
                                  International Journal of Innovations in Science & Technology_ 

June 2022 | Vol 4| Issue 2                                                                                                       Page | 499
                                                                                                                                             

 

 

 

Analysis of Code Vulnerabilities in Repositories of 
GitHub and RosettaCode: A Comparative Study 

Original 
Article 

Abdul Malik 1,2, Muhammad Shumail Naveed 1 
1 Department of Computer Science & Information Technology, University of Balochistan, Quetta, 

Pakistan.  
2 Department of Computer Science, Government Postgraduate Science College Quetta, Pakistan. 
* Correspondence: Abdul Malik: amalikgspc@gmail.com  
Citation | Malik. A, Naveed. S. M, “Analysis of Code Vulnerabilities in Repositories of 
GitHub and RosettaCode: A Comparative Study”. International Journal of Innovations in 
Science and Technology. Vol 4, Issue 2, 2022, pp: 499-511 
Received | May 19, 2022; Revised | June 01, 2022; Accepted | June 10, 2022; Published 
| June 20, 2022. 
________________________________________________________________________  

pen-source code hosted online at programming portals is present in 99% of 

commercial software and is common practice among developers for rapid 

prototyping and cost-effective development. However, research reports the 

presence of vulnerabilities, which result in catastrophic security compromise, and the 

individual, organization, and even national secrecy are all victims of this circumstance. One of 

the frustrating aspects of vulnerabilities is that vulnerabilities manifest themselves in hidden 

ways that software developers are unaware of. One of the most critical tasks in ensuring 

software security is vulnerability detection, which jeopardizes core security concepts like 

integrity, authenticity, and availability. This study aims to explore security-related 

vulnerabilities in programming languages such as C, C++, and Java and present the disparities 

between them hosted at popular code repositories. To attain this purpose, 708 programs were 

examined by severity-based guidelines. A total of 1371 vulnerable codes were identified, of 

which 327 in C, 51 in C++, and 993 in Java. Statistical analysis also indicated a substantial 

difference between them, as there is ample evidence that the Kruskal-Wallis H-test p-value 

(.000) is below the 0.05 significance level. The Mann-Whitney Test mean rank for GitHub 

(Mean-rank=676.05) and Rosettacode (Mean-rank=608.64) are also different. The novelty of 

this article is to identify security vulnerabilities and grasp the nature severity of vulnerability in 

popular code repositories. This study eventually manifests a guideline for choosing a secure 

programming language as a successful testing technique that targets vulnerabilities more liable 

to breaching security. 

Keywords: Software, Vulnerability, Software Security, Programming Portal, Vulnerability 

Severity.   
Acknowledgment.  

I would like to give a sincere 
thanks to GitHub, and 
Rosettacode, for freely providing 
source code and SourceForge for 
the Statistical Analysis tool Yasca 
setup. 
Project details. Nil 
 

CONFLICT OF INTEREST: 
The author(s) declare that the 
publication of this article has no 
conflict of interest. 
 

Author’s Contribution 
Conceptualization, methodology, 
visualization, and data curation by 
Malik A. Validation, statistical 
analysis, and supervision by 
Naveed S. All authors have read 
and agreed to the published 
version of the manuscript. 

  
 

 

 
   

 
 

 

 

O 

ZH
Typewriter
DOI:https://doi.org/10.33411/IJIST/2022040219

ZH
Placed Image

https://crossmark.crossref.org/dialog/?doi=10.33411/IJIST/2022040219


                                  International Journal of Innovations in Science & Technology_ 

June 2022 | Vol 4| Issue 2                                                                                                       Page | 500
                                                                                                                                             

 

INTRODUCTION 

According to different researchers, software consists of specialized formats, i.e., data 

structures that allow software developers to manipulate data frequently, as well as a set of 

electronic instructions executed on a machine. The software is also an accompanying 

document that explains how to set it up, use and run it [1]–[4]. Software products are employed 

in most aspects of an individual’s life, [5]. A programming language is a tool for creating 

computer-coded instructions [6]. Code repositories provide a centralized location for hosting 

code and are a viable, cost-saving solution for software developers and the scientific 

community to cooperate. It is one of the guiding principles for rapid prototyping of software 

[7]. The open-source code is included in 99% of the commercial software [8]. Although open-

source software (OSS) is widely used in software applications, it is seldom examined, and 

corporations have no concept of what they don’t know about open source, as Luszcz [9] 

pointed out, illustrating the necessity to address that space. Many vulnerabilities have been 

reported in code that causes catastrophic software security problems [10]–[13]. In a decisive 

study, Reiss  [14] deliberated those insecure applications are not only a threat to an individual 

but also a severe threat to people, organizations, and even national security at all levels. Three 

fundamental principles for security are Confidentiality, Integrity, and Availability [15], [16]. 

Common Vulnerabilities and Exposures (CVE) describes security vulnerabilities as severe 

issues for three of them. CVE defined “Vulnerabilities” as severe weaknesses in software and 

hardware components that an attacker can exploit to cause detrimental effects on the 

applications or its environment’s security, confidentiality, integrity, or availability. 

Vulnerabilities, according to Russell et al.  [17] and Zhou et al.  [18], instigate by insecure code. 

Luszcz [9] and Brazhuk  [19] stress in their work that software security is a crucial problem, 

and even a single vulnerability may have a significant impact on software security. However, 

only one of the software vulnerabilities might result in a successful destructive attack 

implementation. However, not all vulnerabilities have the same likelihood of exploitation, 

security issues, or maintenance requirements. Vulnerabilities have varying risk levels [20], and 

are categorized as critical, high, medium, low, or none. One of the frustrating aspects of 

security-sensitive bugs or vulnerabilities is that vulnerabilities manifest themselves in hidden 

ways that software developers are unaware of [17]. One of the crucial steps for assuring 

software security is the detection of vulnerabilities in the program's code before deploying the 

application product [12]. This study would comparatively analyze vulnerabilities in C++, C, 

and Java, which are available on GitHub and Rosettacode. The TIOBE index, which assesses 

the popularity of programming languages, puts C++ fourth, C second, and Java third [21], 

although the C, C++, and Java languages have severe Common Weakness 

Enumeration(CWE) type vulnerabilities, 87 in C++ [22], 83 in C [23], and 78 in Java [24] out 

of 924. This study's novelty would serve as a guideline for software developers to select a 

secure programming language and a portal in terms of vulnerabilities. This also familiarizes 

the code quality in open-source programming code hosted in code repositories by assessing 

the probable vulnerabilities and their severity risk scores. This study's ultimate objective would 

be to facilitate the development of secure software less likely to cause security breaches. 

 



                                  International Journal of Innovations in Science & Technology_ 

June 2022 | Vol 4| Issue 2                                                                                                       Page | 501
                                                                                                                                             

 

 

LITERATURE REVIEW 

          Security vulnerabilities are critical issues in open source code which is 99% in 

commercial software, and can undermine the development of software security [8], [10], [11], 

[25] Several vulnerabilities have been sorted in code that cause catastrophic software security 

issues [11], [12]. Furthermore, Zhao et al. [26] recognized vulnerabilities as inescapable security 

risks in open source code, one of four common evaluation perspective indicators: quality, 

reliability, maturity, and vulnerability. The National Vulnerability Database [27] publishes 

vulnerabilities that have been recognized as common vulnerabilities and include an 

identification number, at least one public reference, and a comprehensive explanation. It’s 

getting worse, with 173267 vulnerabilities reported to date. A significant research effort has 

been devised to mitigate security issues of software systems as follows. In his groundbreaking 

research, Zhang et al.  [28] reported the presence of vulnerabilities in code snippets hosted on 

Stack Overflow, a website that contains millions of solutions to programmer difficulties. 

Recklessly sharing such code snippets can expose the application or its environment to security 

risks. The sample size of 646,716 code snippets of the programming languages C/C++ was 

scanned for weaknesses, and 12998 Common Weakness Enumeration instances were 

identified, with 32 code weaknesses. The six most frequently occurring vulnerabilities among 

them are provided here CWE-908(54.2%), CWE-401(14%), CWE775 (5.2%), CWE-

562(4.7%), CWE-119(4%) CWE-758(3.7%).Al-Boghdady, Wassif, and El-Ramly [29] also 

examined widely used open-source Internet of Things (IoT) OSs written in C/C++ such as 

RIOT, Contiki, FreeRTOS, and Amazon for vulnerabilities and scanned them with 

computational analysis tools Cppcheck, Flawfinder, and Rough Auditing Tool for 

Security(RATS). The results were disparate. The most prevalent vulnerabilities detected by 

computational analysis tools were: (CWE-119! /CWE-120), (CWE-120), and (CWE-126) with 

Flawfinder, (CWE-563, CWE-561, and CWE-398) with Cppcheck, and (CWE134, CWE-120, 

and CWE-119) with RATS in the IoT OS source code. These security vulnerabilities can cause 

security breaches as a consequence. Verdi et al. [11] examined the C++ security issue in 

crowded source code by analyzing the vulnerabilities in snippets of reusable source code 

posted on stack overflow and their spread in the program's repository from two perspectives: 

prevalence and propagation. Consequently, 69 vulnerable code snippets were reported among 

72,483 examined code snippets in at least one project hosted on an online repository. These 

69 vulnerable code snippets were shared in the same repository in 2859 projects. In this regard, 

Alnaeli et al.  [30] undertook research to expose IoT software systems to the use of vulnerable 

source code and insecure functions in the programming languages C/C++, which can 

constitute a catastrophic security concern. Empirically, analysis was conducted on three open-

source software: TinyOS, openWSN, and Contiki, with 1,000,981 lines of code. The presence 

of vulnerabilities and unsafe function usage was reported with a figure of 772 in TinyOS, 220 

in openWSN, and 1,859 in Contiki. Furthermore, the research also reported that the IoT is 

growing with over a million devices and runs with millions of open-source software. The study 

also evident the security issues in open-source software, which causes security compromise 

and becomes a severe concern for stack holders, including individuals and groups. Vulnerable 



                                  International Journal of Innovations in Science & Technology_ 

June 2022 | Vol 4| Issue 2                                                                                                       Page | 502
                                                                                                                                             

 

code is the most typical source of security problems [31]–[33]. In their study, Kaur and Nayyar  

[10] compared static code analysis methods for exposing vulnerabilities in Java and C/C++ 

programs, emphasizing the significance of vulnerability identification in guaranteeing software 

security, such as integrity, authenticity, and availability. They also favored vulnerability 

identification in the initial stages because it makes fixing easier for developers. They used static 

analysis tools such as FlawFinder, RATS, and cppcheck to scan Java and the C/C++ 

programming languages for certain types of vulnerabilities and report the presence of those 

chosen for investigation. Furthermore, they expressed concern that some vulnerabilities might 

go undetected without cutting-edge tools. In this study, Zahedi et al.  [34] asserted that system 

connectivity to the internet raises the need for software security. Security vulnerabilities are 

recognized as flaws that allow attackers with malicious intent to breach system security. They 

studied the GitHub security concerns and discovered that around 2.98% are security 

vulnerabilities, with a significant weightage on encryption and identity management. The 

primary source of the investigation was contained within a single GitHub repository. 

          The foregoing literature shows that most past software vulnerability detection research 

has relied on reviewing a single repository. Concerning the comparative analysis of languages 

in terms of vulnerabilities, the datasets enclosed within the study were not applications of 

standard open-source code and are no longer of general view but instead were narrowed to 

addressing vulnerabilities in specific application domains. Another significant weakness of 

serious concern in the previous study was that it focused on the efficiency of a static analysis 

tool rather than the presence of security vulnerabilities in code. Furthermore, the fundamental 

elements that contribute to the formation of programs and cause various security 

vulnerabilities in programming languages have not been thoroughly investigated. 

Consequently, it may be deduced that previous studies did not contain adequate findings. This 

endeavor is probably geared toward mitigating the prevailing research gap by experimenting 

with the dataset of well-known programs and tasks from different study areas for various 

programming portals and languages. This research investigates the severity of vulnerabilities 

in code in more depth, and a comparative study is being undertaken to categorize 

programming portals and languages secure in the context of vulnerabilities. 

DESIGN AND METHOD 

          This study analyzes probable vulnerabilities in popular programming languages like C, 

C++, and Java, hosted on well-known programming portals like GitHub and Rosettacode. 

This endeavor would be accomplished by scanning many well-known computer programs 

from the aforementioned programming languages and portals. Furthermore, the vulnerabilities 

are evaluated severity-wise. As illustrated in Figure 1, this approach is organized into steps for 

pursuing the goal. In the first step, notable algorithms and tasks such as Universal Turing 

Machine, sorting algorithms like the bubble sort, selection sort, searching algorithms like linear 

search, and so on, which are used as contributing factors in software development, are included 

in the study. Furthermore, comparable algorithms are employed in this research, equivalent 

both in function and structure. And the sample of code extracted is from different disciplines 

43% for math, 2% for Graphics,6%String Manipulation, 32% for Data structure, 3% for 



                                  International Journal of Innovations in Science & Technology_ 

June 2022 | Vol 4| Issue 2                                                                                                       Page | 503
                                                                                                                                             

 

Routing, 3 % for Compression, 9%Encryption/Decryption, 8%Puzzle, and 12% are of the 

game. 

 
Figure 1. An Overview of the Research Approach 

          During the preprocessing, the extracted code repository is manually preprocessed as an 

updated dataset with the intent to equalize the task and make it appropriate for the static 

analyzer tool. The preprocessing activities comprise deleting extraneous source code from the 

file and integrating the remaining task source code from other files if the desired task is not 

completed in a file. Preprocessing also involves saving files with the required extension and 

comparing the outputs. The dataset is scanned for vulnerabilities using the computational 

analysis tool Yasca. Yasca is an open-source tool created in PHP in 2008–10 that scans source 

code for security vulnerabilities, code quality, performance, and compliance with best practices 

in various programming languages, including Python, Java, C/C++, and others. Each 

vulnerability detected by Yasca is assigned a risk level rating from 1 to 5, with 1,2,3,4,5, 

respectively, denoting Critical, High, Medium, Low, and Informational [35], [36]. 

          To analyze the relationship between vulnerability presence in programming portals and 

programming languages for statistical significance, the Mann-Whitney Test, Kolmogorov-

Smirnov Test, Wald-Wolfowitz Test, and Kruskal-Wallis H-test we conducted. The null and 

alternative hypotheses are verified or tested using statistical techniques to find their 

significance. The Null and alternative hypotheses might be formulated as follows: 

Null hypothesis (H0): In terms of vulnerabilities, code hosted in code repositories has no 
statistical difference. 
Alternative Hypothesis (H1): In terms of vulnerabilities, code hosted in code repositories 
has a statistical difference.                 
          The p-value is used to test the hypotheses. The p-value is a factor of hypothesis testing 

theory and may be used to determine whether to accept or reject the null hypothesis. After 

calculating the p-value, we compared it with the value of 0.05, a long tradition for rejecting or 

accepting the null hypothesis. A very small p-value indicates evidence against the null 

hypothesis, whereas a large p-value indicates evidence favoring the null hypothesis. 

RESULTS 

          The cumulative result of vulnerabilities identified in the code repositories GitHub and 

Rosettacode is shown in Table 1 and categorized by severity. The vulnerabilities discovered in 

the repositories differ in severity and programming portals. The RosettaCode repository has 

fewer vulnerabilities than GitHub.  



                                  International Journal of Innovations in Science & Technology_ 

June 2022 | Vol 4| Issue 2                                                                                                       Page | 504
                                                                                                                                             

 

Table 1. Vulnerabilities in Portals: A Comparative Analysis 

For more insight and comparison, Figure 2 depicts the vulnerabilities of varying severity for 
the aforementioned portals. The RosettaCode repository contains fewer security 
vulnerabilities than GitHub. The figure also demonstrates that vulnerabilities of informational 
severity are more prevalent. However, of all the vulnerabilities of critical severity are the least 
reported. There is a significant disparity between the number of vulnerabilities detected in 
portals and the severity. 

 
Figure 2. Portal Vulnerabilities Trends Severity Levels 

          Furthermore, vulnerabilities based on programming portals have been evaluated with 
the Mann-Whitney Test to gain some more insight into portal vulnerabilities. Table 2 shows 
the results of the test statistics. GitHub (Mean rank =676.05) has more vulnerabilities than 
Rosettacode (Mean rank =608.64). According to the Mann-Whitney test, this difference 
between programming portals and vulnerability is statistically significant.  

Table 2. Mann-Whitney test statistics for vulnerability disclosure on Programming Portal 

           Moreover, the Kolmogorov-Smirnov Test has analyzed the relationship between 
vulnerability presence and programming portals. The calculated value of the Kolmogorov-
Smirnov Test is 1.124, and the significance value is 0.159, which concluded that as far as the 
sampled programming corpus is concerned, there is no statistical difference between the 
Rosettacode and GitHub in terms of vulnerabilities.  

Programming    
Portal 

 Vulnerabilities Severity Total 

Critical High Warning Low Informational 

GitHub 2 24 60 96 799 981 

RosettaCode 8 2 46 20 314 390 

Total 10 26 106 116 1113 1371 

Vulnerabilities Frequency          Mean Rank 

Rosettacode  1113 608.64 

GitHub 116 676.05 



                                  International Journal of Innovations in Science & Technology_ 

June 2022 | Vol 4| Issue 2                                                                                                       Page | 505
                                                                                                                                             

 

          Another test, named the Wald-Wolfowitz Test, has also been used for more 
confirmation of analyzing the relationship between vulnerability presence and programming 
portals. Test statistics are shown in Table 3. The Minimum Possible Exact P-value is P1, 

min=.000 is less than 0.05, and the Maximum Possible exact P-value is P1, max=0.345 which is 
more significant than 0.05. So, following the decision rules of the Wald-Wolfowitz Test, there 
is no statistical difference between the Rosettacode and GitHub. 
Table 3. Wald-Wolfowitz Test statistics for vulnerability disclosure on Programming Portal 

The preliminary evaluation below examines vulnerabilities in the programming languages C, 

C++, and Java, and the result is displayed in Table 4. The vulnerabilities detected in 

repositories are different. In this analysis, Java has more vulnerabilities than any other language 

in this study, followed by the C language and C++. 

Table 4. Vulnerabilities in Languages: A Comparative Analysis 

Language 
  Vulnerabilities Severity 

Total 
Critical High Warning Low Informational 

C 10 1 92 48 176 327 

C++ 0 0 7 0 44 51 

Java 0 25 7 68 893 993 

Total 10 26 106 116 1113 1371 

         For more insight and comparison, Figure 3 depicts the vulnerabilities of varying severity 

in the C, C++, and Java programming languages. As the figure illustrates, Java has more 

vulnerabilities than any other language in this study, followed by the C language and C++. 

The figure also demonstrates that vulnerabilities of informational severity are more prevalent. 

However, of all the vulnerabilities of critical severity are the least reported. There is a 

significant disparity between the number of vulnerabilities detected in programming languages 

and the severity. 

Portal 
Code 

 Number of Runs Z Asymp. Sig. (1-tailed) 

Minimum Possible 3 -34.792 .000 

Maximum Possible 233 3.661 1.000 



                                  International Journal of Innovations in Science & Technology_ 

June 2022 | Vol 4| Issue 2                                                                                                       Page | 506
                                                                                                                                             

 

 

Figure 3. Language Vulnerabilities Trends Severity Levels 

          Moreover, the Kruskal-Wallis H-test has been used to analyze the relationship between 

vulnerability presence and programming language. The mean rank vulnerability score for the 

Kruskal-Wallis H test was 721.84 for C, 564.53 for C++, and 215.92 for Java, with Kruskal-

Wallis H = 290.336 and a p-value (.000). The result suggests a statistically significant difference 

in code vulnerabilities between different programming languages at a significance level of 0.05, 

as there is ample evidence that the p-value is less than 0.05. 

          Moreover, code repositories and programming languages have examined the security 

vulnerabilities. Figure 4 shows the visual representation of the vulnerabilities identified in the 

programming languages C, C++, and Java, and in the code repositories, GitHub and 

Rosettacode are varied. GitHub (Java), GitHub (C), and GitHub (C++) are more prone to 

vulnerabilities than their corresponding Rosettacode (Java), Rosettacode (C), and Rosettacode 

(C++) programming languages. Furthermore, GitHub (Java) has more vulnerabilities than 

Rosettacode (Java), followed by GitHub (c), which has more vulnerabilities than Rosettacode 

(c). There are also security vulnerabilities present in GitHub (C++) and Rosettacode (C++), 

but they are less prevalent than in GitHub (Java) and Rosettacode (Java). Additionally, just one 

vulnerability in Rosettacode (C++) has been detected. The accompanying Figure 4 

demonstrates that in comparison to the vulnerabilities in GitHub (Java, c, and C++) and 

Rosettacode (Java, C, and C++), the vulnerabilities in GitHub (Java) are higher than in any 

other language, followed by Rosettacode (Java), GitHub (C), Rosettacode (C), GitHub (C++), 

and Rosettacode (C++) lastly.  



                                  International Journal of Innovations in Science & Technology_ 

June 2022 | Vol 4| Issue 2                                                                                                       Page | 507
                                                                                                                                             

 

 

 

 

Figure 4. Language & Portal Vulnerabilities Trends Severity Levels 

In Figure 4, the disparity in vulnerability severity is also evident, with vulnerabilities of 

informational severity being reported more frequently, followed by Low, Warning, High, and 

Critical. 

DISCUSSION 

         Security vulnerabilities are one of the most frustrating aspects of computer security. 

Security vulnerabilities are severe software and hardware components weaknesses that 

constitute a danger to security, confidentiality, integrity, or availability when exploited. 

Vulnerabilities in software security have a catastrophic effect on software security. This study 

examined source code for popular programming languages such as C, C++, and Java hosted 

at two well-known repositories, GitHub and Rosettacode, in the context of security 

vulnerabilities under the umbrella of the Common Vulnerability Scoring System (severity-

wise). This study will serve as a guideline for software developers to select a programming 

language and a secure portal in terms of vulnerabilities. This also familiarizes the code quality 

accessible in languages at programming portals by assessing the varied levels of probable 

vulnerabilities and their severity. This study will facilitate the development of secure software 

that is probably less likely to breach fundamental security aspects like integrity, authenticity, 

and availability with the selection of a secure programming language, a reliable programming 

hosting 

portal, 

and 

appropriate source code. The well-known 118 comparable computer programs in C, C++, and 

Java hosted at Rosettacode and GitHub code repositories have been extracted to complete the 

research. The 708 programs are the dataset’s complete size. A tool like Yasca is used to scan 

the dataset. The vulnerabilities present in C, C++, and Java are 23.8512035%, 3.71991247%, 

and 72.428884%, respectively, out of the total vulnerabilities, and their percentage has 

significant disparity. The language-based vulnerabilities with tests like the Mann-Whitney also 

confirm the difference as statistically significant. The percentage difference between 



                                  International Journal of Innovations in Science & Technology_ 

June 2022 | Vol 4| Issue 2                                                                                                       Page | 508
                                                                                                                                             

 

vulnerabilities presents in the portals GitHub and Rosettacode is 43.11%, which is a significant 

disparity. The language-based vulnerabilities with tests like the Kruskal-Wallis tests also 

confirm the difference as statistically significant. 

          Further, the disparity is also evident in vulnerability severities, vulnerabilities with 

informational severity being reported more frequently. The vulnerabilities with warning and 

low severity being reported are significant figures, but critical and high severity have been 

reported in small numbers. This endeavor’s finding demonstrates that the presence of 

vulnerabilities differs depending on the programming portal and programming languages used. 

So, the most probable preventative technique to secure an application or its environment, 

including hardware and software, from security risks caused by repeating code is to examine 

both the programming language and the programming portal. 

          In the future, work on developing a cutting-edge tool and scanning code with other 

tools to uncover vulnerabilities missed by selected tools will be necessary. Furthermore, one 

downside of this study would be that it only considers the programming languages C, C++, 

and Java, with a statistically limited sample size. Another possible future aspect of the current 

work is adding new algorithms, languages, and repositories to explore the influence of 

vulnerabilities on software, which may change the study's findings. 

CONCLUSION 

          This endeavor explored and compared security vulnerabilities in the programming 

languages C, C++, and Java for well-known comparable computer algorithms posted on 

popular portals such as GitHub and Rosettacode. This research uncovered specific 

vulnerabilities present in the source code. GitHub (Java) is more prone to vulnerabilities, 

followed by Rosettacode (Java), GitHub (C), Rosettacode (C), GitHub (C++), and only one 

vulnerability in Rosettacode (C++). The disparity is also evident in vulnerability severities, 

vulnerabilities with informational severity being reported more frequently. The vulnerabilities 

with warning and low severity being reported are significant figures, but critical and high 

severity have been reported in small numbers. The Rosettacode (C++) is probably more secure 

regarding vulnerabilities for secure software development. This study probably manifests a 

guideline for choosing a secure programming language and a successful approach for testing 

that targets vulnerabilities that are more liable to compromise security. 

REFERENCES 
[1] “Software Engineering | Introduction to Software Engineering - GeeksforGeeks.” 

https://www.geeksforgeeks.org/software-engineering-introduction-to-software-
engineering/ (accessed Jun. 21, 2022). 

[2]  roger s Pressman and B. Maxim, “Sofware Enginering : A Practitioner’s Approacch,” 
p. 978, 2014. 

[3] I. R. Imran, “A Study of Awareness and Practices in Pakistan’s Software Industry 
towards DevOps Readiness,” no. November 2021, 2022. 

[4] “Requirements decision-making as a process of Argumentation: A Google Maps Case 
Study with Goal Model,” vol. 3, pp. 15–33, 2021. 

[5] J. P. Miguel, D. Mauricio, and G. Rodríguez, “A Review of Software Quality Models 
for the Evaluation of Software Products,” Int. J. Softw. Eng. Appl., vol. 5, no. 6, pp. 



                                  International Journal of Innovations in Science & Technology_ 

June 2022 | Vol 4| Issue 2                                                                                                       Page | 509
                                                                                                                                             

 

31–53, Nov. 2014, doi: 10.5121/IJSEA.2014.5603. 
[6] “Computer Programming Basics: Introduction to Computer Programming.” 

https://edu.gcfglobal.org/en/computer-programming-basics/introduction-to-
computer-programming/1/ (accessed Jun. 21, 2022). 

[7] Y. Zhang et al., “H I G IT C LASS : Keyword-Driven Hierarchical Classification of 
GitHub Repositories.” 

[8] Synopsys, “Open Source Security and Risk Analysis Report,” pp. 1–29, 2021. 
[9] J. Luszcz, “Apache Struts 2: how technical and development gaps caused the Equifax 

Breach,” Netw. Secur., vol. 2018, no. 1, pp. 5–8, Jan. 2018, doi: 10.1016/S1353-
4858(18)30005-9. 

[10] M. Papamichail, T. Diamantopoulos, and A. Symeonidis, “User-Perceived Source 
Code Quality Estimation Based on Static Analysis Metrics,” Proc. - 2016 IEEE Int. 
Conf. Softw. Qual. Reliab. Secur. QRS 2016, pp. 100–107, Oct. 2016, doi: 
10.1109/QRS.2016.22. 

[11] M. Verdi, A. Sami, J. Akhondali, F. Khomh, G. Uddin, and A. K. Motlagh, “An 
Empirical Study of C++ Vulnerabilities in Crowd-Sourced Code Examples,” IEEE 
Trans. Softw. Eng., vol. 48, no. 5, pp. 1497–1514, Oct. 2019, doi: 
10.1109/tse.2020.3023664. 

[12] A. Kaur and R. Nayyar, “A Comparative Study of Static Code Analysis tools for 
Vulnerability Detection in C/C++ and JAVA Source Code,” Procedia Comput. Sci., vol. 
171, pp. 2023–2029, Jan. 2020, doi: 10.1016/J.PROCS.2020.04.217. 

[13] “A Smart Contract Approach in Pakistan Using Blockchain for Land Management,” 
vol. 4, no. 2, pp. 425–435, 2022. 

[14] S. P. Reiss, “Continuous Flow Analysis to Detect Security Problems,” arXiv, no. July, 
2019. 

[15] L. Stosic and D. Velickovic, “Computer security and security technologies,” J. Process 
Manag. New Technol., vol. 1, no. 1, pp. 14–19, 2013, doi: 10.5937/jpmnt1301014s. 

[16] F. Bukhari et al., “Quack Finder: A Probabilistic Approach,” vol. 4, no. 2, 2022. 
[17] J. A. Harer et al., “Automated software vulnerability detection with machine learning,” 

no. October, 2018, [Online]. Available: http://arxiv.org/abs/1803.04497. 
[18] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective Vulnerability 

Identification by Learning Comprehensive Program Semantics via Graph Neural 
Networks,” Adv. Neural Inf. Process. Syst., vol. 32, Sep. 2019, doi: 
10.48550/arxiv.1909.03496. 

[19] A. Brazhuk, “Semantic model of attacks and vulnerabilities based on CAPEC and 
CWE dictionaries,” Int. J. Open Inf. Technol., vol. 7, no. 3, pp. 38–41, 2019. 

[20] “Common Vulnerability Scoring System SIG.” https://www.first.org/cvss/ (accessed 
Jun. 22, 2022). 

[21] “TIOBE Index - TIOBE.” https://www.tiobe.com/tiobe-index/ (accessed Jun. 22, 
2022). 

[22] “CWE - CWE-659: Weaknesses in Software Written in C++ (4.7).” 
https://cwe.mitre.org/data/definitions/659.html (accessed Jun. 22, 2022). 

[23] “CWE - CWE-658: Weaknesses in Software Written in C (4.7).” 
https://cwe.mitre.org/data/definitions/658.html (accessed Jun. 22, 2022). 

[24] “CWE - CWE-660: Weaknesses in Software Written in Java (4.7).” 



                                  International Journal of Innovations in Science & Technology_ 

June 2022 | Vol 4| Issue 2                                                                                                       Page | 510
                                                                                                                                             

 

https://cwe.mitre.org/data/definitions/660.html (accessed Jun. 22, 2022). 
[25] M. A. Arshed, S. Mumtaz, O. Riaz, W. Sharif, and S. Abdullah, “A Deep Learning 

Framework for Multi-Drug Side Effects Prediction with Drug Chemical 
Substructure,” Int. J. Innov. Sci. Technol., vol. 4, no. 1, pp. 19–31, 2022. 

[26] Y. Zhao, R. Liang, X. Chen, and J. Zou, “Evaluation indicators for open-source 
software: a review,” Cybersecurity, vol. 4, no. 1, pp. 1–24, Dec. 2021, doi: 
10.1186/S42400-021-00084-8/FIGURES/3. 

[27] “CVE - CVE.” https://cve.mitre.org/ (accessed Jun. 22, 2022). 
[28] H. Zhang, S. Wang, H. Li, T. H. P. Chen, and A. E. Hassan, “A Study of C/C++ 

Code Weaknesses on Stack Overflow,” IEEE Trans. Softw. Eng., 2021, doi: 
10.1109/TSE.2021.3058985. 

[29] A. Al‐boghdady, K. Wassif, and M. El‐ramly, “The Presence, Trends, and Causes of 
Security Vulnerabilities in Operating Systems of IoT’s Low-End Devices,” Sensors 
2021, Vol. 21, Page 2329, vol. 21, no. 7, p. 2329, Mar. 2021, doi: 10.3390/S21072329. 

[30] S. M. Alnaeli, M. Sarnowski, M. S. Aman, A. Abdelgawad, and K. Yelamarthi, 
“Vulnerable C/C++ code usage in IoT software systems,” 2016 IEEE 3rd World 
Forum Internet Things, WF-IoT 2016, no. February 2019, pp. 348–352, 2017, doi: 
10.1109/WF-IoT.2016.7845497. 

[31] C. Kolias, A. Stavrou, J. Voas, … I. B.-I. S. &, and  undefined 2016, “Learning 
internet-of-things security&quot; hands-on&quot;,” Ieeexplore.Ieee.Org, [Online]. 
Available: https://ieeexplore.ieee.org/abstract/document/7397713/. 

[32] A. M. Gamundani, “An impact review on internet of things attacks,” Proc. 2015 Int. 
Conf. Emerg. Trends Networks Comput. Commun. ETNCC 2015, pp. 114–118, Aug. 2015, 
doi: 10.1109/ETNCC.2015.7184819. 

[33] R. K. McLean, “Comparing static security analysis tools using open source software,” 
Proc. 2012 IEEE 6th Int. Conf. Softw. Secur. Reliab. Companion, SERE-C 2012, pp. 68–74, 
2012, doi: 10.1109/SERE-C.2012.16. 

[34] M. Zahedi, M. A. Babar, and C. Treude, “An empirical study of security issues posted 
in open source projects,” Proc. Annu. Hawaii Int. Conf. Syst. Sci., vol. 2018-Janua, pp. 
5504–5513, 2018, doi: 10.24251/hicss.2018.686. 

[35] C. Scripting, “A nalysis Tools A gainst Cross-site Scripting V ulnerabilities 

keywords :,” pp. 125–142, 2021. 
[36] “Yasca by scovetta.” http://scovetta.github.io/yasca/ (accessed Jun. 22, 2022). 
 

 

 

 

Copyright © by authors and 50Sea. This work is licensed under 
Creative Commons Attribution 4.0 International License.  

 

 




