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NOISIAI

arrhythmias specifically remain a serious threat owing to their unexpected and painless

characteristics. This paper presents an ECG-based arrhythmia detection system using
a three-dimensional convolutional neural network, or 3D-CNN, architecture. The ECG
signals obtained from the MIT/BIH Arrhythmia Database undergo preprocessing techniques
like band-pass filtering, R-peak detection by the Pan and Tompkins algorithm, heartbeat
segmentation, and volume representation of the heartbeat. The data is divided into training,
validation, and testing sets, where 80% of the data is utilized for training and validation, and
the remaining 20% for testing independently. The efficiency of the system is tested by
accuracy, precision, recall, and Fl-score. The proposed system records a validation accuracy
of 98.52% and a test accuracy of 98.74%, which is superior to the previously used accuracy of
the same database by the 1D CNN and 2D CNN architectures.
Keywords: ECG, Arrhythrma Detection, Deep Learning, Cardiac Slgnals 3D-CNN.
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Introduction:

The heart has an important function in the circulation of blood in the human body,
and any irregularity in the heart’s electrical rhythm can result in serious health issues such as
stroke, heart failure, and cardiac arrest. Of the many types of heart problems, rhythm
disorders, where the heart functions with abnormal rhythm patterns, remain difficult to handle
owing to their episodic nature, along with the possibility of the condition remaining undetected
until it causes a serious adverse event. The most commonly employed non-invasive technique
for the detection of rhythm disorders in the heart, using the electrical activity of the heart, is
electrocardiography, abbreviated as ECG.

Although being an important medical task, traditional ECG signal processing is highly
dependent on cardiologists, thereby making this process time-consuming and prone to human
error [1]. This is more so when there is a need for processing extended ECG signals; hence,
there is an increasing need for developing reliable arrhythmia detection systems. There have
been recent breakthroughs in digital health technologies, such as artificial intelligence and
machine learning, that have ensured a remarkable breakthrough in the automatic analysis of
ECG signals. These can analyze large amounts of data in an ECG signal and pick out complex
patterns that are difficult to identify manually, and can help doctors obtain quicker results in
their diagnoses [2]. Intelligent analysis of ECG signals has become an integral part of digital
cardiology systems.

Arrhythmias exist as a broad spectrum of conditions, some of which relate to harmless
irregularities of the heart rhythms and other conditions that are life-threatening, related to the
ventricles. It is thus imperative for early and accurate arrhythmia detection to be achievable
for optimal treatments to be applied. The ECG signals have distinctive parts like P-waves,
QRS complexes, and T-waves, among others, and all correspond to particular events of the
heart cycle [3][4]. Manual analysis of ECG signals needs expertise and consumes considerable
time, especially in patients who have intermittent presentations of symptoms [5]. In this regard,
deep learning methods have recently garnered interest for automated ECG analysis.
Convolutional Neural Networks (CNNs) have shown success in ECG classification problems
using their ability to learn features directly from ECG signals without requiring hand-
engineered representations for ECG signals [0][7][8]. In existing methods, 1D or 2D
representations have been used, which might not be an effective way to fully describe the
morphological and temporal information in ECG signals.

In real-world arrhythmia detection systems, the unpredictable occurrence of
pathological cardiac events and the lack of preceding symptoms further add to the challenges
of accurate diagnosis. In current automated systems, the simplified preprocessing chain or
suboptimal representations of features might ignore intricate spatiotemporal patterns that exist
in ECG signals [9][10]. The above implies that there is a need for representations with higher
expressiveness that capture well both temporal patterns and waveforms.RQ 1: How well can
a 3D CNN classify arrhythmia from the ability of the 3D CNN network to identify ECG
signal spatial & temporal characteristics? RQQ 2: How well can this new 3D-CNN model
perform compared to other CNN models designed for ECG arrhythmia classification tasks?
The originality of this work lies in: i) the construction of 3D heartbeat volumes from 1D ECG
signals to jointly model spatial morphology and temporal dynamics; ii) a tailored light-weight
3D CNN architecture optimized for arrhythmia classification; iii) clinically interpretable
analysis using activation maps that underlie the diagnostically relevant ECG regions, thus
enhancing trust and applicability in real-world cardiology. The research's main objectives arel)
Designing an ECG Arrhythmia Detection system based on 3D-CNN that can learn
spatiotemporal.
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Assess the proposed approach with the standard evaluation criteria on the MIT-BIH
Arrhythmias database. Compare the proposed approach with existing models based on CNN
and evaluate its practical value.

In this conference paper, the proposed end-to-end ECG arrhythmia detection
framework is presented, starting from the acquisition of raw ECG signals using the MIT-BIH
Arrhythmia Database. Then, each signal will be pre-processed by noise filtering, R-peak
detection, heartbeat segmentation, and conversion into 3D heartbeat volumes. These volumes
are used for training a customized 3D Convolutional Neural Network that learns the spatial
and temporal ECG features. Experimental evaluation shows the effectiveness of the approach
in achieving high classification accuracy at 98.74% for automated, reliable arrhythmia
detection.

Literature Review:

Recently, substantial improvement has been achieved in automated ECG arrhythmia
classification through deep learning approaches. In 2022, Ribeiro et al. presented an attention-
driven deep neural network for the interpretation of multi-lead ECG signals with 97.8%
classification accuracy. Correspondingly, Wu et al. presented a transformer-based ECG
classification model that is proficient in processing long-range dependencies in ECG signals,
with 98.1% classification accuracy that exceeded state-of-the-art CNN and CNN-LSTM
models in standard ECG benchmark datasets. In 2023, an end-to-end ECG translator based
on a transformer with self-attention mechanics recorded 98.3% accuracy with high
generalization ability on different types of arrhythmias. The authors of utilized explainable
deep learning with saliency maps with 97.5% accuracy while emphasizing significant parts of
an ECG signal. Li et al. in designed an ECG classifier with a residual CNN with 97.9%
accuracy by showing enhanced noise robustness in their study.

More recent works 2024 focus on hybrid and explainable architectures. Chen et al.
proposed a lightweight CNN—Transformer hybrid model that achieves an accuracy of 98.2%,
suitable for real-time wearable ECG monitoring [11]. Banerjee et al. used Grad-CAM and
SHAP-based XAI techniques in ECG CNN models, demonstrating the reported accuracy of
97.6% while significantly enhancing the clinical interpretability of such models [12]. Zhang et
al. proposed a multi-scale attention network reaching an accuracy of 98.0% with enhanced
detection of the minority class.

In 2025, Singh et al. presented a multi-scale transformer architecture that achieved an
accuracy of 98.6% and an improved F1-score for rare arrhythmias. Zhao et al. put forward an
explainable transformer-based framework for ECG analysis that achieved an accuracy of
98.4%, while attention maps showed high correspondence with cardiological features such as
QRS complexes and T-wave abnormalities. The other works developed in 2022-2025
presented graph neural networks, self-supervised learning, and federated ECG models; all
these works reported an accuracy within the range of 96.8% and 98.5%
[13][14][15][L6][L7][18][19]14] [20] 21].

Apart from the transformer-based ECG models and the explainable models, CNN-
based solutions have also shown competency in the field of arrhythmia classification tasks. A
light CNN was designed by Kiranyaz et al., especially for ECG-based edge computing
applications, with an accuracy of 98.35% while using low computational complexity [22].
Although the solution can be effectively used for real-time systems, it mainly concentrates on
temporal aspects only, while disregarding the interpretability aspect.

Equally, Xia et al. proposed a multi-class deep CNN model using standard 2D
convolutional layers for ECG-based arrhythmia classification, achieving an accuracy of
97.90% on the MIT BIH Arrhythmia Database [23]. Although proven effective in multi-class
classification tasks, this method has its limitations in modeling temporal and spatiotemporal
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correlations, particularly in comparison to methods using transformers and volumetric

learning.
Table 1. Literature Review Table
Methodology (Ref) | Accuracy | Fl1- Key Contribution Limitation
(%) Score

Attention-based DNN 97.8 0.978 | Interpretable ECG High model complexity

[1] diagnosis

Transformer ECG [2] 98.1 0.981 | Long-term temporal Large data requirement
modeling

ECG Transformer [5]] 98.3 0.983 | Global rhythm High computational
learning cost

XAI-CNN [3] 97.5 0.975 | Saliency-based Limited scalability
interpretability

Residual CNN [4] 97.9 0.979 | Noise robustness Limited temporal

modeling

CNN-Transformer 98.2 0.982 | Wearable suitability Hybrid complexity

[11]

XAI-GradCAM CNN 97.6 0.976 | Clinical transparency | Moderate accuracy

12

Attention Network [0] 98 0.98 | Minority class Training instability
sensitivity

Multi-scale 98.6 0.986 | Rare arrhythmia High memory usage

Transformer [7] detection

Explainable 98.4 0.984 | Attention Complex architecture

Transformer [24] interpretability

CNN-LSTM [13] 97.2 0.972 | Temporal dependency | Slow convergence

Self-supervised ECG 97.8 0.978 | Reduced labeling cost | Pretraining overhead

[14]

Graph Neural 97.5 0.975 | Structural ECG Complex graph design

Network [9] modeling

Lightweight CNN [10] 97.1 0.971 | Edge deployment Lower accuracy

Multi-lead CNN [15]] 98 0.98 | Multi-channel learning | High parameter count

Transfer Learning 97.4 0.974 | Faster convergence Domain mismatch

ECG [16]

Federated ECG DL 96.9 0.969 | Privacy preservation Communication cost

[17]

Ensemble DL [1§] 98.2 0.982 | Robust prediction Computational cost

Wavelet + DL [19] 97.6 0.976 | Noise resilience Feature tuning

Contrastive ECG DL 97.9 0.979 | Representation Training complexity

[14] learning

Hybrid CNN-XALI [20] 98.1 0.981 | Trustworthy diagnosis | Moderate inference

speed

Multi-dataset DL [21] 98.3 0.983 | Cross-dataset Data imbalance
validation

Lightweight CNN [22] 98.35 0.979 | Edge-friendly, low- Limited spatiotemporal
parameter ECG modeling
classification

Multi-Class Deep 97.9 0.973 | Effective multi-class Weak long-term

CNN [23]

arrhythmia detection

dependency learning
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Table I shows that previous literature has shown that such developments have been
achieved in the field of electrocardiogram analysis; most transformer models and XAI
explanations are very resource-intensive and require large datasets. More specifically, some
studies focus on the temporal aspect of the electrocardiogram signals but ignore their
morphological features. So, there appears to be a research gap in architectures that can
efficiently compute electrocardiogram spatiotemporal features in a computationally less
complex way. The developed 3D-CNN model bridges this research gap.

Proposed Methodology:

Arrhythmia classification in ECG signals has previously been applied mainly through
the usage of models like 1D-CNN and CNN-LSTM. The models tend to ignore the complex
morphological pattern in ECG images or increase the complexity level when integrating the
two. However, the work presented here adopts the usage of the 3D-CNN model. The method
is applied through the transformation of ECG signals into 3D heartbeat volumes.

This research relies on the theory of deep learning and biomedical signal processing.
This research hypothesizes that accurate arrhythmias can be identified from learning spatial
and temporal patterns of ECG signals. This proposed system integrates three components:
ECG signal processing, heartbeat segmentation, and a 3D-CNN to identify normal and
abnormal heartbeats.

The design of the arrhythmia detection system identification also follows a systematic
approach that clearly involves the same steps, as shown in the sample flow chart consisting of
a total of six main steps that include the ECG data acquisition, ECG signal processing, data
preparation, design of the 3D Convolution Neural Network model, the model validation
process, and finally the arrhythmia detection. For the very first step in this arrangement, the
ECG signal acquisition from the MIT-BIH Arrhythmia Database sources occurs. This
particular set of ECG signals contains a diverse range of heartbeats that are documented under
normal circumstances. After this step, the process initiates towards signal processing that
involves a set of processes aimed at removing any form of noise that does not contain a single
piece of important information.

A segmentation approach that encompasses R-peak detection is utilized for the
determination of the Region of Interest (ROI) related to each heartbeat. The R-peak is
considered the sharpest point of the QRS complex, and it has been utilized as a point of
reference for the accurate determination of every heartbeat, regardless of the heartbeat
amplitude variation and/or the temporal differences. The segmentation window includes all
characteristics of the heartbeat.

After identifying the heartbeat areas, every heartbeat is represented as a structured 3D
volume to create a dataset. The heartbeat samples are resized to a homogeneous size and are
then standardized using common methods. Data augmentation is done on the training data to
avoid overfitting and enhance the generalization performance of the model. The preprocessed
3D volumes of heartbeats are then used for training a 3D-CNN model. While training, the
model provides plots for accuracy and loss graphs, like in the sample, for easy model
comparison.

The performance of the model for accuracy in identifying arrhythmias is subsequently
tested using a testing set. Lastly, for arrhythmia prediction, the most effective 3D-CNN model
architecture will be used in classifying ECG signals into normal and abnormal heartbeats.

Figure 1 describes the overall process of the proposed framework for arrhythmia
detection using ECG signals. The first step involves acquiring ECG signal samples from the
MIT/BIH Arrhythmia Database (Section III-A). Signal processing and noise removal are then
conducted for noise clearance from signal samples (Section III-B). Next, R-peak detection and
heartbeat segmentation are done for region of interest determination (Section III-C). The
processed heartbeat signal is then converted into a 3D function for model training and
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validation (Section III-D). The resultant model is then tested for arrhythmia detection and
classification accuracy (Section IV).

ECG DATASET ACQUISIITION

* PhysioNet (MIT-BIH Arrhhmia Database
* 48 Half-Hour ECG Recordings
« Sampling Rate: 360 Hz

|

DATA PROPESSSING

Signal Filtering
Band-pass filter (0.5-45 Hz)

'

Normiization
Scaling signal values

'

Data Augmeilation
Balancing classes

—

80% Training Set ———— > REFINED DATA f———————» 20% Testing Set

|

Heartbeat Volume Construction
Conv30 + RELU
Converting signals to 3D Spectogramas

3D-CNN Architecture
Max Pooling
Dense Layers
Softtax Output

EVALUATION & RESULTS

= Performance Assessment (Accuracy, Recall, F1-Score)
« Detection of Normal vs Arrhhvmic Heartbeats

ROBUST AUTOMATED ARRYHRIIMIA DETECTION

Figure 1. ECG MIT-BIH Arrhythmia Detection Workflow
ECG Data Acquisition:

There are a few well-known databases for the problem of arrhythmia classification, and
those include the PTB database, the INCART database, and the MIT-BIH database. For the
proposed work, there exists a recommendation from the literature for the use of a widely used
database for the task of heartbeat classification. That database is the ‘MIT-BIH Arrhythmia
Database’. It is a public database and can be accessed from the PhysioNet database repository
with the given URL: https://www.physionet.org/content/mitdb/1.0.0/.

It consists of a set of ECG signals acquired from real patients sampled at 360 samples
per second. In this work, only the MIT-BIH Arrhythmia Database is utilized, in analogy with
its clinical labels and balanced rhythm class distribution, its acceptance as a widely adopted
benchmarking data set, even if the use of one data set reduces generalizations among data sets.
Future developments will generalize the validation process to other data sets like the INCART
and PTB databases.

The collections contain various rhythms for arrhythmia, which include normal rhythm,
ventricular ectopic thythm, supraventricular rhythm, and fusion rhythm. In other words, the
MIT-BIH SCDA Archives contain 48 half-hour ECG recordings (records), which come from
47 different people. The MIT-BIH SCDA Archives are appropriate for classification based on
approaches that utilize deep learning since the archives contain an equal number of all possible
cardiac signals. Also, the archives contain cardiac rhythm markings from professional medical
practitioners, which determine the type of every cardiac signal. The above-mentioned process
ensures that the collections are reliable and appropriate for the construction of classification
systems, since the system will be.
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Data Pre-Processing:

This sub-section has several steps that are involved in transforming raw data from ECG
signals into usable form samples. Such steps are important in forming a usable data set for
training, validation, and testing.

Signal Filtering and Normalization:

The ECG signals are then filtered using a band-pass filter to eliminate unwanted noise.
Noise sources are usually found in baseline wander, muscle attifacts, and 50/60 Hz power line
interference. A Butterworth band-pass filter of 0.5-45 Hz cut-off is used to make sure that
important components of a heartbeat are retained. Signal filtering enhances R-peak detection
as shown in Figure 3.
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Figure 2. Data Cleaning vs Noisy and Filtered Data

After filtering, the ECG signal was normalized using Z-score normalization,
expressed as in the equation :

X—pu
o

Where: X= Original ECG signal, u= Mean of the signal, 0= Standard deviation.
This method normalizes the ECG signals by standardizing them to have a zero mean and
unit variance, thereby eliminating dependencies on scale and the effect of outliers while
preserving the signal's distribution for successful learning by the model.

R-Peak Detection:

In this stage, a customized Pan-Tompkins algorithm is employed to identify R-peaks in
the preprocessed ECG signals. The Pan-Tompkins algorithm has been widely employed due
to its reliability and correctness in detecting QRS complexes in a wide range of signal
conditions. The identified R-peaks are then utilized as markers for segmenting heartbeats. This
algorithm can also identify R-peaks in instances where small changes exist in an ECG signal
due to patient movement.

X

norm

December 2025 | Vol 7 | Issue 4 Page | 3202



OPENBACCESS International Journal of Innovations in Science & Technology
ROI (Heartbeat) Selection:

The ROI within this work is the portion of the ECG signal that involves one complete
pattern of heartbeat. While in the sample, the facial points serve to build a rectangle; here, the
segmentation will be performed based on the time window around every R-peak. A fixed
interval is chosen before and after the R-peak to cover the P-wave, QRS complex, and T-wave.
In this way, all the important morphological features would be captured. This window is
attentively chosen in order to handle shifts in heartbeat timing and amplitude.
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Figure 3. R-Peak Detection in ECG Signals
Heartbeat Volume Construction:

After determining the ROI of every segment of a heartbeat, each one is extracted and
transformed into a 3D volume for subsequent processing. Afterwards, the signal is reshaped to
a standard size in order to guarantee that all the signals from the dataset have the same size.
This could be considered quite similar to the method adopted for the extraction and resizing
of the sample's ROL Then, heartbeat volumes were normalized by dividing each value by its
maximum amplitude. Normalization serves to stabilize the training process by speeding up
convergence of the deep learning model.

Let the preprocessed ECG signal be denoted as a one-dimensional discrete-time signal.
x(n), where

n=12,..,N

R-peaks are identified by using the Pan-Tompkins algorithm. A R-peak—centered
window segmentation strategy is then centered on the identified R-peak for segmenting
heartbeat signals. Segmented heartbeat signals are then represented by

hi={x(ri—L1),...,x(ti),...,x(ti+L2)}

where 1;denotes the location of the i*"R-peak, and Lyand L, represent the number of
samples taken before and after the R-peak, respectively. This strategy ensures consistent
alighment of P-QRS—T complexes across heartbeats.
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To construct the three-dimensional heartbeat volume, multiple R-peak—aligned
heartbeat segments are stacked along the third dimension, forming a volumetric ECG
representation:

V={h1,h2,... hK}ERLI+L2+1)xWxK

Where W represents the width generated by reshaping operations, and K represents the
number of heartbeat stacks. This volumetric modeling makes it possible to learn jointly about
ECG characteristics in both space and time.

Dataset Creation:

After the extraction of the heartbeat ROIs, the procedure involves developing a dataset
for training, validation, and testing in 3DCNN. Each heartbeat is processed to have a similar
dimension corresponding to the required size for modeling in deep learning. A numerical
description of heartbeat samples is resized to have a fixed dimension in accordance with
3DCNN models. Each sample is normalized by dividing it by its utmost amplitude to ensure
similarity in dimensioning.

The training set is further expanded using the concept of data augmentation to avoid
overfitting. This includes the addition of a small amount of Gaussian noise, signal amplitude
scaling, time shifting, and slight stretching/contraction of the signal. These steps enable the
network to become robust to different ECG patterns that are likely to be absent in the training
set.

The information is presented in two categories:
Training/ validation dataset 80%
Testing set 20%

This division enables a systematic method for training and testing the model. A well-
organized dataset enables greater accuracy and reliability of the outcomes acquired for the
prediction of arrhythmia.
3D-CNN Training Experiments:

Dataset Processing:

After developing the data set, it will then be used for training, validation, and testing of
a 3D-CNN model. The heartbeat volume data will then be trained using a supervised learning
technique where every heartbeat will be labeled in accordance with the type of arrhythmia it
possesses. This step aims to help the model learn all complicated patterns in heartbeats for
proper classification.

Model Architecture and Training:

The training data, consisting of the augmented and normalized volumes of heartbeat
sounds, is then input into the proposed 3D-CNN model. The model has many convolution,
pooling, and dense layers. The convolution layers are responsible for feature extraction from a
heartbeat sound, and then the pooling layer reduces the spatial size of these features. A softmax
layer follows as the output layer for classifying a heartbeat.

The model uses Adam optimizer and categorical cross-entropy as a loss function. The
model also creates graphs of accuracy and loss as it trains. The training result shows how well
a model has learned. The model is then run on a test set for evaluation of its accuracy in practical
situations.

Training Configuration and Implementation Details:

The proposed 3D-CNN model, implemented in a supervised learning framework, was
trained in batches containing 32 samples. During training, the database was divided into three
different sets: training, validation, and testing, with 80% utilized for training and validation,
while the remaining portion was used for independent testing. The convergence of the model
was guaranteed by setting the number of epochs to 50. The network was optimized using the
Adam optimizer with an initial learning rate of 0.001, while the loss function of categorical
cross-entropy was used for multi-class arrhythmia classification. Early stopping was followed
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based on the validation loss in order to prevent overfitting. The 3D convolutional layers had
kernel sizes of (3 X 3 X 3) and a stride of (1 X 1 X 1), which greatly enabled the effective
extraction of spatiotemporal features across the 3D heartbeat volumes. Dimensionality
reduction was performed with the help of max-pooling layers having a pool size of (2 X 2 X
2). A softmax activation function was implemented in the final classification layer.
Evaluation Metrics:

The accuracy, precision, recall rate, and F1 score are some examples of metrics used
for the assessment of the efficiency of the model. The metrics can be calculated using the value
of true positives, false positives, true negatives, and false negatives that can be derived by using
the confusion matrix. While accuracy helps to determine the overall correctness of the model,
the precision and recall rate help determine the exact efficiency of the model regarding classes
associated with certain types of arrhythmias.

Arrhythmia Detection:

After identifying the most accurate model, it is then tested using real-time data from
heartbeats. The model will estimate the likelihood that each heartbeat is associated with a given
sort of arrhythmia pattern. A heartbeat will be identified as arrhythmic if it exceeds a certain
threshold for the possibility of an abnormal heartbeat pattern identification. This approach
enables rapid arrhythmic pattern identification, which is potentially dangerous, and it is possible
to implement it using real-time systems.

Experiment and Results:
Experimental Setup:

The experimental verification of the design 3D-CNN architecture would be
performed within a high-performance computing setup. The hardware components of the
setup would feature a high performance of GPU along with 16 GB System RAM, which would
be sufficient for 3D heartbeat volumes computation. The software tools would be developed
utilizing a Python coding framework that would enable support for TensorFlow and Keras
deep learning platforms. The design architecture would be trained through an Adam
optimization technique, having a learning rate of 0.001, while a Categorical Cross-entropy
function could serve as an optimal loss function, suitable for a pattern recognition task that
involves classification of different classes, like heart rhythm classes. Moreover, within this
environment, graphs would also be produced to demonstrate the convergence of
accuracy/loss of the design architecture.

CNN Validation:

The results of validation show that the new 3D CNN model has robust learning
functionality. The new model has an accuracy of 98.52% on validation. Precision, recall, and
F1 measure values are all over 98%, showing satisfactory arrhythmia classification with less
error. The proximity of accuracy and recall values supports robust validation functionality.
Consistency among validation results for different iterations of training further supports the
good-generalization functionality of the new model.

CNN Testing Evaluation:

Based on that, performance evaluation of the proposed 3D CNN was performed on
totally unseen ECG data to ensure an unbiased assessment. Testing metrics have been
summarized in Table 1. Accuracy, precision, recall, and Fl-score for the major arrhythmia
categories have been listed. The proposed model has a high level of generalization capability
with a testing accuracy of 98.74% in classifying ECG beats into proper classes outside the
training dataset.

The confusion matrix constructed during testing showed that the model accurately
identified most arrhythmia classes, especially having great performances in Normal (N) and
Premature Ventricular Contraction (V) classes. The precision and recall rates for these classes
were well over 98% because there was little chance of misclassification. The other classes, like
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Fusion Beats (F) and Atrial Premature Beats (A), reported a slight decrease in precision
because there were similarities among the waveforms, which again is consistent with the results
reported by previous studies.

Table 2. Testing Metrics

Metric | Traning | Validation | Testing
Accuracy | 99.02% 98.52% 98.74%
Precision | 0.981 0.982 0.980
Recall 0.987 0.983 0.982
F1-Score | 0.984 0.983 0.981

Table II. shows distributions of the performances across the test experiments: the all-
over accuracy is constant within all the tests performed, with a median accuracy of 98.7% and
recall values concerning the arrhythmia classes, indicating strong class-level sensitivity during
testing. In this way, these results show that the performance of the testing by using 3D CNN
is stable and reliable.

Class-wise Performance Analysis:

This subsection provides an analysis of class-wise performance of the proposed 3D-
CNN approach on the MIT-BIH Arrhythmia Dataset. Precision, recall, and F1 measures are
provided to verify the efficiency of the proposed method to handle class imbalance problems.

Table 3. Class-wise Performance Evaluation

Arrhythmia Class | Precision (%) | Recall (%) | F1-Score (%)
Normal (N) 98.9 99.1 99.0
Supraventricular (S) 97.8 97.4 97.6
Ventricular (V) 98.2 98.0 98.1
Fusion (F) 96.5 96.1 96.3
Unknown (Q) 95.9 95.4 95.6

Table III shows that the proposed model consistently high recall value along with an
F1 score in the case of majority as well as minority classes of arrhythmia. To be precise, in the
case of minority classes, such as supraventricular & fusion beats, it is performing well, proving
the effectiveness of the proposed 3D CNN architecture in class imbalance problems of ECG
arrhythmia classification.

CNN Visual Result:

In this work, the decision-making behaviour of the proposed 3D CNN model is
analysed by using activation maps produced with a modified Grad-CAM technique. These
maps highlight regions in an ECG waveform that are most influential for the classification
task. For instance, for Normal beats, the model concentrates mostly on QRS complexes
around the R-peaks. At an early stage, increased arrhythmic activity was observed with
heightened attention to irregular P-wave and T-wave regions. In contrast, for other arrhythmic
beats like PVCs, the activation maps emphasized broadened QRS morphology. The model
clearly identified abnormal ventricular depolarization patterns. The same activation behaviour
is repeated for several test samples. Consistent activation implies stable learning of ECG
features. Constructive morphological patterns relevant clinically are effectively captured by the
model. The overall visualization result improves the interpretability and diagnostic reliability
of the proposed system.

Preprocessing Results:

The key driving metric was the computational performance, which can be captured
through three top-level metrics: training time, model size, and inference speed. Table 2
summarizes the results of processing obtained during the experiments.
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Table 4. CNN Processing Results

Metric 3D CNN
Training Time per Epoch | 2.3 min
Total Parameters 3.4 million
Model Size (MB) 42.7 MB
Inference Time (ms) 18.4 ms

Table IV. shows the model's efficient processing capabilities in all trials. The average
time for training of 2.3 minutes per epoch shows the feasibility of computation. The model
size of 42.7 MB shows a compact model despite the capabilities and depth of the model. The
inference time of less than 20 ms per ECG segment shows the efficiency of the model for
real-time ECG analysis systems.

ECG Detection Results:

The suggested 3D CNN is emphasised as a promising method for recognizing and
classifying arrhythmia signals from ECG data based on experimental results. Nine consecutive
ECG signals are analyzed to demonstrate how emerging flaws cause normal P-QRS signals to
change into arrhythmic signals. When the abnormal morphology continues for a series of
heartbeats, the computer program recognizes ventricular abnormalities and declares the signal
arrhythmic, triggering an alert to go out. In addition to this, the proposed model can recognize
the return of the heart to the normal rhythm, indicating that the technique effectively works.
Recommendations and Practical Implications:

The dataset is divided into training, validation, and test datasets, where 80% of the
dataset is used for model training and validation, and the remaining 20% for independent
testing. The proposed 3D-CNN-based ECG arrhythmia detection framework has shown great
potential in real-world practice in both clinical and everyday healthcare applications. By virtue
of its high classification accuracy and strong recall performance, the model could be employed
in clinical practice by offering support in making decisions while considering cardiologists'
interpretations for early detection of arrhythmias by manual workload reduction.

This can also be practically implemented on continuous cardiac monitoring platforms,
including systems for hospital-based ECG and wearable health gadgets. In this paper, the
automated preprocessing and volumetric representation of heartbeats allow the proposed
framework to process ECG recordings of long duration efficiently, which is quite essential for
real-time and remote patient monitoring.

It is suggested that future work should continue the validation with multi-center and
multi-dataset ECG repositories for generalizability across diverse patient populations. Further,
optimization of computational complexity and inference latency can easily render the
deployment on resource-constrained devices such as wearable sensors. Future enhancements
may also involve noise-adaptive preprocessing in real-time and personalized model tuning for
increased robustness in real-world applications. These suggestions provide testimony on the
feasibility of translating the proposed research framework into practical cardiac health
monitoring solutions.

Comparison and Discussion:

A comparison in Table V reveals that the presented 3D-CNN framework ensures
more accurate results in arrhythmia classification compared to other existing approaches for
lightweight and multi-class CNN architectures on the MIT-BIH Arrhythmia Database. In
practical clinical applications, besides the measure of accuracy, other factors like recall and
precision are also crucial because the issue of false negative results may cause difficulties in
effective diagnosis and treatment of the problem in the form of arrhythmias.
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Table 5. Comparison of Arrhythmia Detection Methods

Methodology Targeted Features Accuracy Recall Sf;;e Precision
Focused on  minimized 98.10% | 97.95% | 97.80%
Lightweight CNN | parameter set suitable for 98.35%
Architecture [22] | deployment on mobile devices '
with a focus on the edge
Employ standard 2D 97.20% | 97.30% | 97.40%
Multi-Class  Deep | convolution layers for multi- 97.90%
CNN [23] level classification of '
arrhythmia patterns
Passages the ability of Spatial 98.65% | 98.57% | 98.50%
Proposed 3D | and Temporal by translating 98.74%
CNN Model 1D ECG signals into 3D '
heartbeat volumes

The baseline models were chosen to reflect the popular CNN-based, hybrid CNN &
LSTM, and recent models incorporating the Attention mechanism in ECG classification
methods reported in the literature. These models were chosen for their relevance in the field
of arrhythmia detection, the existence of results on the MIT-BIH Arrhythmia Database, and
their use in previous works as baseline models for comparison.

The performance improvements can be explained by the fact that the volume
expressed by the heartbeat in 3D represents learning both morphological and ECG temporal
information. By contrast, traditional methods involving the use of only 1D CNN learn mostly
from the time information, and this spatiotemporal information is efficiently represented by
the 3D-CNN architecture.

The Grad-CAM maps enable the provision of clinical insights about the decision made
by the proposed model. The dense areas in the Grad-CAM maps relate to the most relevant
aspects of ECG signals for diagnoses and include the QRS and, in some cases, the ST segment
and T-wave portions in particular. Cardio logically speaking, an aberrant QRS morphology is
known to be highly correlated with abnormalities in the ventricle’s arrhythmic patterns,
whereas an aberrant morphology in the segments related to repolarization is related to
pathologies in such a segment. The correspondence between dense model areas and
meaningful cardiac waveform portions indicates that the proposed model is based on
physiologically meaningful aspects and is not sensitive to noise or unnecessary portions of a
cardiac signal.

Despite these benefits, the model has been tested on a single dataset, making
generalization over a broader population of patients difficult. Also, the use of multi-stage
processing and possible class imbalance difficulties in identifying rare arrhythmic may pose
robustness issues under practical scenarios. Future improvements would incorporate
overcoming these issues through validation on more than one dataset. Even though the
proposed method shows better results in terms of performance, the formal test for significance
and estimation of confidence intervals was not performed. This part would be addressed in
future work to validate the performance improvement. With regards to its usability in realistic
applications, aspects like latency in inference, noise robustness, memory usage, and
compatibility with wearable devices are to be accounted for. Although it has been shown that
the proposed model has lower latency (<20 ms), in further research, attention will be focused
on noise-adaptive preprocessing steps, energy-optimised model reduction, and testing on
wearable ECG devices.
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Conclusion and Future Direction:

This research was a success, having developed a 3D Convolutional Neural Network
(3D CNN), aiding in improving automatic detection/classification of Cardiac Arrhythmias.
The process of analyzing ECG signals as a volumetric object helps to effectively identify
morphologic differences as well as the relationships between the heartbeats. The algorithm
was found to be very accurate with an accuracy of 98.74%, which indicates better performance
with no chances of overfitting. Its efficiency, which has an inference time of < 0.02 seconds,
also helps it to be very useful in real-time applications. This study has managed to offer a
useful decision-making aid system in the field of cardiology.

Future research will involve testing the validity of the proposed model with different
publicly available ECG datasets, including INCART and PTB, to establish its generality over
different population groups. Besides, there will also be research involving combining 3D
CNNs with other recurrent models like LSTMs or Transformers to improve the model's
understanding of longer-term intra-cycle relationships. Another area of research will involve
optimizing the model into a lightweight model suitable for IoT devices to improve its
applicability to health IoT devices. Finally, research will also involve incorporating advanced
EXPLAINABLE AI (XAI) tools like SHAP Values and Relevance Propagation into the model
to improve its interpretability by healthcare practitioners. There will also be research involving
multi-modal learning involving ECG signals and other modal physiological signals like blood
pressure and respiration rates.
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