forecasting is a popular field of research because of 
its relevance in the energy management of buildings, demand response, and sustainable 
operation of power systems [2][7]. The research available can be generally subdivided into 
three general groups of approaches: traditional statistical prediction, conventional machine 
learning, and deep learning-based prediction models [14][17]. 

The initial studies into the demand forecasting of building cooling and electricity 
have been mainly based on statistical and physics-inspired models [2]. The models used to 
predict cooling demand in relation to past load and ambient temperature were mostly linear 
and nonlinear regression models, autoregressive models, and autoregressive integrated 
moving average (ARM) models [2][3]. These methods were interpretable and 
computationally simple, but they could be restricted by powerful linear and stationarity 
assumptions [11]. Due to the nonlinear nature of building energy systems, which is sensitive 
to seasonal cycles, occupancy, and operational dynamics, the statistical models often did not 
hold accuracy due to environmental and operational variations [13]. 

 
Figure 1. Evolution of short-term building cooling demand forecasting methods 
from traditional statistical models to advanced deep learning-based approaches. 

As indicated in Figure 1. The study of short-term building cooling demand prediction 
has been expanded increasingly over the years from conventional types of statistical methods to 
more sophisticated models based on machine learning and deep learning. Older statistical 
methods, including linear regression and ARIMA, were only intended to model simple, weak, 
nonlinear temporal patterns. The development of machine learning models allowed t h e  
representation of nonlinear relationships in a better way, but these methods usually did not 
have an intrinsic way of learning long-term temporal dependencies. In more recent times, deep 
learning models, specifically recurrent neural networks and Long Short-Term Memory models, 
have been shown to perform better through their ability to capture complex temporal 
dynamics and long-range dependence found in building cooling demand, which has made 
deep learning the paradigm in modern forecasting studies [4]. 
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To eliminate these shortcomings, methods based on machine learning were proposed to 
learn the nonlinear relationships between cooling demand and driving variables [14]. The 
techniques applied to short-term energy load forecasting activities have been widely used using 
support vector regression, k-nearest neighbors, artificial neural networks, random forests, and 
gradient boosting [17][15]. These techniques were shown to have better predictive accuracy 
than classical statistical models as they learn more complex input-output functions based 
on past data [15]. However, traditional machine learning frameworks typically use a large amount 
of feature engineering and do not have some form of an enduring temporal dependency 
mechanism, which is essential in well modeling cooling demand dynamics across long time 
horizons [11][13]. 

Due to the fast development of deep learning, recurrent neural technology has become 
one of the potent time-series predictive systems in energy systems [16]. Specifically, Long Short-
Term Memory networks have received a lot of attention as they can capture long-range 
time dependence and outperform traditional recurrent networks because they can avoid the 
vanishing gradient problem [16][21]. Many publications have established that the use of 
LSTM-based models has shown better performance in predicting building electricity usage, 
HVAC energy usage, and district cooling loads, particularly compared with shallow learning 
methods [20][1][6]. Other variants, like gated recurrent or hybrid convolutional recurrent 
architecture, have also helped to increase the accuracy of the forecasts because they have 
better capabilities to extract temporal features and have a higher learning rate [22]. 

Recent studies have paid more attention to the application of exogenous 
information to deep learning models, especially weather variables like temperature, 
humidity, wind speed, and solar radiation. The use of weather forecasts instead of measured 
weather information has been demonstrated to enhance the reality of short-term forecasting 
models since it correlates the experimental configuration with the real-world operational 
conditions. Nonetheless, a great number of current studies still build on the basis of a small 
number of weather characteristics or perfect future weather visibility, which can 
precondition excessive optimism in the forecasts of higher performance, as well as a 
decrease in practical utility. 

 
Figure 2. Comparative capabilities of conventional machine learning and deep learning 

models for short-term building cooling demand forecasting. 
Figure 2 demonstrates that the various forecasting paradigms have varying 

abilities in predicting the non-linear and time-related nature of the cooling demand of 
buildings. Traditional regression-based models are limited in terms of nonlinear 
representation and memory or time, which limits their performance in dynamic operating 
conditions. Support vector regression and random forests, which are methods of machine 
learning, enhance the capacity of nonlinear modeling, but the capacity to capture long-term 
temporal dependencies is limited. RNNs introduce time-dependent learning, but tend to 
have low long-term memory capabilities. Contrarily, Long Short-Term Memory networks 
have been designed to overcome these limitations, in particular by more heavily relying 
on gated memory mechanisms, which allow effective learning of long-range temporal 
patterns. This inherent benefit of the LSTM-based models, particularly, makes them the 
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most appropriate model when forecasting the short-term cooling demand, whereby 
complex temporal dynamics and the presence of persistent dependencies are highly 
important. 

In addition to the weather conditions, the price signal of electricity and carbon 
indicators have become more topical in reference to smart grids and low-carbon energy systems. 
Dynamic price mechanisms affect the operation strategies of the buildings, whereas the 
carbon intensity represents the effect of the electricity use at various times on the 
environment. Although their significance is on the increase, very little research has explicitly 
included price signals or carbon intensity indicators in the model of cooling demand hypotheses. 
The vast majority of the available literature treats cooling demand prediction as a separate 
activity without taking into account its interdependence with economic and environmental goals. 

The other problematic area that has been observed in the literature is the 
method of experimental design and evaluation of forecasting models. Some of the studies 
use random data splitting or global normalization procedures that bring information leakage 
between the training and testing data, leading to inflated accuracy measures. Also, much of 
the reported work is founded on short-term observation or narrow coverage of seasons, 
which does not reflect the full nature of actual building energy behavior. 
Such practices make it difficult to generalize and have reliable forecasting methods when 
implemented in an operational setting. 

Still more recent work has started to meet these challenges with realistic time-series 
validation, leakage-free preprocessing pipelines, and year-long datasets. Other works have 
investigated a hybrid approach with deep learning and optimization or control methods on 
demand response and energy scheduling. Although these methods prove to have encouraging 
outcomes, no extensive frameworks have been developed to concurrently combine multi-
source exogenous information, forecast-based inputs, and sustainability-conscious 
indicators into a single deep learning system to forecast short-term cooling demand. 

 
Figure 3. Identified research gaps in existing short-term cooling demand forecasting 

studies and the resulting motivation for sustainability-aware deep learning 
frameworks. 

According to Figure 3, the current short-term cooling demand forecast research is 
mainly based on historical load profiles and observed weather variables and has neglected 
most economic and environmental indicators, like dynamic electricity pricing and carbon 
intensity. Further, most of the previous studies are also methodologically weak in aspects 
such as leakage of information, limited evaluation time, and unrealistic validation 
techniques, which undermine their usefulness in practice. The highlighted gaps suggest the 
necessity of a single forecasting environment, integrating multi-source exogenous data, using 
forecast-based inputs, and incorporating leakage-free preprocessing and evaluation 
pipelines. This would not only increase predictive strength when operating in the real world 
conditions but would also guide cooling demand forecasting towards new sustainability and 
low-carbon goals in smart energy systems. 
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Overall, even though deep learning-based models, especially LSTM models, have 
brought enormous improvements to the state of the art in the development of cooling 
demand forecasting, there are still a number of gaps in research. These are a weak linkage 
between pricing and carbon signals, underutilization of forecasted exogenous variables in 
modeling, and the lack of satisfactory attention to leakage-free and operationally realistic 
strategies of evaluation. It is imperative to address these gaps to come up with forecasting 
models that are not only accurate but also realistic in the application of intelligent, cost-
effective, and low-carbon building energy management systems. 
Our Contributions: 

This paper describes a sustainability-conscious and deep learning model to predict 
short-term building cooling demand. The principal contributions of this work can be 
defined as follows: 
Unified Sustainability-Aware Forecasting Framework: 

We present a combined deep learning-based model that will further the traditional 
cooling demand prediction by incorporating multi-source exogenous variables such as 
weather conditions, electricity prices, and carbon intensity in a unified manner.  In contrast 
to the previous research, where the prediction of the cooling demand is considered as a 
separate activity, the suggested method clearly correlates the quality of the forecast with 
both economic and environmental aspects in the context of smart grids and low-carbon 
energy systems. 
Leakage-Free Preprocessing and Realistic Evaluation Strategy: 

An extensive data processing and experimental design pipeline is created to remove 
information leakage between training and testing stages. The framework proposed embraces 
time-conscious normalization, sequential data fragmentation, and forecast-compatible input 
reconstruction, thus enabling realistic and reliable performance assessment under realistic 
operational settings. 
Deep Learning Architecture Tailored for Cooling Demand Dynamics: 

We construct a forecasting model based on Long Short-Term Memory, which is able to 
model complex nonlinear connections and long-range temporal interdependencies of building 
cooling demand. The model efficiently acquires the dynamic interactions between historical 
load patterns and exogenous drivers, which result in the effective short-term predictions 
under different seasonal and operational regimes. 
Practical Relevance for Smart Energy Management Applications: 

The proposed approach can be implemented in the downstream application of 
forecast-based inputs and sustainability indicators, which will deliver practical information 
on demand response, energy scheduling, and carbon-conscious building operation. This 
makes the framework an effective decision support tool of next generation building energy 
management system. 
Methodology: 
This part explains the overarching approach that is suggested to be used to approach the 
short-term cooling demand forecasting in the particular case of smart building energy 
management systems based on the CityLearn dataset. The method combines data from 
multiple sources, enhanced deep learning architectures, and stringent evaluation plans to 
maintain robust, practical, and sustainability-conscious predictions. 
Data Collection and Sources: 

That experimental data is founded on CityLearn, which is an environment 
simulating multi-building energy on a city scale, over which research has extensively applied 
reinforcement learning and energy management. The dataset includes:  
Building Cooling Loads: Hourly cooling demand measurements of various buildings of 
different types. 
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Weather Variables: Hourly wind speed, humidity, sun radiation, and temperature. 
Operational Variables: Occupancy, HVAC setpoints, and building-specific energy 
limits. 
Economic and Environmental Indicators: Active electricity price indications and carbon 
intensity of grid electricity, with which sustainability-conscious forecasting is possible 

The multi-source characteristic of the data enables the model to represent the 
complex interactions between building operation, environmental conditions, and energy 
system economics, which is essential in realistic prediction in urban energy management.  
Data Preprocessing: 

To maximize model performance and avoid data leakage, several preprocessing steps 
are applied: 
Handling Missing Data: The gaps in the cooling load and weather variables are filled in 
through interpolation based on time and spatial heuristics, maintaining time-sequences. 
Time-Aware Normalization: Training-period statistics are used to normalize features to 
eliminate leakage of future information. This is necessary in constructing energy datasets 
that have seasonal and diurnal trends. 
Feature Engineering: 
Rolling averages, lagged cooling load sequences to represent temporal dependencies.  
Predictively aligned weather conditions are used to simulate real-world weather conditions. 
Dynamics Occupancy and pricing interaction terms model economic and behavioral 
influences on cooling demand. 
Sequential Data Splitting: Training, validation, and test sets are divided by time to ensure 
temporal integrity, which mimics actual deployment conditions. 
Leakage-Free Learning and Evaluation Protocol: 

The proposed framework is a leakage-free learning and evaluation protocol based 
on a rolling-origin (walk- forward) strategy to ensure strict temporal consistency. At each 
forecasting step, the model is only trained on the history data available till the prediction 
time; future observations are totally ignored for feature construction as well as 
normalization. Input sequences are generated with the help of a  sliding window 
mechanism, and the feature scaling parameters are calculated with only the help of training 
data and then applied to the corresponding test segments. This rolling-origin evaluation 
ensures that each prediction simulates a realistic operational forecasting situation, thus 
avoiding information leakage across temporal boundaries. 

Figure 4 indicates that the data preprocessing pipeline is a key component in 
improving the accuracy of the forecasting process because it is a systematic process of 
converting the raw building and environmental data into meaningful model inputs. First, 
there is the collection of historical cooling load, weather information, occupancy, electricity 
rates, and carbon intensity indicators. Missing values are also solved with the help of 
temporal interpolation and domain-specific rules, which guarantee data continuity. Time-
aware normalization makes every feature standardized, and information leakage is avoided 
in any future period. Lastly, feature engineering produces lagged load sequences, rolling 
statistics, and forecast-consistent exogenous variables, which, when combined, result in a 
combination of enriched inputs that are both temporally consistent with the deep learning 
model to forecast cooling demand in the short term. 
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Figure 4. Overview of the data preprocessing pipeline for short-term cooling demand 
forecasting, highlighting missing value handling, time-aware normalization, and feature 

engineering steps to prepare input features for the deep learning model. 
Deep Learning Model Architecture: 

The forecasting model uses a multi-layer Long-Short-Term memory architecture, 
which is specifically aimed at long-term temporal dependencies of cooling loads on their 
sequences, as well as the combination of exogenous variables:  
Input Layer: Puts together historical cooling load sequences, weather, occupancy, pricing, 
and carbon intensity features. 
Stacked LSTM Layers: Two or three LSTM layers with hidden units of 128-256, learning 
temporal patterns and reducing vanishing gradients. 
Dropout Layers: When an LSTM layer is used, there are dropout layers to avoid overfitting 
(0.2-0.3). 
Fully Connected Layers: These layers map temporal information on the predicted cooling 
demand. 
Output Layer: This is where single-step or multi-step ahead forecasts are produced based 
on operational requirements. 

The forecasting problem that is dealt with in this study is taken as a direct multi-step 
(multi-horizon) prediction problem. Rather than recursively forecasting one step, the 
proposed LSTM-based framework is used to simultaneously produce cooling demand 
forecasts for multiple future time horizons, based on forecast-aligned exogenous inputs. 
This formulation eliminates the accumulation of errors usually associated with recursive 
forecasting, and it is consistent with practical operational needs in building energy 
management systems. 

The suggested LSTM system is successful in the capture of both short-term and 
long-term dependencies in the construction of cooling demands by using various input 
features, such as historical energy loads, environmental conditions, occupancy trends, 
dynamic electricity rates, and carbon intensity indicators. The full modeling system 
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improves predictability, sustainable operational strategies of buildings, and resolves the 
weaknesses of traditional statistical and machine learning measures. The model uses 
gated recurrent units with dropout regularization as well as fully connected layers, as it has 
been shown in Figure 5, to guarantee strong performance in terms of temporal features 
extraction and effective forecasting. 

 
Figure 5. Proposed LSTM-based forecasting model integrating historical loads, 

weather, occupancy, pricing, and carbon indicators for accurate short-term cooling 
demand prediction. 

Model Architecture Selection and Justification: 
The selection of the Long Short-Term Memory (LSTM) architecture in the given 

work is informed by both the methodological appropriateness and feasibility of the 
construction of the building cooling demand forecasting in the short-term perspective. 
LSTM networks have been carefully constructed to learn both long-range and short-range 
temporal dependencies of sequential data and have been widely tested in the construction 
of energy and load forecasting systems, where the data have highly correlated seasonal cycles 
and strong temporal correlations. Even though recent developments in time-series modeling 
have proposed Transformer-based architectures, which have potent self-attention 
mechanisms, their applicability is usually proven in large-scale, data-rich settings. To obtain 
stable and reproducible performance, such models can demand significantly larger training 
datasets, more hyperparameter tuning, and more computational resources. By comparison, 
the size and resolution of building-level cooling demand datasets are often small, thus 
lightweight, but robust architectures are more appropriate to realistic operational 
environments. LSTMs provide a good tradeoff between predictive power, training 
robustness, and computational power, especially when the predictor is hourly building 
energy data over short historical horizons. Additionally, the sequential and repeated 
nature of LSTM networks inherently fits leakage-free learning conditions and rolling-origin 
testing conditions, which demand a high level of strictness in the temporal homogeneity of 
model training and testing. This alignment is essential to prevent information leakage and 
also to behave as real-world forecasting scenarios. The LSTM architecture is chosen as a 
trustworthy and understandable model to use because of the aims of the proposed research, 
i.e., to create a leakage-free, sustainability-conscious, and operationally viable forecasting 
model. The proposed framework focuses on the inclusion of forecast-consistent exogenous 



                                 International Journal of Innovations in Science & Technology 

December 2025|Vol 7 | Issue 4                                                          Page |3272 

variables such as electricity pricing and carbon intensity indicators, and on the realistic 
deployment feasibility, as opposed to the complexity of the architecture itself.  
Feature Engineering: 

To have the coupled effects between operational, economic, and environmental 
drivers, the interaction features are explicitly developed by constructing a pair of key 
exogenous variables. In particular, interaction terms are developed as multiplicative 
properties, like. 

x(int) = x(a) × x(b), 
t t t 

where x(a) and x(b) denote forecast-aligned weather variables, electricity price 
signals, or carbon intensity t indicators at time step t. These interaction terms enable the 
model to learn nonlinear dependencies between 
cooling demand and external factors that may not be captured through individual features 
alone. 
Training Strategy: To obtain strong and generalized performances, the model training 
process is systematic: 
Loss Function: To optimize accuracy in prediction, the Mean Squared Error (MSE) is 
used. 
Optimizer: Adam with adaptive learning rate to achieve rapid convergence. 
Early Stopping: To avoid overfitting, monitor the loss of validation. 
Hyperparameter Optimization: Hidden units, learning rate, dropout rate, and sequence 
length are optimized using grid search and Bayesian optimization. 
Mini-Batch Training: Mini-batches maintain time sequence and save computing 
resources. 

The approach will make sure that the trained model will capture the short-term 
fluctuations that are in effect, as well as the long-term seasonal factors in cooling demand. 
To strictly validate the leakage-free design, a scheme with rolling origin is used, where the 
size of the training window is expanded over time, and predictions are made for the unseen 
future horizons. This approach is very similar to what is done in the real world, where 
models have to be continuously updated based on only past data. Performance metrics are 
combined at all of the rolling evaluation steps to give a robust and non-biased measure of 
forecasting accuracy. 
Evaluation Metrics: 

Several metrics are used to evaluate model performance and are complementary to 
guarantee a thorough assessment: 
Mean Absolute Error (MAE): Evaluates the average amount of errors. 
Root Mean Squared Error (RMSE): Punishes big outliers, which emphasize predicting 
reliability. 
Mean Absolute Percentage Error (MAPE): This is a percentage-based measure of error, 
which can be used to compare across buildings. 
Temporal Error Analysis: Distribution of error by hours of day and by seasons to assess 
the model robustness. 

In this study, the term” high-fidelity forecasting” is used to denote predictive 
performance that is quantitatively characterized by consistently low error metrics (e.g., 
MAE, RMSE, and MAPE) and high coefficients of determination (R2) under a leakage-free 
rolling-origin evaluation protocol. This definition focuses on numerical accuracy, temporal 
consistency, and robustness across evaluation windows rather than qualitative or visual 
agreement only. 
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Practical Implementation Considerations: 
The methodology is structured to be consistent with real- life environment 

deployment in smart building energy management: 
Sequential Input Processing: Supports real-time forecasts and rolling predictions. 
Multi-Source Integration: Receives data on the interactions among cooling demand, 
weather, dynamic pricing, and carbon intensity to operate cost- and sustainability-
consciously. 
Scalable Framework: It can be used to generate on a large scale within a city district in the 
CityLearn system or actual sensor data. 
Operational Use: HVAC control strategies, demand response programs, and energy 
optimization policies can be informed by the use of forecasts. 

The proposed methodology, as shown in Figure 6, adheres to a disciplined and 
sequential flow of work in order to guarantee the leakage-free and operationally realistic 
short-term forecasting of cooling demand. It starts with the multi-source data collection in 
the CityLearn setting, comprising historical cooling loads, weather variables, occupancy 
data, dynamically changing electricity prices, and carbon intensity indicators. These are then 
fed into a specialized preprocessing pipeline that includes things like missing value handling, 
time-sensitive normalization, and feature engineering to maintain time consistency. The 
processed features are then input into the LSTM-based forecasting model, which is trained 
by a rolling-origin strategy to ensure that there is no information leakage. The model 
performance is assessed based on various metrics of errors, and the resulting predictions are 
ultimately mapped to real-world operational applications, including HVAC control, demand 
response, and carbon-sensitive energy management. 

 
Figure 6. Overall workflow of the proposed leakage-free LSTM-based forecasting framework, 

illustrating data collection, preprocessing, model training, evaluation, and operational 
deployment for short-term cooling demand prediction. 

Results: 
Model Performance Evaluation: 

The proposed LSTM-based prediction system was tested on the CityLearn data set 
(n= 8,760 hourly observations) that included one year of continuous data on the cooling 
demand of multiple buildings. Various complementary measures were used to evaluate the 
predictive performance of the model, which were Mean Absolute Error (MAE), Root 
Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and the 
coefficient of determination (R²). 

Table 1. Comparison of the proposed LSTM with baseline models. 

Model MAE (kW) RMSE (kW) MAPE (%) R² 

ARIMA 6.42 8.15 5.23 0.872 

SVR 3.87 5.14 3.12 0.934 

RF 3.42 4.68 2.81 0.948 

Proposed LSTM 0.94 1.21 0.92 0.982 

The findings clearly show that the proposed framework is significantly better in 
comparison to the traditional statistical and machine learning models. The R² value of 0.982 
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shows that it fits very well with the observed cooling demand trends, and the MAPE of less 
than 1% reflects that it is very precise and reliable under varying conditions of time and 
season. 
Temporal and Seasonal Analysis: 

Temporal error tests were performed at various times of the day and at various 
seasons to determine the strength. The model has minimal errors in full cooling days, which 
normally occur from 12:00 PM to 6:00 PM. In the case of the model, seasonal analysis 
shows that when it reaches summer, high cooling demand is always received, and when it 
reaches winter and shoulder season, low loads are always taken, which shows that the model 
is robust to seasonal variation. 

Table 2. Hourly and seasonal error distribution of the proposed LSTM model. 

Period MAE (kW) RMSE (kW) MAPE (%) 

Morning (6 AM - 12 PM) 0.91 1.18 0.89 

Afternoon (12 PM - 6 PM) 0.97 1.23 0.95 

Evening (6 PM - 12 AM) 0.92 1.20 0.91 

Night (12 AM - 6 AM) 0.88 1.15 0.86 

Summer Season 0.96 1.24 0.94 

Winter Season 0.89 1.16 0.87 

Shoulder Seasons 0.92 1.19 0.90 

This discussion proves that the LSTM model is capable of ensuring reliability in 
operational settings since it is able to capture both short-term swings and long-term seasonal 
patterns. 

 
Figure 7. Shows the hourly and seasonal error distribution of the proposed LSTM 

model using MAE, RMSE, and MAPE metrics. 
The model has a strictly low value of errors at various time intervals of the day and 

seasonal conditions as seen in the Figure 7. The errors are slightly higher in the afternoon and 
summer, which is representative of greater variability in cooling demand, and lower night and 
winter errors are representative of constant predictability in reduced load scenarios. All in all, 
the findings prove the strength and integrity of the proposed model in different operating 
conditions in time and season. 
Impact of Exogenous Variables: 

In order to measure the effect of exogenous variables, an ablation experiment was 
carried out by dropping weather forecasts, electricity prices, and features of carbon intensity. 

According to the results, predicted weather variables, dynamic price, and carbon 
intensity are all important in attaining high predictive performance. The elimination of each 
of these features causes a great increase in errors, which underlines the significance of multi-
source data integration. 
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Table 3. Ablation study showing the impact of exogenous features on forecasting accuracy. 

Input Feature Set MAE (kW) RMSE (kW) MAPE (%) 

All features (proposed) 0.94 1.21 0.92 

Without weather forecasts 2.54 3.12 2.47 

Without pricing signals 1.47 1.92 1.41 

Without carbon intensity 1.32 1.76 1.25 

Comparative Discussion with Baseline Approaches: 
The high quality of the LSTM-based framework performance is explained by the 

high capability of the framework to capture both the short and the long-term temporal 
dependencies. The model is trained on nonlinear interactions involving building operation, 
environmental conditions, and energy economics by incorporating historical load sequences 
with multi-horizon exogenous features. 

Table 4. Comparison of predictive performance during peak and off-peak periods 

Period ARIMA 
MAE (kW) 

RF MAE (kW) LSTM MAE 
(kW) 

Peak Hours (12 PM – 6 PM) 7.15 4.01 0.97 

Off-Peak Hours (12 AM – 6 AM) 5.89 3.50 0.88 

This clearly demonstrates the LSTM model’s superior ability to handle periods 
of rapid load variation compared to conventional models. 
Practical Implications for Smart Building Operation: 
The framework provides actionable insights for operational decision-making: 
Energy Efficiency: Accurate short-term forecasts enable optimal HVAC scheduling and peak 
load management. 
Cost-Aware Operation: Integration of dynamic pricing allows for load shifting to minimize 
energy costs. 
Carbon-Conscious Operation: Carbon intensity awareness enables environmentally 
sustainable building operation. 

Table 5. Example operational benefits enabled by the proposed forecasting model. 

Benefit Description Potential Impact 

HVAC Scheduling Forecast-driven load adjustments 10–15% energy savings 

Demand Response Shift load to off-peak periods Reduced peak demand charges 

Low-Carbon Operation: Minimize high-carbon electricity usage Reduced CO2 
emissions. 

These findings depict the practical usefulness of the proposed framework in addition 
to predictive accuracy, as it is a decision-support tool that can be used in smart and 
sustainable energy management of buildings. 
Numerical Deployment Scenarios and Real-World Impact: 

In order to directly prove the practicality of the suggested forecasting model in the real 
world, the model is applied to representative numerical deployment cases based on the attained 
prediction accuracy and realistic operational conditions that are typically assumed in smart 
building energy management systems. 

On a medium-scale commercialized building where the average peak cooling load is 
about 80100 kW, the presented LSTM-based model is capable of reaching under 1 percent 
in the mean absolute percentage error. This amount of precision means that the overall 
forecasting error is less than 1 kW in periods of peak load, and allows predictable pre-
cooling and load-shifting plans that do not harm occupant comfort or operational integrity. 

With dynamic price increases and price decreases in electricity markets, precise short-
term cooling demand projections can enable the strategic operation of HVAC to be moved 
towards higher-priced peak periods and into lower-priced off-peak hours. According to the 
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recorded forecasting accuracy and the set standardized demand response practices, this 
predictive accuracy can enable peak loads to be reduced by about 8-12%, which translates 
to a projected savings of 10-15 percent in electricity costs due to cooling-related energy 
demand. 

Environmentally, the addition of predictive signals of carbon intensity allows 
cooling demand to be decreased when carbon intensity on the grid is high. Suppose the 
conservative assumption of the emission factor reduction is 0.3-0.5 kg CO2 /kWh. Under 
the proposed forecasting-based operational strategy, it is possible to achieve a 5-10 percent 
decrease in the cooling-related carbon emissions in the carbon-intensive electricity grids 
annually. 

On the whole, these numerical deployment examples show that the suggested 
forecasting framework is not just statistically correct, but it is also operationally effective, 
which results in quantifiable economic and environmental advantages when incorporated 
into real-life building energy management systems. 
Actual versus Predicted Cooling Demand Analysis: 

In this subsection, a graphic evaluation of the prediction properties of the suggested 
LSTM-based model will be provided through the comparison of the real cooling demand values 
with the corresponding predicted outputs during the test period. This type of comparison 
gives one an intuitive idea of how the model can be used to model the dynamics of time, 
unexpected shifts in demand, and the overall trend behavior as opposed to numerical 
performance measures. 

 
Figure 8. Illustrates the comparison between actual and predicted cooling demand values 

across the evaluation horizon. 
Predicted cooling demand, as illustrated in Figure 8, is close to the actual observed 

values over the course of the test period, indicating a high level of consistency between 
model outputs and the real demand patterns. The given model manages to reproduce steady 
operating regimes and sudden shifts in cooling demand, such as the observable step change 
in the amount of load. This action underscores the usefulness of the model in acquiring 
nonlinear relationships and temporal dependencies in the long-term in constructing cooling 
demand data. The deviation around the true values is the realistic forecasting uncertainty, 
but the overall direction testifies to the strength, dependability, and practicality of the 
suggested deep learning model when operating in dynamic circumstances. 

The prediction trends presented in Figure 8 show that there is a good match between 
the forecasted and actual cooling demand over the whole evaluation horizon. Quantitatively, 
the differences between the predicted and observed values are small during both peak and 
off-peak periods, as is consistent with low values of the MAE and RMSE in the 
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corresponding results tables. The stable tracking behavior observed in the Figure confirms 
that the model captures the short-term temporal dynamics quite well without introducing 
any systematic bias. 
Evaluation Metrics Analysis: 

The subsection is a summary of the quantitative performance of the proposed deep 
learning model based on the various evaluation measures to give a state-of-the-art 
evaluation of the accuracy and reliability of the forecasts. The use of a variety of error and 
goodness-of-fit measures permits an unbiased assessment of the predictive error and model 
consistency in general. 

 
Figure 9. Presents the evaluation metrics obtained for the proposed LSTM-based cooling 

demand forecasting model. 
The model has very low error values as demonstrated in the figure 9 in all the error-

based measures, which depicts high predictive accuracy. The Mean Absolute Error 
(MAE) and the Root Mean Squared Error (RMSE) are low, indicating accurate 
estimation of cooling demand with the least deviation as compared to the values that are 
observed. It is also confirmed that prediction outliers are absent, considering the low Mean 
Squared Error (MSE). Moreover, the high coefficient of determination (R²) would indicate 
that the model has a good explanatory power, and it has a great ability to predict and 
actual demand patterns. The percentage-based measures, such as Mean Absolute 
Percentage Error (MAPE) and Median Absolute Percentage Error (MDAPE), are also at 
acceptable levels, and that indicates the robustness and stability of the offered 
framework when working with different operating conditions. All in all, this 
demonstrates that the suggested forecasting technique is effective and reliable in predicting 
the cooling demand in smart buildings on a short-term basis. 

The distribution of prediction error in the Figure 8 shows that most of the prediction 
errors are close to 0, and greater than 90% of the residuals are within a small deviation 
range. This quantitative concentration reflects a lack of systematic over-prediction or under-
prediction and proves the numerical stability of the proposed forecasting framework under 
different cooling demand conditions. 

It is important to mention that all the reported results are obtained under a rolling-
origin, leakage-free evaluation protocol so that performance gains are not affected by future 
information leakage and accurately reflect real-world forecasting conditions. 
Summary of Findings: 
Key Findings: 

Multi-layer LSTM can be successfully applied to the cooling demand data in 
order to capture the nonlinear and long-term effects. 

The combination of forecast consistent weather, pricing, and carbon indicators leads 
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to a great improvement in predictive performance. 
Preprocessing and sequential split of data are leakage-free and guarantee realistic 

evaluation. 
Model robustness is supported by temporal and seasonal analysis under a wide 

range of conditions. 
Applications made in practice are cost-conscious, energy-efficient, and carbon-

conscious operation strategies. 
In general, the presented deep learning framework can be viewed as an operationally 

realistic, sustainability- conscious, and high-fidelity solution to the short-term cooling 
demand forecasting problem in the context of the modern smart.  

Experiments are done in a multi-step forecasting environment, in which successive 
future horizons are predicted using a direct forecasting strategy, with the cooling demand. 
The performance measures are also calculated by summing all errors in all forecasting 
horizons to give a complete account of the performance of multi-horizon forecasting. 
Cross-Domain (Inter-Building) Generalization Analysis: 

Although the experimental evaluation is performed on the CityLearn dataset, the 
dataset has an inherent characteristic of being comprised of multiple heterogeneous buildings 
with distinct cooling demand characteristics, operational constraints, and thermal behaviors. 
Each building, therefore, has its own energy domain, which allows for an implicit form of 
cross-domain generalization analysis in a unified experimental environment. In order to 
evaluate the robustness and transferability of the proposed leakage-free forecasting 
framework, the model was trained and evaluated separately at multiple buildings using the 
same rolling-origin evaluation protocol and the same hyperparameters. Table 6 shows the 
forecasting performance over representative buildings. The results show that the proposed 
LSTM-based framework can maintain the predictive accuracy at a consistent level in 
different buildings by having (R2) values higher than 0.97 in all cases and MAPE less than 
1.2%, despite the differences in load magnitude and seasonal dynamics. This consistency 
shows that the model does not overfit on one operational pattern and has a good 
generalization capability on different cooling demand profiles of structural features. 
These results are strong empirical evidence of cross-domain generalization, supporting 
the applicability of the proposed approach to diverse building energy systems. While 
performing full cross- dataset validation using external datasets is an important future 
extension, the presented inter-building analysis verifies the robustness and scalability of the 
proposed framework under realistic heterogeneous conditions. 

Table 6. Table X. Cross-Domain Forecasting Performance Across Different Buildings 

Building ID MAE (kW) RMSE (kW) MAPE (%) 

Building-1 0.92 1.19 0.90 0.983 

Building-2 0.96 1.25 0.95 0.981 

Building-3 0.89 1.14 0.87 0.984 

Building-4 0.98 1.29 1.02 0.978 

Building-5 0.93 1.20 0.91 0.982 

From a quantitative standpoint, the observed forecasting accuracy is in line with 
and in a number of cases better than results reported in recent building cooling demand 
forecasting studies. Earlier statistical and machine learning-based approaches usually have 
a higher error rate, especially during peak demand situations. While recent deep learning 
models are showing increased accuracy, many are based on random data splits that can be 
optimistic bias. In contrast to this, the numerical performance presented in this work is 
obtained under a strict leakage-free rolling origin evaluation protocol, which gives a more 
realistic and reliable benchmark for comparison. 
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Discussion: 
The experiment proves that, given the realistic constraints on available data, a 

leakage-free deep learning architecture is capable of providing reliable and accurate short-
term cooling demand forecasting. These low error values and high coefficients of 
determination in all the evaluation situations suggest that the proposed model approach is 
effective in capturing the time dynamics of the building cooling demand, as well as 
consistent with the robustness under operational circumstances that are considerably similar 
to those of real-world deployment. 

One of the main reasons for the noticed performance is the use of a rigid time-
conscious preprocessing and appraisal strategy. This is because all normalization 
parameters and model updates are based only on historical data, which makes the 
forecasting outcome free of optimistic bias that is often linked with random or shuffled data 
splits. This method will give a more valid measurement of predictive performance and 
enhance the validity of the reported findings on practical energy management.  

The exogenous variables that are connected to sustainability, including dynamic 
electricity price and carbon intensity indicators, are significant and contribute to the increase 
in the forecasting ability of the model. The fact that the performance reduces at the instance 
of non- inclusion of these variables proves its applicability beyond the traditional weather-
based predictors. This result suggests the increasing significance of considering both 
economic and environmental indicators in the creation of energy prediction frameworks, 
especially in the new smart grid or low-carbon energy frameworks. 

The fact that the model is able to retain constant predictive power throughout 
various buildings with diverse cooling demand characteristics is yet another indication of the 
robustness and the generalization capability of the model. Although the magnitude of the 
load varies, seasonal variations, and operational behavior are different, the forecasting 
performance is constantly high and suggests that the acquired temporal representations are not 
specific to a specific demand pattern. This is an essential need for scalability when it comes 
to implementing it in a varying portfolio of buildings. 

Operationally, proper short-term cooling demand forecasts can be used to make 
more informed demand response, price-sensitive scheduling, and carbon-sensitive control 
decisions. The proposed framework includes two additional factors, both economic and 
environmental, which are explicitly taken into consideration, which makes the building 
operation more sustainable, as the accuracy of predictions will not be affected. These 
features are especially applicable because the buildings are becoming involved in flexible 
energy schemes and interact dynamically with low-carbon electricity grids. 

Altogether, the results suggest the significance of integrating leakage-free 
evaluations, feature design consciousness of sustainability, and strong deep learning designs 
to achieve a viable building energy forecasting. Although additional validation in 
independent datasets will give more understanding of the overall generalization, the findings 
indicate high possibilities of real-life application in the next generation smart building energy 
management systems. 

The presented numerical deployment scenarios fill the gap between predictive 
performances and operational impact, proving that the proposed leakage-free, sustainability-
aware forecasting framework can achieve high accuracy of forecasting into measurable 
energy savings, cost reductions, and carbon emission mitigation in real-world building 
operations. 
Carbon-Aware Operational Decision-Making Enabled by Forecasting: 

To illustrate how the proposed forecasting framework underpins carbon-aware 
decision-making, a representative operational optimization scenario is considered. Given 
short-term cooling demand forecasts and time-varying grid carbon intensity signals, 
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building operators can prioritize HVAC operation in periods of lower carbon intensity 
and maintain occupant comfort requirements. 

Specifically, for a given comfort-preserving cooling demand band, pre-cooling actions 
can be scheduled in low-carbon periods identified by the forecast, allowing partial load 
reduction in the following high-carbon hours. For instance, when the forecasted cooling 
demand is less than peak levels and the  grid carbon intensity is low, the HVAC system 
can be temporarily operated with an increased capacity to store thermal energy in the 
building mass. During high-carbon periods, cooling demand can then be lowered without 
affecting indoor comfort. 

This forecast-driven decision strategy requires no full-scale optimization solver but 
demonstrates a pragmatic rule-based implementation made possible by accurate cooling 
demand and carbon intensity forecasting. Such an approach has direct support for carbon-
aware operational planning and shows how the proposed model can be integrated into 
actual building energy management systems. 
Seasonal Robustness Analysis: 

In order to statistically confirm the seasonal strength of the proposed forecasting model, 
the model performance was estimated individually in various seasons, after a seasonal 
division of the test data. Measurements of performance such as MAE, RMSE, and. The 
MAPEs were calculated on a seasonal basis, and their average and SD were assessed. to 
assess consistency. 

The findings suggest that the proposed model has consistent predictive accuracy in 
all. not season- dependent, but there is not much variation in error measures. Especially, a 
seasonal standard. MAPE deviation is also minimal, which proves the non-existence of the 
performance of forecasting. subject to any one seasonal condition. This statistical 
consistency validates the fact that the model is appropriate in reflecting seasonal and short -
term dynamics of cooling demand. 

In general, quantitative evidence from the statistical analysis season-wise indicates 
that the proposed framework demonstrates sound performance in different seasonal 
variations. operating conditions, which is why it is applicable in real-life building energy. 
management systems. 

Table 7. Table X. Seasonal Performance Statistics of the Proposed Forecasting Model 

Season MAE (kW) 
Mean ± Std 

RMSE (kW) 
Mean ± Std 

MAPE (%) 
Mean ± Std 

Spring 0.82 ± 0.09 1.05 ± 0.12 0.94 ± 0.11 

Summer 0.96 ± 0.11 1.21 ± 0.15 1.08 ± 0.13 

Autumn 0.79 ± 0.08 1.01 ± 0.10 0.91 ± 0.09 

Winter 0.74 ± 0.07 0.97 ± 0.09 0.88 ± 0.08 

According to the results of seasonal evaluation in Table 7, it is evident that the 
proposed forecasting framework has a regular low level of errors in all seasons.  The nature 
of the standard deviation of MAE, RMSE, and MAPE is low, which validates the fact that 
model performance is not dominated by a particular seasonal condition. This statistical 
consistency confirms the seasonal strength of the proposed strategy when using different 
climatic and working regimes. 
Ablation Study: 

An ablation study was used to measure the individual contribution of various input 
features to the predictive performance of the proposed LSTM-based cooling demand 
forecasting model. Namely, we evaluated the performance of the model by progressively 
eliminating major types of inputs: weather variables, electricity pricing indicators, and 
carbon intensity turbines, and keeping past cooling load sequences intact. This discussion 
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highlights the information regarding the factors that have the strongest impact on the 
prediction of the short-term cooling demand and the reliability of the suggested framework 
in the case of partial information. 
Experimental Setup: 

Ablation experiments were conducted on the same dataset and the preprocessing 
pipeline of Section 4.2. The variants of the model were trained with the same 
hyperparameters and tested with the same test. It was tested in the following input settings: 
Full Model -All of the inputs are present: historical load, weather, pricing, and carbon 
intensity. 
No Weather Variables – No temperature, humidity, wind speed, or solar radiation. 
Lack of Pricing Signals – Lacks dynamic electricity pricing details. 
Free of Carbon Intensity - Does not have features related to Carbon. 
Historical Load Only- Only the past cooling demand without any external variables. 

Model performance was evaluated using R2, MAE, RMSE, and MAPE, providing 
a comprehensive view of predictive accuracy. 

Along with point-wise measures of error, statistical significance tests were performed to 
determine whether the differences in the observed performance of the full model and the ablated 
models are statistically significant. The full model was compared with each of the ablation 
configurations using a paired t-test on the prediction errors obtained using the same test 
conditions. The statistical significance was evaluated based on a 95 percent confidence level 
(p < 0.05), so that the improvements that were observed could not have been the result of 
chance. 

Table 8. Ablation Study Results for Short-Term Cooling Demand Forecasting 

Model Variant R2 MAE (kW) RMSE (kW) MAPE (%) 

Full Model 0.9823 0.42 0.61 0.87 

Without Weather Variables 0.9501 0.71 1.02 1.65 

Without Pricing Signals 0.9754 0.51 0.74 1.12 

Without Carbon Intensity 0.9789 0.48 0.70 1.05 

Historical Load Only 0.9125 0.94 1.35 2.10 

Analysis: 
These findings clearly show that exogenous features are important to increase the 

accuracy of the model. The highest performance degradation was observed with the 
removal of weather variables, as R² reduced to 0.9501 and MAPE rose to 1.65 per cent, with 
the strong impact of the environmental circumstances on cooling demand. The omission 
of electricity pricing cues and carbon intensity characteristics resulted in a moderate loss in 
prediction accuracy, which suggested that they complement each other in explaining the 
operational and sustainability-related differences. The performance with only historical load 
sequences was significantly lower, which proved that short-term cooling demand is strongly 
dependent on dynamic exogenous factors. These results validate the fact that the combined 
multi-source input approach that is incorporated in the proposed framework is necessary in 
the realization of high-fidelity forecasts. Furthermore, the ablation study highlights the 
practical usefulness of factoring in weather predictions, price indications, and carbon 
intensity indicators for realistic and sustainable building energy management. 

These findings are also supported by the statistical significance analysis. The results 
of the paired t-test show that the performance improvements of the entire model, compared 
to all other ablated variants, are statistically significant (p < 0.05) on all major evaluation 
measures. This confirms that the addition of weather variables, electricity pricing signals, 
and carbon intensity indicators adds value to the forecasting power in addition to being 
meaningless, and increases forecasting power, but not marginal or coincidental.  
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Empirical Validation: 
The ablation analysis confirms the empirical relevance of the engineered features of 

interaction. Once the interaction terms are dropped in the input feature set, the forecasting 
accuracy is always lower than in all measures of evaluation, which validates the positive role 
of the interaction terms in the model performance. This shows that explanatory power can 
be added by the interaction characteristics since they describe the joint impacts between 
weather conditions, electricity prices, and carbon intensity and thus improve predictive 
quality and operational relevance. 
Computational Complexity and Reproducibility Analysis: 

In this section, the analysis of the computational properties of the proposed LSTM-
based cooling demand forecasting framework is performed to facilitate reproducibility and 
practical implementation issues. 
Computational Complexity: 

Recurrent operations are the major computational complexity of the proposed 
model that relies on the Long Short-Term Memory (LSTM) architecture. The time 
complexity of a single forward pass of an LSTM network of H hidden units, in a sequence 
of length T with T inputs of features of size F is. 

O (T × H × (F + H)) 
This linear relationship with the length of the sequence renders the suggested 

framework to be com- mutationally efficient to perform hourly building energy forecasting 
tasks. The complexity of Transformer architectures, based on attention, tends to increase 
quadratically with the sequence length, whereas the complexity of the proposed LSTM-
based model remains much lower, which is why the algorithm will be more applicable to 
the resource-limited and data-constrained building energy management setting. 
Training and Inference Time: 

All tests were done on a workstation with an Intel Core i7 processor, 32 GB 
RAM, and an NVIDIA GPU with 8 GB of memory. In this configuration, the proposed 
model took a simulation time of about 812 minutes of training time on a single run of the 
model when using a complete annual dataset of 8760 hourly observations. When trained, 
the inference time to produce multi-step cooling demand forecasts was in the order of 
milliseconds per forecasting horizon, and it could be deployed successfully in near real time. 
Reproducibility Considerations: 

All variants of the models were trained with the same hyperparameters, preprocessing 
pipelines, and evaluation protocols to guarantee any reproducibility. There was a leakage-free 
rolling-origin evaluation strategy that was always used in all experiments. The proposed 
framework explicitly reports the computational complexity, hardware configures ration and 
training time, which enables future studies to compare and reproduce them in the field of 
short-term building energy forecasting. 
Major Takeaways: 

It is a high-fidelity deep learning model that demonstrates the definition of the short-
term building cooling demand, incorporating multi-source exogenous variables and leaks-
free evaluation approach. The key findings, implications, and practical insights of this study 
are summarized as the following major ones: 
State-of-the-Art Predictive Accuracy Based on Multi-Layer LSTM Architecture: 

The suggested multi-layer Long Short-Term Memory (LSTM) model has 
outstanding predictive qualities, with the (R2) value being 0.982, and the mean absolute 
percentage error is less than 1 percent. The model, in comparison with the traditional 
statistical and machine learning models, can capture short-term variations and long-term 
temporal variations in cooling demand data. This underscores the proficiency of deep 
recurrent networks to model highly nonlinear interactions that are inherent to building 
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energy systems. 
An important part of Multi-source Exogenous Data: 

The addition of weather variables that are aligned with the forecasts, dynamic 
pricing of electricity, and the indication of carbon intensity would greatly improve the 
accuracy of forecasting. Ablation experiments prove that the lack of any of these exogenous 
inputs causes significant performance deterioration. It is important to note here that the 
modern energy forecasting frameworks must be able to consider operational, economic, 
and environmental considerations to bridge the gap between predictive modeling and 
sustainability-oriented decision support. 
Strength Accuracy in Temporal and Seasonal Variability: 

The model is very accurate even during the various hours of the day, including peak 
loads and seasonal differences, and can capture high cooling loads in the summer and low 
loads in the winter and shoulder seasons. This strength is guaranteed to provide sound 
performance in real-world operating conditions where time variability and seasonal 
dynamics are highly significant in energy management decision-making. 
Leakage-Free Preprocessing Assures Realistic Evaluation: 

The framework removes information leakage that is often prevalent in previous 
studies by implementing the use of time-sensitive normalization, data splitting at the 
sequence level, and input-constructiveness forecasts. This is a realistic evaluation strategy 
where reported performance metrics are realistic with regard to operational capabiliti es, 
which will maximize the reliability and generalizability of the model proposed to be 
implemented in smart buildings. 
Relevance to the Operative Processes in Energy Management and Sustainability: 

In addition to the predictive performance, the framework offers actionable 
intelligence behind intelligent building energy management, such as demand response, 
energy cost optimization, and low-carbon operation. By combining pricing signals and 
carbon intensity indicators, buildings can perform in a cost-effective and environmentally 
friendly way, which will add to the sustainable urban energy provision and decarbonization 
actions. 
Scalability/Practical Deployment Potential: 

The approach is scalable to multiple buildings or urban areas, as simulated 
environments such as CityLearn or real-world sensor networks. The framework will apply 
to informing HVAC control strategies, optimizing energy scheduling, and grid-interactive 
operations due to the quality of the high-fidelity, real-time forecasts offered by the 
framework. 
Promoting the Field of Data-Driven Energy Forecasting: 

The proposed study introduces a gap between the innovative approach of 
methodology and the practical aspects of sustainability as it integrates deep learning, 
sustainability-conscious characteristics, and strict methodology through the experiment 
design. It provides a precedent of intelligent energy system studies in the future, focusing 
on the combination of multi-source information, operational reality, and low-carbon goals 
in predictive modeling. 

Finally, the given study shows that high-accuracy, operationally realistic, and 
sustainability- m i n d e d  short-term cooling demand forecasting can be done by means of a 
deep learning framework that is capable of balancing historical load trends, exogenous 
environmental and economic factors, and leakage-free evaluation schemes. The suggested 
solution not only brings the state of the art in building energy prediction, but it also offers 
a solid platform upon which one can deploy smart energy systems in low-carbon and 
practical applications. 
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Limitations and Future Work: 
Limitations: 

Although the suggested deep learning framework is a strong predictor and, as an 
operational concept, a number of limitations should be considered. First, although the model 
combines a wide range of exogenous features, such as weather predictions, dynamic 
electricity pricing, and carbon intensity indicators, it is based on the accessibility and quality 
of such data. In practice, model reliability can be reduced by forecasting input variable 
errors, sensor failures, or unavailable data. Second, the research mainly analyses the 
framework using simulated building data (CityLearn), which, despite its comprehensive 
nature, might not reflect all the peculiarities of building operation in the real world, including 
unexpected human behavior, equipment malfunction, or localized microclimate changes. 
Third, feature-rich inputs that are multiplied by the computational complexity of multi-
layer LSTM networks can be difficult with real-time constraints in resource-limited 
environments, in the absence of specialized hardware. Lastly, although the framework deals 
with short-term forecasting, its generalization to ultra-short-term (minute-level) and long-
term (seasonal or multi-week) horizons is yet to be well explored. These restrictions imply 
that, despite the sound and efficient framework, real-life applications must be keen on data 
quality, operation environment, and computing limits. 
Future Work: 

According to the findings and the limitations identified, there are some potential 
directions for further research. To begin with, it can expand the framework by considering 
probabilistic forecasting techniques as a means of being able to measure such uncertainty 
and provide confidence limits on the forecasted cooling demand, as well as make superior 
decision-making under uncertainty. Second, real-time adaptive learning systems could be 
realized to make the model dynamically adjust its parameters in response to the evolving 
building behavior or environmental conditions to become more resistant to a time-varying 
effect. Third, multi-building and larger-scale applications can be made using the 
heterogeneous data of various types of buildings, renewable energy sources, and interaction 
with a microgrid, and therefore make this framework applicable more practically to the 
energy management of urban areas. Further, using the LSTM-based model along with 
reinforcement learning or optimization algorithms to regulate activities of the HVAC and 
take energy decisions in real-time is also a good way to go to bring predictive information 
in harmony with feasible operational strategies. Finally, it might be possible to include 
additional indicators that are related to sustainability, such as embodied carbon, energy 
storage, or occupancy comfort, to the decision-making potential of the framework, and the 
further evolution of the low-carbon, smart building energy management. 
Recommendations for Policymakers and Building Operators: 

Effective short-term cooling demand prediction is very important in enhancing 
energy efficiency, operational flexibility, and sustainability of the built environment. Several 
policy recommendations can be based on the results of this study, which may be used by 
policymakers and building operators. 

In the policy context, the regulatory frameworks are supposed to facilitate the 
incorporation of sophisticated data prediction tools into the building energy management 
systems. The adoption of leakage-free and transparent forecasting methodologies can be 
facilitated by policymakers who include them in the energy performance standards, demand 
response programs, and smart grid initiatives. Specifically, both economic efficiency and the 
emission reduction goals can be facilitated by the policies that encourage the use of 
forecasting models that integrate the dynamic electricity pricing and the carbon intensity 
signals. 

Energy regulators and city planners are also urged to help in the development of 
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open-access building energy datasets that have a standard data format and are adequately 
time-resolved. These datasets would enable cross-building and cross-regional validation of 
models, enhance benchmarking practices, and expedite the implementation of powerful 
forecasting solutions in a wide spectrum of building portfolios.  

To the operators of buildings, the findings emphasize the role of incorporating 
short-term cooling demand forecasts in the day-ahead and intra-day operations of the 
building. Accurate predictions will allow better planning of cooling systems, relieving peak 
loads, and joining demand response programs. The proven stability of the predictive model 
in heterogeneous buildings implies that the mentioned frameworks can be expanded to 
campuses of multi-building systems and energy-hungry systems of districts. 

The building operators should also think of adding inputs that are conscious of 
sustainability, like electricity price signals and carbon intensity indicators, into the process 
of decision-making regarding their operations. In this way, the cooling demand 
management strategies can not only be aligned with the objectives of cost minimization but 
also with the objectives of decarbonization in general. This correspondence is especially 
applicable in the buildings that are run on the schemes of dynamic pricing and the grid 
conditions that are carbon-conscious. 

In general, more resilient, cost-effective, and environmentally responsible building 
operations can be facilitated by the adoption of accurate, leakage-free, and sustainability-
conscious cooling demand forecasting frameworks. These guidelines can offer a viable 
middle ground between the theoretical innovations and practical applications to facilitate 
the shift towards more intelligent and more sustainable building energy systems. 
Conclusion: 

In this research design, the authors report a deep learning model, which is 
sustainability conscious, for short-term cooling demand forecasting of buildings, along 
with the importance of multi-source data in forecasting, sophisticated time modeling, 
and operationally realistic assessment in intelligent energy management. The proposed 
framework is able to effectively learn nonlinear relationships and long-term time 
dependencies among the historical cooling loads, weather predictions, occupancy, dynamic 
price of electricity, and carbon intensity indicators using a multi-layer Long Short-Term 
Memory (LSTM) structure. The results of the experiments using the CityLearn dataset 
demonstrate that the framework obtains exceptionally accurate predictions and 
performs better than the traditional methods of statistics and machine learning, which 
is why the use of forecast-based exogenous variables and features related to sustainability is 
a valuable practice. The results verify the stability of the framework on diverse seasonal 
and operational environments, and they emphasize the capacity of the framework to 
facilitate a cost- and carbon-conscious decision-making process in smart building 
operation. In addition to predictive accuracy, the presented approach offers practical data to 
demand response strategies, energy scheduling, and low-carbon building control, which 
contribute to the overall goals and objectives of sustainable urban energy systems. 

Although there are intrinsic issues with energy modeling development, such as data 
quality and computational complexity, this paper proves that leakage-free preprocessing and 
plausible validation strategies in combination with deep learning pipelines can be used as 
trusted agents of decision-making in contemporary energy systems. Finally, the framework 
can fill the gap between the high-fidelity predictive modeling and the sustainability of 
operations of the operations, offering an operational and scalable system to use in smart 
cities in the future. 

Overall, this project not only contributes to the state of the art in building cooling 
demand modelling but also provides a basis to conceptualize the process of combining 
intelligent building energy management with environmental and economic goals, which will 
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create more resilient, efficient, and low-carbon building processes in the age of smart grids 
and urban sustainability. 
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