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lind image deconvolution, a technique for obtaining restored image as well as the blur 
kernel from an inexact image. This research uses spatial characteristics to tackle the 
problem of blind image deconvolution. To work, the proposed method does not 

necessitate prior information about the blur kernel. Many applications, such as remote sensing, 
astronomy, and medical X-ray imaging, necessitate blind image deconvolution algorithms. This 
study used the maximum a posteriori (MAP) paradigm to create a new blind deblurring 
approach for removing blur from images. In beginning, we employed a Laplacian of Gaussian 
(LoG)-based image before regularising the gradients of an image. In the second phase, we used 
an operator known as the Iterative Shrinkage Thresholding Algorithm (ISTA) to cope with the 
non-convex challenge that develops during the entire deblurring procedure. Finally, we 
compared our method to several well-known methods in terms of quantitative and qualitative 
qualities, and we were able to determine which strategy was the most effective. Our findings 
show that the strategy we propose outperforms the others by a large margin. 
Keywords: Blind Image Deblurring (BID), Blind Deconvolution, Maximum Posterior (MAP), 
Laplacian of Gaussian (LoG). 
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INTRODUCTION 
  It is possible to deconvolve a blurred image into its original form without any knowledge 
of the actual image or the process that leads it to be blurred, known as a point spread function 
(PSF). Pixel's intensity is affected by the intensity of adjacent pixels due to motion artifacts, lens 
flaws, and air changes such as turbulence, all of which can cause blur[1]. The recorded image is 
typically corrupted by arbitrary noise generated by an optical device, resulting in measurement 
errors[2]. There are two phases involved in producing a blurred image: convolution and 
deconvolution of the PSF from the blurred image[3]. Video conferencing, diagnostic imaging, 
and celestial imaging all require this blind deconvolution, but it is difficult or impossible to 
calculate the PSF before the operation, which makes Blind Image Deblurring(BID) the process 
of obtaining a true image from its distorted form, a challenging task. 

 It is possible to utilize blind (BD), non-blind (NBD), or semi-blind (SBD) deconvolutions 
depending upon whether or not you know the PSF shape. BD deconvolution approaches such as 
statistically significant blind deconvolution with a Gauss-Newton procedure [4] and peak 
restoration blind deconvolution [5] involve a simultaneous estimate of spectrum data and blur 
kernel from observed data. It makes blind deconvolution a challenging task, and noise makes it 
even more difficult. The Fourier self-deconvolution (FSD) approach [6], the most frequent 
approach used during infrared spectroscopy, and the maximum Burg entropy (MaxEntD) 
method [7], which presently has good performance in deconvolution of absorption spectra, can 
be employed for spectrum restoration when the PSF is known. In contrast, PSF is rarely 
encountered in real-world applications. There will be bad results if the blur kernel is incorrectly 
supposed to be different from the actual one. PSF is assumed to be parametric in semi-blind 
deconvolution approaches like semi-blind deconvolution based on several regularizations [8]. 
Maximum Posterior (MAP), Variational Bayesian, and edge prediction are the three types of blind 
deconvolution algorithms. The computational cost of VB-based methods is higher than MAP, 
but it can avoid trivial solutions. Salient Structures-Based Kernel Estimation and Sparse 
Regularization-Based Kernel Estimation are two variants of kernel estimation based on MAP that 
have been proposed.  
 From a blurred input, the purpose of blind image deblurring is to restore a blur kernel and a 
sharp latent image. It's a classic vision problem, and there's been a lot of progress in recent years. 
A convolution operation can be used to model the blurring process when it is spatially invariant: 

𝑏 = 𝑙 ∗ 𝑘 + 𝑛       (1) 
     Where b represents blur image, l for latent image, k for blur kernel, n for noise, and * denotes 
the convolution operator between them. Restored images appear to be of low quality when image 
structures are too small to fit inside the blur scale. A new blind deconvolution algorithm based on 
Laplacian of Gaussian based regularization is proposed to overcome this problem in this paper. 
We have proposed an image deblurring method based on salient detection, which removes 
damaging picture structures from the estimation of blurry kernels. Other non-uniform deblurring 
and priors can be solved using the approach we've devised, as we show here. The results of this 
research show that the suggested method outperforms currently used blind image deconvolution 
methods. An image that has been enhanced by using this method has a better value on evaluation 
parameters such as peak signal to noise ratio (PSNR) and structural similarity index measure 
(SSIM), than those obtained using other methods, according to experiments on improving 
blurred photos. 
     The rest of this document is structured as follows. In Section 2, we describe our blind 
deconvolution model, the priors we utilized, and the reasoning behind our choice. There follows 
a description of how the proposed approach is optimized and the algorithm is implemented. This 
section also explains the proposed algorithm's convergence features. The quantitative and 
qualitative results are presented in Section 3 for comparison with some other common methods 
of image restoration. The concluding paragraphs are included in the last section. 
PROPOSED METHODOLOGY 
     The blind image deblurring challenge can be approached iteratively by estimating alternate 
iterations of the transitional latent image and the blur kernel. This optimization scheme will be 
used to develop a new blind deblurring technique, which will be discussed in this section. Using 
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the MAP framework, after blurring y, we extracted two factors including latent image and blur 
kernel. Deblurring was computed using the equation below: 

𝐴𝑟𝑔 𝑚𝑖𝑛
𝑙,𝑘

(𝑙 ∗ 𝑘 − 𝑏) +  𝑃(𝑘) +  𝑃(𝑙)    (2) 

     In (2), ‘P’ denotes prior for k and latent image, both  𝑎𝑛𝑑   denotes the weights.  
     A new way of solving the latent image is used to solve the deblurring process, which is 
conceptualized as an optimization problem. 

𝑘 = 𝐴𝑟𝑔 𝑚𝑖𝑛
𝑙,𝑘

(𝑙 ∗ 𝑘 − 𝑏) +  𝑃(𝑘)  (3) 

𝑙 = 𝐴𝑟𝑔 𝑚𝑖𝑛
𝑙,𝑘

(𝑙 ∗ 𝑘 − 𝑏) +  𝑃(𝑙)  (4) 

     In our model, we employed the Laplacian of Gaussian (LoG) which is used to calculate the 
image prior, during each iteration we use the previously calculated blur kernel to estimate a final 
blur kernel. Using the resulting blur kernel, a latent image recovery method is implemented. The complete 

methodology is shown in Figure 1 and the algorithm is shown in Algorithm 1. 

Algorithm 1: Overall Deblurring Algorithm 

Result: Latent Image and estimated kernel 
Input: blurred image b, kernel size h, derivative filters, a high-frequency image I. 
(Two main parts of Blind Image Deblurring algorithm) 
Apply loop on coarser levels: 
For i< tmax+1 do 

i.Estimate l by using subsection A 
ii.Estimate k by using subsection B 

End for 
Using the Non-Blind Deconvolution part to obtain a final recovered image 

 

Figure 1. Methodology of Our Model. 

Updating Latent Image 
     Using the previous iteration's blur kernel k, we will use Laplacian of Gaussian (LoG) to 

estimate the intermediate latent image 𝑙. 
𝑙 = 𝐴𝑟𝑔 𝑚𝑖𝑛

𝑙,𝑘
(𝑙 ∗ 𝑘 − 𝑏) +  ‖𝑙‖0.8 (5) 

     The Laplacian is a two-dimensional isotropic metric of the second spatial derivative of that 
image. The Laplacian of an image reveals regions of fast intensity change, and as a result, it is 
frequently employed for edge identification in images. It is common practice to apply the 
Laplacian to an image that has already been smoothed with something that approximates the 
Gaussian smoothing filter in terms of reducing the image's susceptibility to noise.  As LoG is a 
combination of Laplacian and Gaussian, so, here is a mathematical form of a simple Laplacian 
function. 

𝐿(𝑥, 𝑦) =
𝜕2𝑙

𝜕𝑥2 + 
𝜕2𝑙

𝜕𝑦2    (6) 

Let 

s = 
𝑥2+𝑦2

2𝜎2     (7) 

Now applying LoG  

LoG(x, y)  = −
1

𝜋𝜎4
(1 − 𝑠)𝑒−𝑠          (8) 

In (5),𝑙 =( 𝜕h 𝑙, 𝜕v 𝑙 )T is the gradient of  𝑙. 
In(7), (8), 𝜎 is the standard, deviation. In this research, we have used 𝜎 = 1.4 to obtain hand v. 
Now we have introduced another term for vertical and horizontal gradients, in the above 
equation as follows: 
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𝑑 = [h, v ]
T 

Now (5) will look like this, 

𝐴𝑟𝑔 𝑚𝑖𝑛
𝑙,𝑘

(𝑙 ∗ 𝑘 − 𝑏) + 𝛽‖𝑙 − 𝑑‖2+‖𝑑‖0.8  (9) 

h =

[
 
 
 
 
 
 
 
 
0 0 3 2 2 2 3 0 0
0 2 3 5 5 5 3 2 0
3 3 5 3 0 3 5 3 3
2 5 3 −12 −23 −12 3 5 2
2 5 0 −23 −40 −23 0 5 2
2 5 3 −12 −23 −12 3 5 2
3 3 5 3 0 3 5 3 3
0 2 3 5 5 5 3 2 0
0 0 3 2 2 2 3 0 0]

 
 
 
 
 
 
 
 

        (10) 

 

v = 

[
 
 
 
 
 
 
 
 
0 0 3 2 2 2 3 0 0
0 2 3 5 5 5 3 2 0
3 3 5 3 0 3 5 3 3
2 5 3 −12 −23 −12 3 5 2
2 5 0 −23 −40 −23 0 5 2
2 5 3 −123 −23 −12 3 5 2
3 3 5 3 0 3 5 3 3
0 2 3 5 5 5 3 2 0
0 0 3 2 2 2 3 0 0]

 
 
 
 
 
 
 
 

       (11) 

 

     In (9), 𝛽 is the penalty-related parameter, when 𝛽 is close to infinity, the result of (9) will be 

similar to the result of (5). We then work on  (9) by updating 𝑙 and 𝑑 independently of one 

another, in this equation we keep the variable 𝑑 constant.  
     We begin by setting the value of d to zero. Each iteration of the process will result in 𝑙 being 
obtained by (12), 

𝑙 = 𝐴𝑟𝑔 𝑚𝑖𝑛
𝑙,𝑘

(𝑙 ∗ 𝑘 − 𝑏) + 𝛽 ‖𝑙 − 𝑑‖2  (12) 

Using (13), we can find the solution of (9). 

𝑙 = 𝑓−1 (
𝑓(𝑘)̅̅ ̅̅ ̅̅ 𝑓(𝑏)+𝛽𝑓(g)

𝑓(𝑘)̅̅ ̅̅ ̅̅  𝑓(𝑘)+𝛽𝑓(∇)̅̅ ̅̅ ̅̅ 𝑓(∇)
)    (13) 

     In this 𝑓−1 and  𝑓 denotes inverse transform and Fourier transforms respectively. Complex 

conjugate operations are denoted by 𝑓 ̅, and, 

𝑓(g) =  𝑓(𝜕ℎ ∗ 𝑙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑓(𝑑ℎ) + 𝑓(𝜕𝑣 ∗ 𝑙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑓(𝑑𝑣)  (14) 

𝑓(∇)̅̅ ̅̅ ̅̅ 𝑓(∇) =  𝑓(𝜕ℎ ∗ 𝑙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑓(𝜕ℎ ∗ 𝑙) + 𝑓(𝜕𝑣 ∗ 𝑙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑓(𝜕ℎ ∗ 𝑙)    (15) 

𝑑 = 𝐴𝑟𝑔 𝑚𝑖𝑛
𝑑

 𝛽‖∇𝑙 − 𝑑‖2+‖𝑑‖0.8    (16) 

     To address the general linear inverse issue, the Iterative Shrinkage Thresholding Algorithm 
(ISTA) is utilized. ISTA is a very basic and fast algorithm that only requires multiplying the matrix 

K with the vector image 𝑙 , and then it shrinks each component one by one. In our latent image 

update algorithm, we just use ISTA stride as the inner iteration. In this algorithm 𝑄𝜆𝑡represents 
soft shrinkage operator. 

𝑄𝛼(𝑙)𝑖 = 𝑚𝑎𝑥(|𝑙𝑖| − 𝛼, 0) sign(𝑙𝑖)                  (17) 

Algorithm 2: Iterative Shrinkage Thresholding Algorithm (ISTA) 

Result: Image 𝑙j 

Input: k, , b, max, 𝑙0, t 

for i=0 to j-1, do  

𝑢 =  𝑏 − 𝑡𝑘𝑡(𝑘𝑙𝑖 −  𝑏) 
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𝑙𝑖+1 = 𝑄𝜆𝑡(𝑢) 

 

end 

Updating Kernel 

     After getting 𝑙, we can update the kernel by using the following series of equations, 

𝑘 = 𝐴𝑟𝑔 𝑚𝑖𝑛
𝑑

 𝛽‖𝑙 ∗ 𝑘 − 𝑏‖2+𝛾‖𝑘‖2  (18) 

To estimate the kernel k, we use the method of picking the prominent edges which are denoted 

by ‘P’, from the intermediate latent image 𝑙, which is described previously. 

= 𝐴𝑟𝑔 𝑚𝑖𝑛
𝑑

 𝛽‖∇𝑃 ∗ 𝑘 − ∇𝑏‖2+𝛾‖∇𝑘‖2  (19) 

To solve it we again use the Fourier transform. 

𝑙 = 𝑓−1 (
𝑓(𝜕ℎ∗𝑃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑓(𝜕ℎ∗𝑏)+𝑓(𝜕𝑣∗𝑃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑓(𝜕𝑣∗𝑏)

𝑓(𝜕ℎ∗𝑃)2+𝑓(𝜕𝑣∗𝑃)2+𝛾
)   (20) 

     To determine the kernel k, we built an image pyramid using a fine technique. The transitional 
latent image from the preceding finer level was used to set the variable k whenever a pyramid 

level is started. Each pyramid level has 10 repetitions between k and 𝑙  for the sake of this 
demonstration. Once a cycle is complete, we select an adjustment strategy to use. Algorithm 3 
depicts the primary procedures required in obtaining the blur kernel k at a single pyramid level. 
In this research, we can extract the final latent image by using (2).The algorithm for kernel 
estimation is as follows 

Algorithm 3: Image kernel Estimation 

Result: Updated Kernel k, latent image  𝑙 

Input: b 

Initialize k 

for j=0 to 20, do  

Estimate image by Algorithm 1 

Estimate kernel by equation (18) 

end 

EXPERIMENTAL RESULTS AND DISCUSSION 
     In this section, we have discussed the datasets used to obtain the results and the 
evaluation parameter selection is discussed for the evaluation of our method. After that, 
the results of our method are evaluated using these evaluation parameters and then they 
are shown and recorded.  

Dataset 

      To demonstrate the usefulness of the suggested method, results are collected for both real-
world and synthetic images using well-known evaluation parameters to demonstrate its 
effectiveness. For the synthetic dataset, we use Levin et al. dataset[9] and the other dataset is the 
Kohler et al. [10] dataset. The details of these datasets are given in the next sections. 

Evaluation Metrics 

     The PSNR, SSIM, and the time in seconds were used to evaluate the performance of the 
LoG-based approach, which are considered well-known evaluation parameters. We calculated 
PSNR using the following equation: 

𝑃𝑆𝑁𝑅 = 10. LOG10(
(MAX )2

𝑀. 𝑆. 𝐸
)                              (21) 
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     In (21) MAX shows maximum values present in the image and 𝑀. 𝑆. 𝐸 stands for mean squared 

error between clear image y and recovered image x. The formula for calculating 𝑀. 𝑆. 𝐸 is as 
follows: 

𝑀. 𝑆. 𝐸 =
1

𝑚×𝑛
∑ ∑ (𝑦 − 𝑥)2𝑛

𝑗=1
𝑚
𝑖=1                                (22) 

     In (22) 𝑚 × 𝑛 is the size of the clear image and recovered image, 𝑚 represents the number of 

rows, and 𝑛  shows the number of columns. The next evaluation parameter is the structural 
similarity index measure (SSIM), to calculate SSIM we use the following formula: 

SSIM =
(2𝜇𝑦𝜇𝑥 + 𝑐1)(2𝜎𝑦𝑥 + 𝑐2)

(𝜇𝑦
2 + 𝜇𝑥

2)(𝜎𝑦
2 + 𝜎𝑥

2 + 𝑐2)
                                  (23) 

     In (23) 𝜇𝑦, 𝜇𝑥 , 𝜎𝑦
2, 𝜎𝑥

2 𝑎𝑛𝑑 𝜎𝑦𝑥  represents means, variances, and covariance respectively. 

𝑐1 𝑎𝑛𝑑 𝑐2 represent constants. “x” and ‘y’ show recovered image and original image respectively. 

Performance evaluation on Synthetic Dataset 

     We chose the Levin et. al dataset. This dataset contains four images and each image contains 
eight different blur kernels. After convolution of kernel and images, we obtain 32 different 
images of different sizes. The size of the kernels varies from 3×3 to 27×27. This dataset includes 
ground truth images, ground truth kernels, and blurry images. For the benchmark image of this 

dataset, we used a kernel size of 27×27 and we set the value of  = 1000. The value of VARIES 
from 50 to 5000 for different images. We can see that our algorithm works efficiently on 
synthetic data. Figure 2 depicts a visual example from the test dataset in which, Pan et al. [11], 
Shan et al.[12], Krishnan et al. [13], Cho and Lee [14], and Zhong et al. [15] techniques fail to 
offer satisfactory kernel estimates. These approaches produced deblurred results with 
considerable blur residual. The proposed method, on the other hand, produces a better outcome 
with greater visual quality and a higher PSNR value. We also observed that the SSIM value of our 
proposed model is better than others, although the SSIM value of Levin et al. , Dong et al.[16] 
and Xu et al. [17] is also good but our method outperforms in this regard. The detailed 
comparison of this dataset is shown in Table 1. PSNR, SSIM and time in seconds are used as 
evaluation parameters. Our LoG based method outperforms previous methods in the terms of 
PSNR and SSIM values.  

 
Figure 2.  Deblurring Example from Levin et al. (a) Blurry Image (b) Shan et al. [12](c) Cho 
and Lee [14] (d) Xu and Jia [18] (e) Krishnan et al.  [13](f) Levin et al. [19] (g) Pan et al. [20] 

(h) Xu et al. [21] (i) Zhong et al. [22](j) Dong et al. [23] (k) Our Results 
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Table 1. Evaluation of Levin et al. Dataset 

Author References PSNR SSIM Time 

Shan et al. [12] 22.69 0.73 15.53 

Cho and Lee [14] 23.77 0.75 2.41 

Xu and Jia [24] 27.45 0.85 2.82 

Krishnan et al. [13] 22.15 0.73 10.14 

Levin et al. [25] 26.46 0.82 80.59 

Pan et al. [11] 20.26 0.73 2.91 

Xu et al. [17] 27.18 0.86 2.93 

Zhong et al. [15] 20.48 0.73 12.61 

Dong et al. [16] 27.47 0.86 15.31 

Y. Guo et al. [26] 29.01 0.90 11.51 

C.Cai et al. [27] 29.83 0.90 19.31 

 Proposed Work 30.01 0.91 18.31 

Performance evaluation of real dataset 

     The proposed regularization method was also compared to state-of-the-art methods using 
real-world standard photos. The real-world photos lack ground truth, allowing them to be visually 
compared. We used techniques with their specified parameters to guarantee a fair comparison. 
We also utilized the Kohler et al. dataset. The dataset contained four images and each image 
contained twelve different blur kernels. After convolution of kernel and images, we obtained 48 
different images of different sizes.  
     The visual findings for the Mukta image, as well as the kernels obtained by Michaeli et al. [28], 
Zhong et al. [15], Zuo et al. [29], Krishnan et al. [13], Jinsha et al. [30], and our LoG based, are 
shown in Figure 3. When compared to kernels restored by the other approaches, the 
visualizations of the restored kernels demonstrate the efficiency of LoG. LoG-based kernel is less 
sparse, and neighboring pixels are now more compressed, which can aid in the recovery of a 
good picture during the pre-processing step while retaining texture. Zuo et al. [29] recovered an 
image with a high ringing effect and enhanced the contrast of the image. Jinsha et al. [30] 
recovered an image that was over-smoothed because the tiny texture was ignored during image 
recovery. The image recovered by LoG was enhanced and it has good contouring effects. 
 

 

Figure 3. Results of Mukta Image with estimated kernels (a) Krishnan et al. [13](b) Zhong et 
al.[15] (c) Michaeli et al. [28](d) Jinsha et al. [30](e) Zuo et al.[29] (f) LoG Based 
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     Figure 4 depicts a visual example from Köhler et al.’s dataset [10]. The proposed method 
produces images that are smooth and free of ringing artifacts. We compared the results with 
Fergus et al. [20], Cho and Lee [14], Shan et al. [12], Hirsch et al. [31], Krishnan et al. [13], Xu 
and Jia [24], Xu et al. [17], Whyte et al. [32] and Dong et al. [16]. We calculated the PSNR value 
of this dataset. The PSNR value of our LoG based method was higher than others. The results 
obtained by our method are more clear.  
Small local textures are preserved. The average values of PSNR and SSIM of Kohler et al.’s 
dataset are shown below. 

 

Figure4. (a) Blurred (b) Fergus et al.  [20](c) Cho and Lee [14](d) Shan et al. [12] (e) Hirsch 
et al. [31] (f) Krishnan et al. [13] (g) Xu and Jia[24] (h) Xu et al. [17] (i) Whyte et al. [32] (j) 

Dong et al. [16] (k)  

Table II: Evaluation of Kohler et al. Dataset 

Author PSNR 

Fergus et al. 24.55 

Cho and Lee 33.55 

Shan et al. 28.17 

Hirsch et al. 33.12 

Krishnan et al. 25.84 

Xu and jia 32.44 

Xu et al. 35.17 

Whyte et al. 34.18 

Dong et al. 35.47 

Our 38.80 

CONCLUSION 
     A Laplacian of Gaussian prior-based blind deblurring method is presented in this more 
efficient study. When attempting to determine the transitional latent, this approach is frequently 
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utilized. This non-convex optimal problem that results from such a priori information is 
addressed by the ISTA operator. While other approaches may offer a wider range of options, 
using an operator provides a higher degree of precision. It is concluded that LoG can detect the 
edges and sharpens them. It also produces fewer ringing effects and it preserves the small local 
textures. It has been proven that our approach can effectively approximate the kernel and the 
image. 
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