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 disaster is an unforeseen calamity that causes damage to property or brings about a 
loss of human life. Quick response and rapid distribution of vital relief items into the 
affected region could save precious lives. In this regard, disaster management comes 

into play, which is highly dependent on the topography of the disaster-hit area. If the disaster-
hit area has little or no road connectivity, the use of drones in such areas becomes essential 
for the delivery of health packages. Since the battery capacity of the drone is limited, there is 
a need of charging stations that should be transported using road infrastructure and pre-
installed in disaster-prone areas, as access to these areas may be denied once the disaster hits. 
In this article, a simulation model was used to optimize the number and location of drone 
charging stations for deployment in a disaster-prone area in the pre-disaster scenario, aiming 
at the distribution of relief items to disaster-hit areas in the post-disaster scenario. We consider 
the relative priority of locations where a preference is given to the locations that have higher 
priority levels. An optimal number of charging stations and optimal routes have also been 
determined by using our optimization model. To illustrate the use of our model, numerical 
examples have been simulated for different sizes of the disaster-hit area and the number of 
targets. In our numerical simulation, it was observed that the drone's maximum distance 
capacity is the key factor in determining the optimal grid size, which directly correlates to the 
number of charging stations. 
Keywords: Drone Charging Stations, Disaster Preparedness, and Response, Drone Path 
Planning, Energy Optimization, Drone Recharging   
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Introduction 
Recent disasters have caused significant economic and human losses, such as 

earthquakes in Iran (2003, 2017) and Chile (2011, 2015), and tsunamis in Japan (2011) [1]. 
There is a high rate of fatality that results from a shortage of relief items following a disaster 
[2]. In such situations, quick response and rapid distribution of vital relief items into affected 
regions could prevent suffering and life loss. Relief items consist of the essential requirements 
of the affected people, such as food, water, tent, clothing, etc. The main challenges of relief 
items distribution are associated with means of transport and transport infrastructure. 
Humanitarian aid agencies are often confronted with poor, inexistent, or destroyed road 
infrastructure in disaster-hit areas. Road networks may be disrupted due to flooding, blockade, 
bridge collapses, and debris [3]. In these situations, unmanned aerial vehicles drones can 
provide solutions to the problems associated with the distribution of relief items.  

Drones have many applications, but they also come up with some limitations. The 
limited battery capacity of the drones puts a limit on the maximum distance that a drone can 
travel. There is a need for charging stations, which can be used by the drones to recharge the 
battery, as the battery capacity of the drone is limited. The charging stations should be 
transported using road infrastructure and pre-installed in the disaster-prone area, as access may 
be denied once it is hit with disaster. In the post-disaster phase, the already-installed charging 
stations can then be used by drones to recharge their batteries.   

In the literature, we find several studies that address the problem of distributing relief 
items in a disaster setting. Macias [4] presented an endogenous stochastic vehicle routing 
problem model, in which a drone provides information to the ground vehicle for the 
distribution of relief items. The location of depot facilities is also crucial for the efficient flow 
of relief items. In this regard, different models have been proposed. Maghfiroh [5] proposed 
a multimodal relief distribution model that determined the optimal locations of depots. 
Chowdhury [6] presented a continuous approximation model to determine the optimal depot 
locations. Wei [7] proposed an integrated-location routing problem for depot selection and 
vehicle assignment. Wei [7] proposed an integrated-location routing problem for depot 
selection and vehicle assignment. The models proposed by Moshref-javadi and Lee [8], Wei 
[7], and Davoodi and Goli [9] examine the simultaneous Location routing problems for supply 
distribution operations. Some studies in the literature focus on multiple sources of 
transportation for relief distribution. Ertem [10] concluded that the use of multimodal and 
intermodal transportation could be alternatives if relief distribution cannot be accomplished 
using a single infeasible mode.  

It is essential to determine the type, number, and location of the demand areas for 
timely delivery of relief supplies. In this regard, Sebatli [11] presented a simulation-based 
approach to determine the demand of disaster-hit areas and appropriately assign depot 
locations. Faiz [12] presented a two-echelon vehicle routing computational framework. In this 
work, a hotspot drone captured the demand by providing communication capabilities to the 
disaster-hit area, and a delivery drone satisfied the demand. Rivera-Royero [13] proposed a 
rolling horizon methodology that considered dynamic parameters, such as demand quantity, 
capacities of drones, and demand priorities, for the distribution of relief items by including 
relief goods. This methodology also included assembling activities before the delivery of items. 
Lu [14] developed a real-time relief distribution model for disaster response that includes a 
demand and time estimator as well as a module for solving optimal distribution flows. 

In literature, we find studies that consider factors such as the state of the road, which 
affects the delivery time. Hu [15] proposed a multi-stage stochastic programming model for 
disaster relief distribution that considered multiple vehicle types and the state of the road 
network. Sabouhi [16] considered the expected arrival time of relief vehicles to the disaster-hit 
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areas keeping into consideration the disruptions caused due to disasters. Baskaya [17] used 
different route distances between centers and affected locations to reveal the disruption levels 
of the road network. Moreno [18], and Ferrer [19] used binary variables to describe the state 
of arcs (road paths) in the relief distribution problems. Penna [20] recently used the concept 
of rich vehicle routing and considered accessibility constraints that allowed only compatible 
vehicles to serve particular routes owing to road blockage or geographical conditions. Some 
studies in the literature discuss the effects of a drone's flight-related parameters. Kim [21] 
presented a stochastic modeling framework to determine the locations of drone facilities and 
transport capacities of drones for effectively handling the disaster. Baharmand [22] proposed 
a location-allocation model that considered the capacity of facilities and vehicle fleets and 
enabled decision-makers to determine trade-offs between response time and logistics costs. 
Rottondi [23] explored the joint planning of multitasking missions using a fleet of UAVs that 
were equipped with a standard set of accessories/tools, which enabled heterogeneous tasks. 
 For long-distance flying, drones often need to charge their battery at battery-charging 
stations because of their limited battery capacity. In the literature, we find studies that have 
focused on the deployment of charging stations to address the issue of the limited flight time 
of drones. Myounggyu Won [24] addressed the problem of deploying charging stations that 
maximizes the system performance, specifically concentrating on generating optimal UAV 
trajectories while minimizing the number of deployed charging stations. Hailong Huang [25], 
considered the approach of deploying charging stations and collaborating with public 
transportation vehicles. Yujie Qin [26] [27] used tools from queuing theory and stochastic 
geometry to study the influence of each of the charging station's limited capacity and spatial 
density on the performance of a drone-enabled wireless network. Yujie Qin [28] investigated 
the possibility and performance enhancement of the deployment of renewable energy (RE) 
charging stations. The authors used simulation results to demonstrate that RE charging 
stations can be a possible solution to address the limited onboard battery of UAVs in rural 
areas. Xiaoshan Lin [29] considered persistent (long-horizon) surveillance over an 
environment by using energy-constrained unmanned aerial vehicles (UAVs), which are 
supported by unmanned ground vehicles (UGVs) serving as mobile charging stations. The 
goal is to periodically visit a set of monitoring points by the UAVs while minimizing the 
maximum time between consecutive visits to any of those points. Yujie Qin [30] studied the 
performance of a UAV-enabled cellular network while capturing the influence of the spatial 
distribution of the charging stations. In particular, the author used tools from stochastic 
geometry to derive the coverage probability of a UAV-enabled cellular network as a function 
of the battery size, the density of the charging stations, and the time required for 
recharging/replacing the battery. 

The work proposed in [31] is the most relevant to our work. We have used this work 
to validate our approach. Huang H and Savkin A [31] proposed a model to investigate the 
deployment of several charging stations to cover the customers in an urban demand area. In 
this model, the location coordinates of the target areas are already known. The charging 
stations covering no or fewer target locations are removed. Therefore, some areas are not 
reachable by drone. Our study aims to develop a mathematical model and use existing 
techniques to optimize drone delivery of relief items to disaster-hit areas considering the 
technical specifications of UAVs/drones. The proposed model considers drone energy 
consumption as a function of the payload and Euclidean distance. In our proposed model, the 
target locations are unknown, so we performed our simulation using random target locations. 
In this paper, we present a novel optimization model to optimize the location and number of 
charging stations for the pre-disaster phase. The relative priority of locations is attributed and 
a preference is given to the disaster-hit area with higher priority levels. The routes of drones 
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are optimized for the post-disaster phase. Figure 1 shows the step-by-step flow of study 
diagram for our research. 

 
Figure 1. Flow of study diagram for our research 

The remainder of this paper is organized as follows. In Section II, the cost function and 
constraints are defined to build the optimization model. Section III presents the methods used 
for clustering, drone allocation to the clusters, grouping, and path planning. In Section IV, the 
simulation results of numerical examples are discussed. A short discussion on future research 
concludes the paper. 
Problem Formulation 

In this section, we have discussed all the parameters of our model. Let us say we have 
a set of target/disaster-hit locations Ť ={T1, T2…… TM} and a set of drone charging stations 
Ř={R1, R2, R3,….RC}, where M and C are the numbers of target/disaster-hit locations and 
drone charging stations, respectively. Let the set of base stations Ή={H} be a singleton set. 
Y = Ť   Ř   Ή is the set of all locations in the system. We assume that the target locations 
are of low-, medium-, and high-priority categories. K is the number of clusters into which the 
target locations are divided. N is the total number of drones. We have selected the Amazon 
Prime Air drone for our study [32]. Let S be the maximum distance that this drone can cover 
with a maximum payload weight and maximum battery capacity. We assume that the payload 
capacity of the drone is five packages, each with a weight equal to 0.46 kg. The maximum 
payload weight that the selected drone can carry is 2.3 kg. 

We assume that the demand of every target location is c=1. Therefore, a drone can 
deliver relief packages to five target locations in one route.  
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Let's discuss a scenario in which a drone follows two different routes for the same target 
locations given in Fig. 2(a) and (b). 

Let G, the grid size, be the distance between adjacent drone charging stations. The 
number of charging stations in a defined area depends on the value of the grid size G. For a 
larger value of G, we have fewer charging stations in the defined area and vice versa. 

 
(a) 

 
(b) 

Figure 2. Proposed layout of two different drone routes for the same targets of (a) four 
charging stations and (b) nine charging stations 

In Figure 2(a), there are four charging stations. The dotted line shows the shortest path 
(displacement) from target T4 to target T5. Suppose the drone does not have enough energy to 
reach T5 directly from T4. It will need to visit a nearby charging station to recharge its battery; 
therefore, it covers an off-track distance, as shown by the solid line in Figure 2(a). In Figure 
2(b), a grid of nine charging stations is shown. In this scenario, the drone travels over a shorter 
off-track distance to reach the charging station from target location T4. When the charging 
stations are fewer in number, there is a higher probability that the drone travels a longer off-
track distance and vice versa.  
Cost Function 

As discussed before, there is an inverse relationship between the number of charging 
stations and the distance traveled by the drone. The objective of our model is to minimize 
both the number of charging stations and the total traveled distance.  
The cost function is defined as follows:    

min(10C+D)                 (1) 
where C is the number of charging stations, and D is the total distance. We have 

assumed that the cost of traveling a distance of 10 km is equal to the cost of installing one 
drone charging station.  
Constraints 
Degree Constraints 

Let Ή be the singleton set of the base stations. Ť is a set of target locations, Ř is the 
set of charging stations, xij is the number of times a drone travels from location i to j, and Y is 
the set of all locations in the system. Degree constraints are given as follows: 

We assume that each demand location in Ť is visited exactly once by only one drone, 

as given in (2). 

/{ }

1,ij

i Y j

x j Ť


=                   (2) 

A drone can visit charging stations and depots as many times as required, i.e., when 
the drone battery is empty or for the loading of relief items. However, the number of times it 
enters and leaves a charging station or a depot must be equal, as given in (3).   
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/{ } /{ }

,ij ji

i Y j i Y j

x x j Y
 

=           (3) 

At least one drone is used to supply relief items to demand locations in Ť. Therefore, 
the number of drones that moves xij between the depot and demand locations Ť or charging 
stations Ř must be greater than 0, as expressed in (4). 

/

0,ij

j Y Ή

x i Ή


 
                 (4) 

Demand Constraints 
Let wij be the payload carried by the drone when it travels from location i to j. W is the 

total payload capacity of the drone, and c is the unit package demand. The demand constraints 
are given as follows: 
For energy-saving purposes, the drone does not need to carry the maximum payload on each 
route. We impose that the drone returns to the depot empty, as expressed in (5). 

0, .ji

j

w i Ή= 
              (5) 

If the drone travels from i to j, the difference in the payload (between arrival and 
departure) is equal to the demand at location i, which is a unit package given in (6), except for 
the charging station locations given in (7). 

,iji j

j j

w w c i Ť− =  
             (6) 

0,iji j

j j

w w i Ř− =  
             (7) 

The payload on any route cannot exceed the maximum payload of the drone, as given in (8). 

, ,ijw W i Y j Y                       (8) 

Energy Constraints 
Let eij be the energy level of the drone when it leaves location i to travel to j. E is the 

maximum battery capacity of the drone, dij is the distance between locations i and j, ρ0 is the 
energy required for an empty drone to fly one unit distance, and ρ is the additional energy 
needed for a drone to fly one unit distance with one package. The energy constraints are given 
as follows: 

We assume that the drone's battery is always fully charged when it leaves the depot or 

a charging station, as expressed in (9). 

, , /{}ije E i Ή Ř j Y i=                 (9) 

The energy level of the battery is always lower or equal to the maximum energy level 
E, as expressed in (10). 

, , /{}ije E i Ť j Y i                        (10) 

Equation (11) gives the energy balance, i.e., the amount of energy consumed to move 
from any location to location i in Ť. 

/{ } /{ } /{ }

( ),ji ij ji ji

j Y i j Y i j Y i

e e d w i Ť 

  

− = +           (11) 

The energy level in the battery when the drone leaves location i must be sufficient for 
it to reach any charging station Ř and demand location Ť, as expressed in (12) and (13), 
respectively. 
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( ), ,ij ij ije d w i Y j Ř  +                (12) 

( ) ( ), , ,ij ij ij jk jke d w d w i Y j Ť k Ř     + + +       (13) 

Optimization of the Grid size 
A route is completed when a drone loads payload packages from the base station and 

returns after delivering relief items to the target locations. A route will only be valid if it satisfies 
the constraints given in (2)–(13). The constraints that are given in (5), (8), (9), (10), (12), and 
(13) apply before a drone makes a single move. The constraints that are given in (6), (7), and 
(11) apply when a drone has made a single move, and the constraints given in (2), (3), and (4) 
apply throughout the entire route. A scenario is given in Figure 3, wherein a grid of four 
charging stations, R1, R2, R3, and R4, is shown. 

Let the drone be initially present at charging station R1. We assume its destination be 
the target location T1, as shown in Figure 3. After reaching the destination, the drone travels 
to the nearby charging station R3. Let d1 be the distance from charging station R1 to the target 
location T1 and d2 be the distance from the target location T1 to the charging station R3. Let Z 
be the distance from R1 to R3. Z is the maximum possible distance that the drone might need 
to travel with the maximum payload. Let S be the maximum distance that the drone can travel 
with the maximum payload and maximum energy. 
Therefore, Z should be less than or equal to S for the drone to be able to reach the target 
location and then travel to any nearby charging station. The distance between adjacent 
charging stations is G, which is the grid size. 

 
Figure 3. Proposed layout of a special scenario wherein a drone travels the maximum 

distance 

Using Figure 2, Z can be written as  

2Z G=           (14) 

Therefore, we can write the following expression: 

2

S
G                    (15) 

For each value of the grid size G, different values of the cost functions are determined. 
The optimal grid size is determined by the value of G for which the cost function is at its 
minimum. The optimal number of charging stations corresponds to the optimal value of the 
grid size for a defined area, methods, and strategies. 
Assumptions in our model 

We proposed a model to optimize the number of charging stations to be pre-installed 
in the disaster-prone area. We assume that historical data is available about the location of the 
disaster-prone areas, where the charging stations will be transported and installed. The 
charging stations will be fixed facilities. In the post-disaster phase, the location of the charging 
stations will not be changed concerning the location of the targets, as it will be costly and 
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crucial time will be lost. We assume that the mobile phones or the hot spot drone will be used 
to get the data on the location and the priority level of the targets. Based on the data received, 
locations can be given different priority level values to cater to the urgency of the relief.  
Result and Discussion 

We developed an algorithm for obtaining the optimal number of charging stations. 
The flow chart is given in Figure 4. 

The drone's maximum distance capacity S is used to get the maximum valid grid size, 
VGmax, for a given size of the disaster area. The different number of charging stations are 
obtained for different values of the grid size in each iteration of the "for" loop, as given in 
Figure 3.  After that, we randomly distribute low-, medium-, and high-priority targets within 
the defined area, as shown in Figure 5. 

The next sections explain the modules of clustering, drone allocation to clusters, 
grouping of clusters, group ordering, and path planning/routing. 
Clustering of Targets 

The division of a larger number of target locations into smaller units is termed as 
clustering. We used the k-means algorithm, which is based on the Euclidean distances between 
them. Initially, we select K random points as initial centroids. Then, K clusters are formed by 
assigning all targets to the closest centroids. Subsequently, centroids are recalculated by finding 
the Euclidean mean of the clusters. This process is repeated until the centroids do not change. 
Fig. 6 shows the division of target locations into clusters. 

 

Figure 4.  Flow chart of the proposed algorithm for determining optimal charging stations 
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Figure 5. Simulated random distribution of 

low-, medium-, and high-priority targets 

 
Figure 6. Simulated division of random 

targets into Clusters 

Drone Allocation to Clusters 
Drone allocation is based on the cardinality of the clusters. The expression to calculate 

the number of drones for each cluster is given below:    

k
k

t N
V

M
=                (16) 

Where tk is the number of targets in the kth cluster, M is the total number of targets, N 
is the total number of drones, and Vk is the number of drones allocated to the kth cluster; the 
value of Vk is rounded off to the nearest integer value. 
Grouping 

The clusters are divided into groups of five targets each. The objective of making 
groups is to first visit those targets that are closer to each other and have a higher priority level 
value. Hence, the drone covers a shorter distance and covers more high-priority areas, also 
achieving a greater summed priority score if all priority values of the visited group are summed. 
Selection of the first and second target of a group 

The base station is taken as the reference location for selecting the first target of a 
group. The distance between every target in a cluster and the base station is calculated. In 
Figure 7, the arrows indicate the distances between each target and the base station. The 
shortest distance is termed dmin.        
First, we calculate the value of αi for the ith target in a cluster using (17). 

i

i

min

HT

d

d
 =                    (17) 

In equation (17), dHTi is the distance between the ith target and the base station, and dmin 
is the distance of the target that is closest to the base station. The value of αi for the ith target is 
at its maximum for the closest target from the base station. 
βi is the priority of the ith target, as given in (18), which is at a maximum for a high-priority 
target. 

i i i  =                   (18) 

The target with the highest value of δ is chosen as the first target of a group. For 
selecting the second target of a group, the location of the first target is considered as the 
reference location instead of the base station. 
Selection of the third, fourth and fifth target of a group 

The first and second selected targets are taken as the references for the selection of 
the remaining three targets to complete a group. The sum of the distances of the ith target from 
the first and second selected targets is calculated. The arrows shown in Fig. 8 indicate the 
distances of the ith target from the first and second selected targets. 
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Figure 7. Proposed layout showing the 

distances between the targets and the base 
station 

 
Figure 8. Proposed layout showing the 

distances of targets from first and second 
selected targets 

 

In Figure 7, P and Q are the first and second selected targets, respectively, as shown in Figure 
6, where dPi is the distance between the ith target and the first selected target P, and dQi is the 
distance between the ith target and the second selected target Q. First, we calculate the value μi 
of the ith target using (19). 

=
min

i
Qi Pi

d

d +d
             (19) 

where dmin is the minimum distance of the ith target from both reference locations P and 
Q, dQi and dPi are the distances between the ith target and the reference locations Q and P, 
respectively. μi of the ith target location will be greater for a target that is closer to both P and 
Q. 
βi is the priority value of the ith target, and ζi of the ith target is calculated using the formula given 
in (20). 

i i i  =               (20) 

The targets with the top three values of ζi are selected as the remaining three target 
locations to complete the group of five targets. Groups of the clusters are shown in Figure 9. 

 
Figure 9. Simulated division of clusters 
into groups of five targets each. The 
square symbol indicates high-priority 
targets, the diamond symbol shows 

medium-priority targets, and the triangle 
symbol shows low-priority targets. 

 
Figure 10. Proposed layout showing the 

distances between centroids of groups and 
the base station 
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Method to order groups 
In this section, we devise a method to arrange the groups in order, so that the groups 

that are closer to the base station and have higher throughput are visited first. Here, summed 
priority score is the sum of the priority level values of the targets in a group. In Figure 10, 
arrows indicate distances between the centroids of groups and the base station.  
The value of λi for the ith group is calculated using the expression in (21) 

min
i

Hi

d

d
 =                    (21) 

where dmin is the closest distance between that group and the base station, dHi is the 
distance between the centroid of the ith group and the base station, and λ is the maximum of 
the group for which the centroid is closest to the base station. 
Ui is the throughput of the ith group. ξi for the ith group is calculated using (22), and the groups 
are arranged in descending order concerning ξ.  

=i i iU                  (22) 

The group with the highest value of ξ is served first, and that with the lowest value of 
ξ is served at the end.  
Path Planning/Routing 

We define a route as the path followed by a drone to visit targets and return to the 
base station. Figure 11 shows the possible route of a drone, in which the drone visits five 
targets and two charging stations. Equation (13) is the energy required to visit any target 
location. A drone requires a charging station when it cannot reach the target destination 
directly. The drone may need to visit more than one charging station if the destination target 
is very far. We propose the use of the 'selective quadrant method' to find the number and 
sequence of charging stations.  

 
Figure 11. Proposed layout of a typical drone 

route for delivering relief packages to the 
targets while stopping at charging stations 

 

 
Figure 12. Layout of the proposed 

selective quadrant method to find the 
charging stations and their sequence that 

the drone should visit to reach the 
destination location from the source 

location 
 

In Figure 12, the source location m and the destination location n are shown. The 
distance that the drone can travel with its current energy is calculated, and a circle of a radius 
equal to that distance is drawn. Then, a line that connects m and n is drawn. This line intersects 
the circle at a point denoted by I, as shown in Figure 11. We select the four potential charging 
stations that are closest to intersection point I, denoted by R1, R2, R3, and R4 in Figure 11. Only 
one charging station is selected, which is closest to the destination location and inside the circle 
boundary. If the selected charging station satisfies the energy constraint given in (13), there is 
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no need for more charging stations. Else, the method is repeated, and the selected charging 
station becomes the source location.  
This method is repeated until we find a charging station that meets the constraint given in 
(13). 

For each iteration, we get a different number of charging stations, total distance, and 
the value of cost function corresponding to the different values of the grid size. The optimal 
grid size is determined by the value of G for which the cost function is at its minimum. The 
optimal number of charging stations corresponds to the optimal value of the grid size for a 

defined area.  
The algorithm given in Figure 13 determines the optimal routes using the optimal 

number of charging stations obtained using the algorithm given in Figure 3. 

 
Figure 13. Flow chart of the proposed algorithm for calculation of optimal routes 

Simulations and Results 
In this section of the paper, we present numerical examples to illustrate the use of our 

proposed model. We have selected Matlab (MathWorks) tool for our simulation. We used the 
specifications of the Amazon Prime Air drone in our simulation, which is a hybrid drone [16]. 
The maximum distance that this drone can travel with a maximum payload and maximum 
energy is S=16 km. The maximum energy of the selected drone is E=1332 kJ.  

In our simulation, there is one base station, and the targets are divided into clusters. 
We have assumed that the payload capacity of the drone is W=5 packages. The demand at 
each target is c=1 package. Each target is assigned a value based on its priority level. The high-
priority value is equal to 1, the medium-priority value is 0.7, and the low-priority value is 0.4. 
Initially, the drones are located at the base station at the start of the delivery process. The 
process of simulation is explained as follows.  

The targets are divided into clusters (Explained in Section  3.1). The clusters are 
divided into groups of 5 targets each (Explained in Section 3.3). Initially, the maximum valid 
value of the grid size is calculated using the expression given in (15). The grid size value 
determines the number of charging stations. The route of the drone is completed when it 
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departs from the base station and returns after visiting five targets for supplying relief 
packages. When the drone visits any target location, it delivers one payload package. The 
energy equation (13) is a function of payload packages so, the energy required for the next 
visit will vary according to the changed payload weight as given in (13).  The simulation is run 
1000 times for each value of the grid size value. In each iteration of the simulation, the targets 
change their location. The grid size will be valid only if the charging stations corresponding to 
the specific grid size are accessible to the drones for recharging when they run out of power. 
The average minimum distance covered by the drones is calculated for each grid size value. 
The value of the cost function is calculated for different values of the grid size. The minimum 
value of the cost function determines the optimal value of the grid size. The number of 
charging stations determined by the optimal grid size is the optimal charging station. Table 1 
shows the average minimum distance, charging stations, and cost function value against 
different values of the grid size.  

In the first scenario, the number of targets is M=39. The disaster area is a square with 
sides of 40km each. The optimal charging stations are 25, corresponding to the optimal grid 
size value of 9.25km as shown in Table 1.   

Table 1. Total distance and calculated cost function showing minima at 9.25km grid size 

Scenario Grid Size (km) Charging Stations Disatnce (km) Cost Function 

1 11 16 358.2359 518.2359 
2 10 25 355.4964 605.4964 
3 9.75 25 352.3604 602.3604 
4 9.5 25 351.5633 601.5633 
5 9.25 25 347.9187 597.9187 
6 9 25 350.7462 600.7462 
7 8 36 350.0603 710.0603 
8 7 36 335.5975 695.5975 
9 6 49 333.1546 823.1546 

Figure 14 shows the graph of the grid size values versus the cost function. At a grid size value 
of 9.25km, we get the minima.   

 
Figure 14. Simulation result showing minima at 9.25km in Grid size versus the cost function 

graph 
In the second and third scenarios, simulations were done for the pre-disaster phase to 

get the optimal grid size value and the optimal charging stations for various sizes of the disaster 
area and the number of targets. In the fourth scenario, simulations were done for the post-
disaster phase. The optimal routes were determined for the drones to supply relief items. The 
charging stations in this case are optimal charging stations determined in the pre-disaster 
phase. 
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In the second scenario, the number of targets is fixed to be M=39 and the size of the area is 
varied. Figure 15 shows the graph of the grid size values and the cost function values for 
different values of the size of the disaster area. The simulation is done with four different 
values of the area, i.e. square areas of sides equal to 45km, 40km, 35km, and 30km. The optimal 
grid size value in all the plots is the same as 9.25km as shown in Figure 14. The simulations 
show that the optimal value of the grid size is unchanged with the change in the size of the 
area. 

Figure 15. Simulation result showing Cost 
function versus Grid size values for 

different sizes of the disaster area showing 
minima at 9.25km grid size 

 

Figure 16. Simulation result showing Cost 
function versus Grid size graph values for 
different numbers of the targets showing 

minima at 9.25 km Grid size 
 

In the third scenario, the area of the disaster is fixed, and the number of targets is 
varied. Fig. 16 shows the graph of the grid size values and the cost function values for the 
different numbers of the targets. The simulation is done with four different numbers of targets, 
i.e. 30, 39, 48, and 60. The simulation results indicate that the optimal grid size value in all the 
plots is the same as 9.25km as shown in Figure 15. The optimal value of the grid size is the 
same for different numbers of targets. 

In the fourth scenario, the optimal routes of the drones are obtained. In this case, the 
number of the targets is kept equal to 39, and the size of the disaster area is kept equal to a 
square with sides  40km. The drone requires greater energy when it leaves the base station 
carrying the maximum payload, while it requires minimum energy when going back from the 
fifth target to the base station as it returns empty to the base station. The drone covers a larger 
distance when it is carrying lesser payload packages and vice versa. The number of optimal 
charging stations is 25. Figure 17(a), (b), and (c) show the optimal routes for the targets in the 
groups for three clusters. 

The following parameters are needed for site selection as charging stations. R is the 

drone's maximum distance capacity with a full load and full energy. G is the grid size. We have 

optimized the value of the grid size, which determines the spacing between the adjacent 

charging stations. The location of the first charging station is at the origin where the x- 

coordinate is equal to zero and the y-coordinate is equal to zero and is taken as the reference 

location. The distance between the adjacent charging stations located along the x-axis direction 

is equal to the optimal grid size. Similarly, the distance between the adjacent charging stations 

located along the y-axis direction is equal to the optimal grid size. This formation leads to a 

grid of charging stations where the distance between the adjacent charging stations is equal to 

the optimal grid size. 
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(a) 

 
(b) 

 
(c) 

Figure 17. Calculated Optimal routes for (a) Cluster 1(b) Cluster 2 (c) Cluster 3 

Discussions 

Unmanned aerial vehicles (drones) come up with various applications. A bottleneck 

of drones is the limited flying time. Most commercial drones can only fly for about half an 

hour. According to the type of drones and the battery used, the max service distance without 

battery recharging ranges from 3 km to 33 km. For this reason, drone batteries should be 

periodically recharged in order to support long-distance drone flying. The limited flight time 

of UAVs, however, remains as a major challenge. Little is known about optimal methodologies 

to deploy charging stations. In literature, we find some studies that have addressed the problem 

of the deployment of charging stations. The authors have used different approaches to address 

this issue in the previous studies. In the next section, we will discuss the approaches used by 

authors in the existing literature and compare them with the proposed approach to validate 

our results. 

In [26], the problem of deploying a number of charging stations to cover the customers 

in a demand area is investigated. Charging stations at optimal locations are deployed to get 

maximum customer coverage. For a customer located at a place that is unreachable by flying 

with a single battery, a drone can replace the battery at some charging stations and then fly 

again. For this reason, any two neighbor charging stations should be within a certain range 

such that a drone with a fully charged battery can reach one from the other. More generally, 

this requires that the deployed charging stations should be connected to the depot. Then, a 

drone that departs from the depot can arrive at any charging station via a subset of other 

charging stations, and it can further service the customer near this charging station. When the 

delivery task is completed, the drone can also return to the depot. this article focuses on the 
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problem of deploying a number of charging stations such that a certain percentage of 

customers in the demand area can be served by drones. A computationally efficient approach 

is proposed, which consists of an initial phase and an adjustment phase. In the first phase, a 

set of charging stations is deployed in a triangle pattern to fully cover the demand area; and in 

the second phase, the charging stations covering no or the least demand are removed, and the 

rest of the charging stations are repositioned. The adjustment phase repeats until no more 

charging stations can be removed. The main contribution of this work is the development of 

a charging station deployment method, which enables the drone delivery service to a certain 

number of customers. 

In [27], the authors address the problem of deploying charging stations that maximizes 

the system performance, specifically concentrating on generating optimal UAV trajectories 

while minimizing the number of deployed charging stations. In this study, the authors 

formulated the problem of jointly optimizing UAV Trajectories and Locations of Battery swap 

Stations as an optimization problem and developed an optimization framework to solve the 

problem. Especially since finding the shortest trajectory for a single UAV visiting each region 

of interest and returning to the base station without even considering charging stations is 

essentially the traveling salesperson problem (TSP) which is NP-Hard, a heuristic solution 

called UBAT based on Ant Colony Optimization (ACO) is proposed to solve the problem 

In [28], the authors consider the approach of deploying charging stations and collaborating 

with public transportation vehicles. The optimal deployment problem is formulated to 

minimize the average delivery time for the customers, which is a reflection of customer 

satisfaction. From the warehouse, which is far from a customer, a drone takes some public 

transportation vehicles to reach some position close to the remote area. When the customer 

is unreachable from the position where the drone leaves the public transportation vehicle, the 

drone swaps the battery at a charging station. In this study, in particular, it is assumed that 

there are some public transportation vehicles that pass the warehouse and the area of interest. 

Then, a drone can take these vehicles to reach the area. For a large area that cannot be covered 

by a drone without swapping its battery, deploying some charging stations in the area is taken 

into consideration. With the assistance of public transportation vehicles and charging stations, 

this strategy enables a drone to serve a remote customer. A new model is proposed in this 

study to characterize the flight distance for drones to serve customers, which is called the 

service model. Different from the commonly used coverage model, which says a customer is 

covered by a charging station within a certain range, the service model specifies the charging 

station via which a drone directly serves a customer in the shortest time. With this model, we 

formulate the charging station deployment problem from a simple case with only one charging 

station to a complex case with multiple charging stations.  

In our proposed model, a simulation model was used to optimize the number and 

location of drone charging stations for deployment in a disaster-prone area in the pre-disaster 

scenario, aiming at the distribution of relief items to disaster-hit areas in the post-disaster 

scenario. To our best knowledge, we are the first to address the charging station deployment 

problem in a disaster-prone area. There is a need to install charging stations in the disaster-

prone area in the pre-disaster phase, as access may be denied when the area is hit by disaster. 

Equation (1) gives the cost function, which depends upon the number of charging stations 

and the total distance. The flow chart given in Fig. 3 is used to find the minimum value of the 
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cost function. The minimum value of the cost function determines the optimal value of the 

grid size, which correlates to the optimal number of charging stations. 

Limitations of the proposed model 
In our model, we have assumed that the group size is five targets. If the number of 

targets is not a multiple of five, then some targets will be left ungrouped. As of now, we have 
considered only the flying mode of the drone in the energy equation. The proposed model 
does not take into account real-life constraints like the wind speed and other flight-related 
parameters of the drone. We have not considered the possibility that the charging station can 
be already occupied by a drone for recharging when another drone visits that charging station. 
We have allowed only one visit to a target location. If we consider multiple visits to a target 
location, the time at which the package is delivered will become a relevant parameter in the 
model. 
Future work and recommendations 

In future work, we can consider some parameters like the speed of the wind and other 
flight-related parameters of a drone to get more realistic simulations. The vertical take-off 
landing mode of the drone may also be considered in the energy equation. Multiple visits to a 
target location may be allowed to cater to a great demand of the target locations. 
Conclusion 

In this work, a simulation model was used to optimize the number and location of 
drone charging stations for deployment in a disaster-prone area. The relative priority of 
locations was considered, and preference was given to targets with higher priority levels. For 
the post-disaster phase, our model finds the optimal routes for the drones using data on the 
locations and the priority levels of the targets. We presented four scenarios to illustrate the use 
of our proposed model. Our simulations show that the optimal value of G (grid size) obtained 
in both scenarios was the same (9.25 km). It can be concluded that the optimal G is 
independent of the disaster-hit area, and it only depends on the drone's maximum distance 
capacity S. The presented research work can be applied in situations where relief supplies are 
needed to be provided swiftly to multiple locations hit by various kinds of disaster, including 
floods, earthquakes, avalanches, landslides, storms, etc. 
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