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ardiovascular diseases prove to be a prominent cause of worldwide deaths, and 
arrhythmias specifically remain a serious threat owing to their unexpected and painless 
characteristics. This paper presents an ECG-based arrhythmia detection system using 

a three-dimensional convolutional neural network, or 3D-CNN, architecture. The ECG 
signals obtained from the MIT/BIH Arrhythmia Database undergo preprocessing techniques 
like band-pass filtering, R-peak detection by the Pan and Tompkins algorithm, heartbeat 
segmentation, and volume representation of the heartbeat. The data is divided into training, 
validation, and testing sets, where 80% of the data is utilized for training and validation, and 
the remaining 20% for testing independently. The efficiency of the system is tested by 
accuracy, precision, recall, and F1-score. The proposed system records a validation accuracy 
of 98.52% and a test accuracy of 98.74%, which is superior to the previously used accuracy of 
the same database by the 1D CNN and 2D CNN architectures. 
Keywords: ECG, Arrhythmia Detection, Deep Learning, Cardiac Signals, 3D-CNN. 
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Introduction: 
The heart has an important function in the circulation of blood in the human body, 

and any irregularity in the heart’s electrical rhythm can result in serious health issues such as 
stroke, heart failure, and cardiac arrest. Of the many types of heart problems, rhythm 
disorders, where the heart functions with abnormal rhythm patterns, remain difficult to handle 
owing to their episodic nature, along with the possibility of the condition remaining undetected 
until it causes a serious adverse event. The most commonly employed non-invasive technique 
for the detection of rhythm disorders in the heart, using the electrical activity of the heart, is 
electrocardiography, abbreviated as ECG. 

Although being an important medical task, traditional ECG signal processing is highly 
dependent on cardiologists, thereby making this process time-consuming and prone to human 
error [1]. This is more so when there is a need for processing extended ECG signals; hence, 
there is an increasing need for developing reliable arrhythmia detection systems. There have 
been recent breakthroughs in digital health technologies, such as artificial intelligence and 
machine learning, that have ensured a remarkable breakthrough in the automatic analysis of 
ECG signals. These can analyze large amounts of data in an ECG signal and pick out complex 
patterns that are difficult to identify manually, and can help doctors obtain quicker results in 
their diagnoses [2]. Intelligent analysis of ECG signals has become an integral part of digital 
cardiology systems. 

Arrhythmias exist as a broad spectrum of conditions, some of which relate to harmless 
irregularities of the heart rhythms and other conditions that are life-threatening, related to the 
ventricles. It is thus imperative for early and accurate arrhythmia detection to be achievable 
for optimal treatments to be applied. The ECG signals have distinctive parts like P-waves, 
QRS complexes, and T-waves, among others, and all correspond to particular events of the 
heart cycle [3][4]. Manual analysis of ECG signals needs expertise and consumes considerable 
time, especially in patients who have intermittent presentations of symptoms [5]. In this regard, 
deep learning methods have recently garnered interest for automated ECG analysis. 
Convolutional Neural Networks (CNNs) have shown success in ECG classification problems 
using their ability to learn features directly from ECG signals without requiring hand-
engineered representations for ECG signals [6][7][8]. In existing methods, 1D or 2D 
representations have been used, which might not be an effective way to fully describe the 
morphological and temporal information in ECG signals. 

In real-world arrhythmia detection systems, the unpredictable occurrence of 
pathological cardiac events and the lack of preceding symptoms further add to the challenges 
of accurate diagnosis. In current automated systems, the simplified preprocessing chain or 
suboptimal representations of features might ignore intricate spatiotemporal patterns that exist 
in ECG signals [9][10]. The above implies that there is a need for representations with higher 
expressiveness that capture well both temporal patterns and waveforms.RQ 1: How well can 
a 3D CNN classify arrhythmia from the ability of the 3D CNN network to identify ECG 
signal spatial & temporal characteristics? RQ 2: How well can this new 3D-CNN model 
perform compared to other CNN models designed for ECG arrhythmia classification tasks? 
The originality of this work lies in: i) the construction of 3D heartbeat volumes from 1D ECG 
signals to jointly model spatial morphology and temporal dynamics; ii) a tailored light-weight 
3D CNN architecture optimized for arrhythmia classification; iii) clinically interpretable 
analysis using activation maps that underlie the diagnostically relevant ECG regions, thus 
enhancing trust and applicability in real-world cardiology. The research's main objectives are1) 

Designing an ECG Arrhythmia Detection system based on 3D-CNN that can learn 
spatiotemporal. 
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Assess the proposed approach with the standard evaluation criteria on the MIT-BIH 
Arrhythmias database. Compare the proposed approach with existing models based on CNN 
and evaluate its practical value. 

In this conference paper, the proposed end-to-end ECG arrhythmia detection 
framework is presented, starting from the acquisition of raw ECG signals using the MIT-BIH 
Arrhythmia Database. Then, each signal will be pre-processed by noise filtering, R-peak 
detection, heartbeat segmentation, and conversion into 3D heartbeat volumes. These volumes 
are used for training a customized 3D Convolutional Neural Network that learns the spatial 
and temporal ECG features. Experimental evaluation shows the effectiveness of the approach 
in achieving high classification accuracy at 98.74% for automated, reliable arrhythmia 
detection. 
Literature Review: 

Recently, substantial improvement has been achieved in automated ECG arrhythmia 
classification through deep learning approaches. In 2022, Ribeiro et al. presented an attention-
driven deep neural network for the interpretation of multi-lead ECG signals with 97.8% 
classification accuracy. Correspondingly, Wu et al. presented a transformer-based ECG 
classification model that is proficient in processing long-range dependencies in ECG signals, 
with 98.1% classification accuracy that exceeded state-of-the-art CNN and CNN-LSTM 
models in standard ECG benchmark datasets. In 2023, an end-to-end ECG translator based 
on a transformer with self-attention mechanics recorded 98.3% accuracy with high 
generalization ability on different types of arrhythmias. The authors of utilized explainable 
deep learning with saliency maps with 97.5% accuracy while emphasizing significant parts of 
an ECG signal. Li et al. in designed an ECG classifier with a residual CNN with 97.9% 
accuracy by showing enhanced noise robustness in their study. 

More recent works 2024 focus on hybrid and explainable architectures. Chen et al. 
proposed a lightweight CNN–Transformer hybrid model that achieves an accuracy of 98.2%, 
suitable for real-time wearable ECG monitoring [11]. Banerjee et al. used Grad-CAM and 
SHAP-based XAI techniques in ECG CNN models, demonstrating the reported accuracy of 
97.6% while significantly enhancing the clinical interpretability of such models [12]. Zhang et 
al. proposed a multi-scale attention network reaching an accuracy of 98.0% with enhanced 
detection of the minority class. 

In 2025, Singh et al. presented a multi-scale transformer architecture that achieved an 
accuracy of 98.6% and an improved F1-score for rare arrhythmias. Zhao et al. put forward an 
explainable transformer-based framework for ECG analysis that achieved an accuracy of 
98.4%, while attention maps showed high correspondence with cardiological features such as 
QRS complexes and T-wave abnormalities. The other works developed in 2022–2025 
presented graph neural networks, self-supervised learning, and federated ECG models; all 
these works reported an accuracy within the range of 96.8% and 98.5% 
[13][14][15][16][17][18][19][14][20][21]. 

Apart from the transformer-based ECG models and the explainable models, CNN-
based solutions have also shown competency in the field of arrhythmia classification tasks. A 
light CNN was designed by Kiranyaz et al., especially for ECG-based edge computing 
applications, with an accuracy of 98.35% while using low computational complexity [22]. 
Although the solution can be effectively used for real-time systems, it mainly concentrates on 
temporal aspects only, while disregarding the interpretability aspect. 

Equally, Xia et al. proposed a multi-class deep CNN model using standard 2D 
convolutional layers for ECG-based arrhythmia classification, achieving an accuracy of 
97.90% on the MIT BIH Arrhythmia Database [23]. Although proven effective in multi-class 
classification tasks, this method has its limitations in modeling temporal and spatiotemporal 
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correlations, particularly in comparison to methods using transformers and volumetric 
learning. 

Table 1. Literature Review Table 

Methodology (Ref) Accuracy 
(%) 

F1-
Score 

Key Contribution Limitation 

Attention-based DNN 
[1] 

97.8 0.978 Interpretable ECG 
diagnosis 

High model complexity 

Transformer ECG [2] 98.1 0.981 Long-term temporal 
modeling 

Large data requirement 

ECG Transformer [5]] 98.3 0.983 Global rhythm 
learning 

High computational 
cost 

XAI-CNN [3] 97.5 0.975 Saliency-based 
interpretability 

Limited scalability 

Residual CNN [4] 97.9 0.979 Noise robustness Limited temporal 
modeling 

CNN–Transformer 
[11] 

98.2 0.982 Wearable suitability Hybrid complexity 

XAI-GradCAM CNN 
[12] 

97.6 0.976 Clinical transparency Moderate accuracy 

Attention Network [6] 98 0.98 Minority class 
sensitivity 

Training instability 

Multi-scale 
Transformer [7] 

98.6 0.986 Rare arrhythmia 
detection 

High memory usage 

Explainable 
Transformer [24] 

98.4 0.984 Attention 
interpretability 

Complex architecture 

CNN–LSTM [13] 97.2 0.972 Temporal dependency Slow convergence 

Self-supervised ECG 
[14] 

97.8 0.978 Reduced labeling cost Pretraining overhead 

Graph Neural 
Network [9] 

97.5 0.975 Structural ECG 
modeling 

Complex graph design 

Lightweight CNN [10] 97.1 0.971 Edge deployment Lower accuracy 

Multi-lead CNN [15]] 98 0.98 Multi-channel learning High parameter count 

Transfer Learning 
ECG [16] 

97.4 0.974 Faster convergence Domain mismatch 

Federated ECG DL 
[17] 

96.9 0.969 Privacy preservation Communication cost 

Ensemble DL [18] 98.2 0.982 Robust prediction Computational cost 

Wavelet + DL [19] 97.6 0.976 Noise resilience Feature tuning 

Contrastive ECG DL 
[14] 

97.9 0.979 Representation 
learning 

Training complexity 

Hybrid CNN-XAI [20] 98.1 0.981 Trustworthy diagnosis Moderate inference 
speed 

Multi-dataset DL [21] 98.3 0.983 Cross-dataset 
validation 

Data imbalance 

Lightweight CNN [22] 98.35 0.979 Edge-friendly, low-
parameter ECG 
classification 

Limited spatiotemporal 
modeling 

Multi-Class Deep 
CNN [23] 

97.9 0.973 Effective multi-class 
arrhythmia detection 

Weak long-term 
dependency learning 
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Table I shows that previous literature has shown that such developments have been 
achieved in the field of electrocardiogram analysis; most transformer models and XAI 
explanations are very resource-intensive and require large datasets. More specifically, some 
studies focus on the temporal aspect of the electrocardiogram signals but ignore their 
morphological features. So, there appears to be a research gap in architectures that can 
efficiently compute electrocardiogram spatiotemporal features in a computationally less 
complex way. The developed 3D-CNN model bridges this research gap. 
Proposed Methodology: 

Arrhythmia classification in ECG signals has previously been applied mainly through 
the usage of models like 1D-CNN and CNN-LSTM. The models tend to ignore the complex 
morphological pattern in ECG images or increase the complexity level when integrating the 
two. However, the work presented here adopts the usage of the 3D-CNN model. The method 
is applied through the transformation of ECG signals into 3D heartbeat volumes. 

This research relies on the theory of deep learning and biomedical signal processing. 
This research hypothesizes that accurate arrhythmias can be identified from learning spatial 
and temporal patterns of ECG signals. This proposed system integrates three components: 
ECG signal processing, heartbeat segmentation, and a 3D-CNN to identify normal and 
abnormal heartbeats. 

The design of the arrhythmia detection system identification also follows a systematic 
approach that clearly involves the same steps, as shown in the sample flow chart consisting of 
a total of six main steps that include the ECG data acquisition, ECG signal processing, data 
preparation, design of the 3D Convolution Neural Network model, the model validation 
process, and finally the arrhythmia detection. For the very first step in this arrangement, the 
ECG signal acquisition from the MIT-BIH Arrhythmia Database sources occurs. This 
particular set of ECG signals contains a diverse range of heartbeats that are documented under 
normal circumstances. After this step, the process initiates towards signal processing that 
involves a set of processes aimed at removing any form of noise that does not contain a single 
piece of important information. 

A segmentation approach that encompasses R-peak detection is utilized for the 
determination of the Region of Interest (ROI) related to each heartbeat. The R-peak is 
considered the sharpest point of the QRS complex, and it has been utilized as a point of 
reference for the accurate determination of every heartbeat, regardless of the heartbeat 
amplitude variation and/or the temporal differences. The segmentation window includes all 
characteristics of the heartbeat. 

After identifying the heartbeat areas, every heartbeat is represented as a structured 3D 
volume to create a dataset. The heartbeat samples are resized to a homogeneous size and are 
then standardized using common methods. Data augmentation is done on the training data to 
avoid overfitting and enhance the generalization performance of the model. The preprocessed 
3D volumes of heartbeats are then used for training a 3D-CNN model. While training, the 
model provides plots for accuracy and loss graphs, like in the sample, for easy model 
comparison. 

The performance of the model for accuracy in identifying arrhythmias is subsequently 
tested using a testing set. Lastly, for arrhythmia prediction, the most effective 3D-CNN model 
architecture will be used in classifying ECG signals into normal and abnormal heartbeats. 

Figure 1 describes the overall process of the proposed framework for arrhythmia 
detection using ECG signals. The first step involves acquiring ECG signal samples from the 
MIT/BIH Arrhythmia Database (Section III-A). Signal processing and noise removal are then 
conducted for noise clearance from signal samples (Section III-B). Next, R-peak detection and 
heartbeat segmentation are done for region of interest determination (Section III-C). The 
processed heartbeat signal is then converted into a 3D function for model training and 
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validation (Section III-D). The resultant model is then tested for arrhythmia detection and 
classification accuracy (Section IV). 

 
Figure 1. ECG MIT-BIH Arrhythmia Detection Workflow 

ECG Data Acquisition: 
There are a few well-known databases for the problem of arrhythmia classification, and 

those include the PTB database, the INCART database, and the MIT-BIH database. For the 
proposed work, there exists a recommendation from the literature for the use of a widely used 
database for the task of heartbeat classification. That database is the ‘MIT-BIH Arrhythmia 
Database’. It is a public database and can be accessed from the PhysioNet database repository 
with the given URL: https://www.physionet.org/content/mitdb/1.0.0/. 

It consists of a set of ECG signals acquired from real patients sampled at 360 samples 
per second. In this work, only the MIT-BIH Arrhythmia Database is utilized, in analogy with 
its clinical labels and balanced rhythm class distribution, its acceptance as a widely adopted 
benchmarking data set, even if the use of one data set reduces generalizations among data sets. 
Future developments will generalize the validation process to other data sets like the INCART 
and PTB databases. 

The collections contain various rhythms for arrhythmia, which include normal rhythm, 
ventricular ectopic rhythm, supraventricular rhythm, and fusion rhythm. In other words, the 
MIT-BIH SCDA Archives contain 48 half-hour ECG recordings (records), which come from 
47 different people. The MIT-BIH SCDA Archives are appropriate for classification based on 
approaches that utilize deep learning since the archives contain an equal number of all possible 
cardiac signals. Also, the archives contain cardiac rhythm markings from professional medical 
practitioners, which determine the type of every cardiac signal. The above-mentioned process 
ensures that the collections are reliable and appropriate for the construction of classification 
systems, since the system will be. 
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Data Pre-Processing: 
This sub-section has several steps that are involved in transforming raw data from ECG 

signals into usable form samples. Such steps are important in forming a usable data set for 
training, validation, and testing. 
Signal Filtering and Normalization: 

The ECG signals are then filtered using a band-pass filter to eliminate unwanted noise. 
Noise sources are usually found in baseline wander, muscle artifacts, and 50/60 Hz power line 
interference. A Butterworth band-pass filter of 0.5-45 Hz cut-off is used to make sure that 
important components of a heartbeat are retained. Signal filtering enhances R-peak detection 
as shown in Figure 3. 

 
Figure 2. Data Cleaning vs Noisy and Filtered Data 

After filtering, the ECG signal was normalized using Z-score normalization, 
expressed as in the equation : 

𝑋norm =
𝑋 − 𝜇

𝜎
 

Where: 𝑋= Original ECG signal, 𝜇= Mean of the signal, 𝜎= Standard deviation. 
This method normalizes the ECG signals by standardizing them to have a zero mean and 
unit variance, thereby eliminating dependencies on scale and the effect of outliers while 
preserving the signal's distribution for successful learning by the model. 
R-Peak Detection: 

In this stage, a customized Pan-Tompkins algorithm is employed to identify R-peaks in 
the preprocessed ECG signals. The Pan-Tompkins algorithm has been widely employed due 
to its reliability and correctness in detecting QRS complexes in a wide range of signal 
conditions. The identified R-peaks are then utilized as markers for segmenting heartbeats. This 
algorithm can also identify R-peaks in instances where small changes exist in an ECG signal 
due to patient movement. 
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ROI (Heartbeat) Selection: 
The ROI within this work is the portion of the ECG signal that involves one complete 

pattern of heartbeat. While in the sample, the facial points serve to build a rectangle; here, the 
segmentation will be performed based on the time window around every R-peak. A fixed 
interval is chosen before and after the R-peak to cover the P-wave, QRS complex, and T-wave. 
In this way, all the important morphological features would be captured. This window is 
attentively chosen in order to handle shifts in heartbeat timing and amplitude. 

 
Figure 3. R-Peak Detection in ECG Signals 

Heartbeat Volume Construction: 
After determining the ROI of every segment of a heartbeat, each one is extracted and 

transformed into a 3D volume for subsequent processing. Afterwards, the signal is reshaped to 
a standard size in order to guarantee that all the signals from the dataset have the same size. 
This could be considered quite similar to the method adopted for the extraction and resizing 
of the sample's ROI. Then, heartbeat volumes were normalized by dividing each value by its 
maximum amplitude. Normalization serves to stabilize the training process by speeding up 
convergence of the deep learning model. 

Let the preprocessed ECG signal be denoted as a one-dimensional discrete-time signal. 

𝑥(𝑛), where 

𝑛 = 1,2, … , 𝑁 
R-peaks are identified by using the Pan-Tompkins algorithm. A R-peak–centered 

window segmentation strategy is then centered on the identified R-peak for segmenting 
heartbeat signals. Segmented heartbeat signals are then represented by 

hi={x(ri−L1),…,x(ri),…,x(ri+L2)} 

where 𝑟𝑖denotes the location of the 𝑖𝑡ℎR-peak, and 𝐿1and 𝐿2 represent the number of 
samples taken before and after the R-peak, respectively. This strategy ensures consistent 
alignment of P–QRS–T complexes across heartbeats. 
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To construct the three-dimensional heartbeat volume, multiple R-peak–aligned 
heartbeat segments are stacked along the third dimension, forming a volumetric ECG 
representation: 

V={h1,h2,…,hK}∈R(L1+L2+1)×W×K 
Where W represents the width generated by reshaping operations, and K represents the 

number of heartbeat stacks. This volumetric modeling makes it possible to learn jointly about 
ECG characteristics in both space and time. 
Dataset Creation: 

After the extraction of the heartbeat ROIs, the procedure involves developing a dataset 
for training, validation, and testing in 3DCNN. Each heartbeat is processed to have a similar 
dimension corresponding to the required size for modeling in deep learning. A numerical 
description of heartbeat samples is resized to have a fixed dimension in accordance with 
3DCNN models. Each sample is normalized by dividing it by its utmost amplitude to ensure 
similarity in dimensioning. 

The training set is further expanded using the concept of data augmentation to avoid 
overfitting. This includes the addition of a small amount of Gaussian noise, signal amplitude 
scaling, time shifting, and slight stretching/contraction of the signal. These steps enable the 
network to become robust to different ECG patterns that are likely to be absent in the training 
set. 
The information is presented in two categories: 
Training/ validation dataset 80% 
Testing set 20% 

This division enables a systematic method for training and testing the model. A well-
organized dataset enables greater accuracy and reliability of the outcomes acquired for the 
prediction of arrhythmia. 
3D-CNN Training Experiments: 
Dataset Processing: 

After developing the data set, it will then be used for training, validation, and testing of 
a 3D-CNN model. The heartbeat volume data will then be trained using a supervised learning 
technique where every heartbeat will be labeled in accordance with the type of arrhythmia it 
possesses. This step aims to help the model learn all complicated patterns in heartbeats for 
proper classification. 
Model Architecture and Training: 

The training data, consisting of the augmented and normalized volumes of heartbeat 
sounds, is then input into the proposed 3D-CNN model. The model has many convolution, 
pooling, and dense layers. The convolution layers are responsible for feature extraction from a 
heartbeat sound, and then the pooling layer reduces the spatial size of these features. A softmax 
layer follows as the output layer for classifying a heartbeat. 

The model uses Adam optimizer and categorical cross-entropy as a loss function. The 
model also creates graphs of accuracy and loss as it trains. The training result shows how well 
a model has learned. The model is then run on a test set for evaluation of its accuracy in practical 
situations. 
Training Configuration and Implementation Details: 

The proposed 3D-CNN model, implemented in a supervised learning framework, was 
trained in batches containing 32 samples. During training, the database was divided into three 
different sets: training, validation, and testing, with 80% utilized for training and validation, 
while the remaining portion was used for independent testing. The convergence of the model 
was guaranteed by setting the number of epochs to 50. The network was optimized using the 
Adam optimizer with an initial learning rate of 0.001, while the loss function of categorical 
cross-entropy was used for multi-class arrhythmia classification. Early stopping was followed 
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based on the validation loss in order to prevent overfitting. The 3D convolutional layers had 
kernel sizes of (3 × 3 × 3) and a stride of (1 × 1 × 1), which greatly enabled the effective 
extraction of spatiotemporal features across the 3D heartbeat volumes. Dimensionality 
reduction was performed with the help of max-pooling layers having a pool size of (2 × 2 × 
2). A softmax activation function was implemented in the final classification layer. 
Evaluation Metrics: 

The accuracy, precision, recall rate, and F1 score are some examples of metrics used 
for the assessment of the efficiency of the model. The metrics can be calculated using the value 
of true positives, false positives, true negatives, and false negatives that can be derived by using 
the confusion matrix. While accuracy helps to determine the overall correctness of the model, 
the precision and recall rate help determine the exact efficiency of the model regarding classes 
associated with certain types of arrhythmias. 
Arrhythmia Detection: 

After identifying the most accurate model, it is then tested using real-time data from 
heartbeats. The model will estimate the likelihood that each heartbeat is associated with a given 
sort of arrhythmia pattern. A heartbeat will be identified as arrhythmic if it exceeds a certain 
threshold for the possibility of an abnormal heartbeat pattern identification. This approach 
enables rapid arrhythmic pattern identification, which is potentially dangerous, and it is possible 
to implement it using real-time systems. 
Experiment and Results: 
Experimental Setup: 

The experimental verification of the design 3D-CNN architecture would be 
performed within a high-performance computing setup. The hardware components of the 
setup would feature a high performance of GPU along with 16 GB System RAM, which would 
be sufficient for 3D heartbeat volumes computation. The software tools would be developed 
utilizing a Python coding framework that would enable support for TensorFlow and Keras 
deep learning platforms. The design architecture would be trained through an Adam 
optimization technique, having a learning rate of 0.001, while a Categorical Cross-entropy 
function could serve as an optimal loss function, suitable for a pattern recognition task that 
involves classification of different classes, like heart rhythm classes. Moreover, within this 
environment, graphs would also be produced to demonstrate the convergence of 
accuracy/loss of the design architecture. 
CNN Validation: 

The results of validation show that the new 3D CNN model has robust learning 
functionality. The new model has an accuracy of 98.52% on validation. Precision, recall, and 
F1 measure values are all over 98%, showing satisfactory arrhythmia classification with less 
error. The proximity of accuracy and recall values supports robust validation functionality. 
Consistency among validation results for different iterations of training further supports the 
good-generalization functionality of the new model. 
CNN Testing Evaluation: 

Based on that, performance evaluation of the proposed 3D CNN was performed on 
totally unseen ECG data to ensure an unbiased assessment. Testing metrics have been 
summarized in Table 1. Accuracy, precision, recall, and F1-score for the major arrhythmia 
categories have been listed. The proposed model has a high level of generalization capability 
with a testing accuracy of 98.74% in classifying ECG beats into proper classes outside the 
training dataset.  

The confusion matrix constructed during testing showed that the model accurately 
identified most arrhythmia classes, especially having great performances in Normal (N) and 
Premature Ventricular Contraction (V) classes. The precision and recall rates for these classes 
were well over 98% because there was little chance of misclassification. The other classes, like 
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Fusion Beats (F) and Atrial Premature Beats (A), reported a slight decrease in precision 
because there were similarities among the waveforms, which again is consistent with the results 
reported by previous studies. 

Table 2. Testing Metrics 

Metric Traning Validation Testing 

Accuracy 99.02% 98.52% 98.74% 

Precision 0.981 0.982 0.980 

Recall 0.987 0.983 0.982 

F1-Score 0.984 0.983 0.981 

Table II. shows distributions of the performances across the test experiments: the all-
over accuracy is constant within all the tests performed, with a median accuracy of 98.7% and 
recall values concerning the arrhythmia classes, indicating strong class-level sensitivity during 
testing. In this way, these results show that the performance of the testing by using 3D CNN 
is stable and reliable.   
Class-wise Performance Analysis: 

This subsection provides an analysis of class-wise performance of the proposed 3D-
CNN approach on the MIT-BIH Arrhythmia Dataset. Precision, recall, and F1 measures are 
provided to verify the efficiency of the proposed method to handle class imbalance problems. 

Table 3. Class-wise Performance Evaluation 

Arrhythmia Class Precision (%) Recall (%) F1-Score (%) 

Normal (N) 98.9 99.1 99.0 

Supraventricular (S) 97.8 97.4 97.6 

Ventricular (V) 98.2 98.0 98.1 

Fusion (F) 96.5 96.1 96.3 

Unknown (Q) 95.9 95.4 95.6 

Table III shows that the proposed model consistently high recall value along with an 
F1 score in the case of majority as well as minority classes of arrhythmia. To be precise, in the 
case of minority classes, such as supraventricular & fusion beats, it is performing well, proving 
the effectiveness of the proposed 3D CNN architecture in class imbalance problems of ECG 
arrhythmia classification. 
CNN Visual Result: 

In this work, the decision-making behaviour of the proposed 3D CNN model is 
analysed by using activation maps produced with a modified Grad-CAM technique. These 
maps highlight regions in an ECG waveform that are most influential for the classification 
task. For instance, for Normal beats, the model concentrates mostly on QRS complexes 
around the R-peaks. At an early stage, increased arrhythmic activity was observed with 
heightened attention to irregular P-wave and T-wave regions. In contrast, for other arrhythmic 
beats like PVCs, the activation maps emphasized broadened QRS morphology. The model 
clearly identified abnormal ventricular depolarization patterns. The same activation behaviour 
is repeated for several test samples. Consistent activation implies stable learning of ECG 
features. Constructive morphological patterns relevant clinically are effectively captured by the 
model. The overall visualization result improves the interpretability and diagnostic reliability 
of the proposed system. 
Preprocessing Results: 

The key driving metric was the computational performance, which can be captured 
through three top-level metrics: training time, model size, and inference speed. Table 2 
summarizes the results of processing obtained during the experiments. 
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Table 4. CNN Processing Results 

Metric 3D CNN 

Training Time per Epoch 2.3 min 

Total Parameters 3.4 million 

Model Size (MB) 42.7 MB 

Inference Time (ms) 18.4 ms 

Table IV. shows the model's efficient processing capabilities in all trials. The average 
time for training of 2.3 minutes per epoch shows the feasibility of computation. The model 
size of 42.7 MB shows a compact model despite the capabilities and depth of the model. The 
inference time of less than 20 ms per ECG segment shows the efficiency of the model for 
real-time ECG analysis systems. 
ECG Detection Results: 

The suggested 3D CNN is emphasised as a promising method for recognizing and 
classifying arrhythmia signals from ECG data based on experimental results. Nine consecutive 
ECG signals are analyzed to demonstrate how emerging flaws cause normal P-QRS signals to 
change into arrhythmic signals. When the abnormal morphology continues for a series of 
heartbeats, the computer program recognizes ventricular abnormalities and declares the signal 
arrhythmic, triggering an alert to go out. In addition to this, the proposed model can recognize 
the return of the heart to the normal rhythm, indicating that the technique effectively works. 
Recommendations and Practical Implications: 

The dataset is divided into training, validation, and test datasets, where 80% of the 
dataset is used for model training and validation, and the remaining 20% for independent 
testing. The proposed 3D-CNN-based ECG arrhythmia detection framework has shown great 
potential in real-world practice in both clinical and everyday healthcare applications. By virtue 
of its high classification accuracy and strong recall performance, the model could be employed 
in clinical practice by offering support in making decisions while considering cardiologists' 
interpretations for early detection of arrhythmias by manual workload reduction. 

This can also be practically implemented on continuous cardiac monitoring platforms, 
including systems for hospital-based ECG and wearable health gadgets. In this paper, the 
automated preprocessing and volumetric representation of heartbeats allow the proposed 
framework to process ECG recordings of long duration efficiently, which is quite essential for 
real-time and remote patient monitoring. 

It is suggested that future work should continue the validation with multi-center and 
multi-dataset ECG repositories for generalizability across diverse patient populations. Further, 
optimization of computational complexity and inference latency can easily render the 
deployment on resource-constrained devices such as wearable sensors. Future enhancements 
may also involve noise-adaptive preprocessing in real-time and personalized model tuning for 
increased robustness in real-world applications. These suggestions provide testimony on the 
feasibility of translating the proposed research framework into practical cardiac health 
monitoring solutions. 
Comparison and Discussion: 

A comparison in Table V reveals that the presented 3D-CNN framework ensures 
more accurate results in arrhythmia classification compared to other existing approaches for 
lightweight and multi-class CNN architectures on the MIT-BIH Arrhythmia Database. In 
practical clinical applications, besides the measure of accuracy, other factors like recall and 
precision are also crucial because the issue of false negative results may cause difficulties in 
effective diagnosis and treatment of the problem in the form of arrhythmias. 
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Table 5. Comparison of Arrhythmia Detection Methods 

Methodology Targeted Features Accuracy 
Recall F1-

score 
Precision 

Lightweight_CNN 
Architecture [22]  

Focused on minimized 
parameter set suitable for 
deployment on mobile devices 
with a focus on the edge 

98.35% 

98.10% 97.95% 97.80% 

Multi-Class Deep 
CNN [23]  

Employ standard 2D 
convolution layers for multi-
level classification of 
arrhythmia patterns 

97.90% 

97.20% 97.30% 97.40% 

Proposed 3D 
CNN Model 

Passages the ability of Spatial 
and Temporal by translating 
1D ECG signals into 3D 
heartbeat volumes 

98.74% 

98.65% 98.57% 98.50% 

The baseline models were chosen to reflect the popular CNN-based, hybrid CNN & 
LSTM, and recent models incorporating the Attention mechanism in ECG classification 
methods reported in the literature. These models were chosen for their relevance in the field 
of arrhythmia detection, the existence of results on the MIT-BIH Arrhythmia Database, and 
their use in previous works as baseline models for comparison.  

The performance improvements can be explained by the fact that the volume 
expressed by the heartbeat in 3D represents learning both morphological and ECG temporal 
information. By contrast, traditional methods involving the use of only 1D CNN learn mostly 
from the time information, and this spatiotemporal information is efficiently represented by 
the 3D-CNN architecture. 

The Grad-CAM maps enable the provision of clinical insights about the decision made 
by the proposed model. The dense areas in the Grad-CAM maps relate to the most relevant 
aspects of ECG signals for diagnoses and include the QRS and, in some cases, the ST segment 
and T-wave portions in particular. Cardio logically speaking, an aberrant QRS morphology is 
known to be highly correlated with abnormalities in the ventricle’s arrhythmic patterns, 
whereas an aberrant morphology in the segments related to repolarization is related to 
pathologies in such a segment. The correspondence between dense model areas and 
meaningful cardiac waveform portions indicates that the proposed model is based on 
physiologically meaningful aspects and is not sensitive to noise or unnecessary portions of a 
cardiac signal. 

Despite these benefits, the model has been tested on a single dataset, making 
generalization over a broader population of patients difficult. Also, the use of multi-stage 
processing and possible class imbalance difficulties in identifying rare arrhythmic may pose 
robustness issues under practical scenarios. Future improvements would incorporate 
overcoming these issues through validation on more than one dataset. Even though the 
proposed method shows better results in terms of performance, the formal test for significance 
and estimation of confidence intervals was not performed. This part would be addressed in 
future work to validate the performance improvement. With regards to its usability in realistic 
applications, aspects like latency in inference, noise robustness, memory usage, and 
compatibility with wearable devices are to be accounted for. Although it has been shown that 
the proposed model has lower latency (<20 ms), in further research, attention will be focused 
on noise-adaptive preprocessing steps, energy-optimised model reduction, and testing on 
wearable ECG devices. 
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Conclusion and Future Direction: 
This research was a success, having developed a 3D Convolutional Neural Network 

(3D CNN), aiding in improving automatic detection/classification of Cardiac Arrhythmias. 
The process of analyzing ECG signals as a volumetric object helps to effectively identify 
morphologic differences as well as the relationships between the heartbeats. The algorithm 
was found to be very accurate with an accuracy of 98.74%, which indicates better performance 
with no chances of overfitting. Its efficiency, which has an inference time of < 0.02 seconds, 
also helps it to be very useful in real-time applications. This study has managed to offer a 
useful decision-making aid system in the field of cardiology. 

Future research will involve testing the validity of the proposed model with different 
publicly available ECG datasets, including INCART and PTB, to establish its generality over 
different population groups. Besides, there will also be research involving combining 3D 
CNNs with other recurrent models like LSTMs or Transformers to improve the model's 
understanding of longer-term intra-cycle relationships. Another area of research will involve 
optimizing the model into a lightweight model suitable for IoT devices to improve its 
applicability to health IoT devices. Finally, research will also involve incorporating advanced 
EXPLAINABLE AI (XAI) tools like SHAP Values and Relevance Propagation into the model 
to improve its interpretability by healthcare practitioners. There will also be research involving 
multi-modal learning involving ECG signals and other modal physiological signals like blood 
pressure and respiration rates. 
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