
 International Journal of Innovations in Science & Technology

July 2022 | Special Issue Page | 158

Reliability Awareness Multiple Path Installation in
Software Defined Networking using Machine

Learning Algorithm

Original
Article

Muzammal Majeed1, Rashid Amin2, Farrukh Shoukat Ali1, Adeel Ahmed3, Mudassar Hussain
1 (Department of Computer Science, University of Engineering and Technology, Taxila).
2 (Department of Computer Science, University of Chakwal, Pakistan).
3 Department of Computer Science, Quaid-i-Azam University, Islamabad.
4 (Department of Computer Science, University of Wah, Wah Cantt, Pakistan).
* Correspondence: Rashid Amin, rashid4nw@gmail.com
Citation |Majeed. M, Amin. R, Ali. S. F, Ahmed. A, Hussain. M, “Reliability Awareness
Multiple Path Installation in Software Defined Networking using Machine Learning
Algorithm,” Int. J. Innov. Sci. Technol., Special Issue, pp 158-172, 2022.
Received | July 20, 2022; Revised | August 05, 2022; Accepted | August 19, 2022;
Published | August 21, 2022.
__

ink failure is still a severe problem in today's networking system. Transmission delays
and data packet loss cause link failure in the network. Rapid connection recovery
after a link breakdown is an important topic in networking. The failure of the

networking link must be recovered whenever possible because it could cause blockage of
network traffic and obstruct normal network operation. To overcome this difficulty, backup
or secondary channels can be chosen adaptively and proactively in SDN based on data traffic
dynamics in the network. When a network connection fails, packets must find a different
way to their destination. The goal of this research is to find an alternative way. Our proposed
methodology uses a machine-learning algorithm called Linear Regression to uncover
alternative network paths. To provide for speedy failure recovery, the controller
communicates this alternate path to the network switches ahead of time. We train, test, and
validate the learning model using a machine learning approach. To simulate our proposed
technique and locate the trials, we use the Mininet network simulator. The simulation results
show that our suggested approach recovers link failure most effectively compared to existing
solutions.
Keywords: SDN, Link failure, Failure Recovery, Machine Learning, Linear Regression.
Introduction
 There are various devices connected to the computer network, and it increases every

day. The network's ability to transport faster packets from one network point to another

becomes a major issue[1]. The network system's ability to swiftly transfer data packets has

been hampered by node failure, connection failure, bandwidth limitations, and link

congestion. In today's networking world, link failure is a serious problem and a source of

trouble for network administrators[2]. If a network link fails, traffic that relied on it must be

rerouted to another link to ensure that data is delivered reliably. The primary path in a

networking system is described as the way through which actual network traffic passes,

whereas the secondary path is the path used for network traffic in the event of a failure.

L
DOI| https://doi.org/10.33411/IJIST/2022040510

ZH
Placed Image

https://crossmark.crossref.org/dialog/?doi=10.33411/IJIST/2022040510

 International Journal of Innovations in Science & Technology

July 2022 | Special Issue Page | 159

Every available node in the network calculates primary and secondary routes for every target

computer in the network[3].

Traditional Network.

The data and control planes are available in the traditional network switches. As a

result of this issue, the network consumes excessive bandwidth[4]. When information about

network configuration overflows, a bottleneck occurs because the data and control planes

share the network's bandwidth. The amount of data kept in the control plane grows when a

network link fails. When a network link fails, all connected devices receive information from

the nodes about the failure, producing network congestion[5].

Software Defined Networking.

In a software-defined network structure, both the data and control planes are

separate from each other[6]. The network's logic and rules are transferred from network

devices to a central device known as the controller. With a southbound application

programming interface, this main network controller regulates data transfer over the

network. The benefit of this centralized controller is that all new network services,

applications, and functions may be configured flexibly with low operational costs and capital

expenditures[7]. When a link fails in SDN, the node connected to the failed link sends a link

failure notification to the main controller directly. The control panel then manages the data

journey alternate path. Because the network's data plane is not disrupted, the computer

network's competency increases. The way of communication between network switches and

the main controller is the OpenFlow protocol[8], [9].

Machine Learning.

A type of data analysis called machine learning automates the process of developing

an analytical model. This technology seeks to mimic human thought patterns and generate

predictions based on massive data. These algorithms are widely employed in several

applications and packages, including transportation, system performance, many software

services, cloud computing, networking, and energy, thanks to advancements in data storage

technology[10]. One of the most significant advantages of machine learning is its ability to

solve even the most difficult situations[11][12].

Linear Regression.

It is one of the most popular and widely used models in the machine learning area.

Using statistics performs the predictive analysis. Other continuous/real or quantitative

values, such as sales, salaries, age, and product prices, are likewise predicted using this

method. The process for linear regression reveals a linear relationship between one or more

independent (x) variables and a dependent (y) variable[13]. Since linear regression establishes

a linear relationship between them, the value of the dependent variable changes as the value

of the independent variable changes. A sloping straight line is used to represent the

relationship between the variables in the linear regression model[14].

Figure 1 describes 3 plains that are Control Plane, Data Plane, and Artificial Intelligence

plane in SDN assembly.

 International Journal of Innovations in Science & Technology

July 2022 | Special Issue Page | 160

Figure 1 Three layers of SDN scenario

Research Objectives.

The research objectives of our proposed work are as follows:

1. Detection of faults in routes

2. Computation of alternatives routes

3. Validation of successful data transmission

Novelty Statement.

In our work, we discuss the problem of a connection failure in software-defined

networking and propose a novel machine learning-based solution to mitigate the link failure

issue[15]. The traditional approaches for link failure are not efficient to handle link failure

as it involves the identification of available alternative links, and it also needs to compute

the reliability of the links. So, we proposed a linear regression model to compute the

reliability of alternative paths for smooth communication. The proposed scheme improves

the latency rate, response time, and overhead of existing approaches.

Literature Review.

Malik et al. [16]say that in both fields of academic and industrial, Software Defined

Networking (SDN) plays an important role nowadays. There are many benefits to the

traditional networking system using SDN. In the modern age of the networking data plane,

fault management is divided into two methods that are proactive and reactive[17]. Whenever

any failure occurs or packet loss in the network, these recovery and fault management

techniques are run. Due to convergence time, these strategies are used when the new

network's routes must be permitted to forward the affected signals rather than dropping

them completely. This type of convergence causes unavailability of signals and disruption of

temporary service. In this article, researchers proposed a new system for data plane fault

 International Journal of Innovations in Science & Technology

July 2022 | Special Issue Page | 161

management in SDN. The purpose of this technique is to eradicate the process of

convergence instead of accelerating the recovery and failure detection. The authors also

defined a new framework named Smart Routing. In this framework, when the link failure

occurs, the entire network controller gets the alarm about this failure and saves all the

dangerous routes before the occurrence of failure. This proposed method aims to reduce

the disturbance in the network service and increase network availability. Authors prove their

method with a lot of experiments and describe how this inherent model executes and

explains its impacts on improving network service availability.

Garoui et al. [18] discuss an environment called a smart city that connects a lot of

devices like sensors, mobiles, cars, and actuators. In this environment, new real-time

applications are provided by a system called Intelligent and Connected Transportation

System (ICTS). Internet-of-Things (IoT) technologies are at the heart of the created

packages, which carry modern summons like scalability and heterogeneity and need cutting-

edge communication system solutions. The modern network routing protocols cannot

acquire these restrictions because of field knowledge supported by a specific computer

system demonstrating partial visibility of the network system. Due to the dynamic topology

and variation of the network, developing routing systems to match the ever-changing

network requirements is becoming increasingly complex. With the help of the software's

characteristics, SDN delivers a fresh picture of the whole networking system and manages

all the devices connected to the network. When using the SDN-based network, the major

issue is minimizing the broadcast delay between all the computer systems connected to the

network. To address this network limitation, other Machine Learning (ML) techniques as

prediction solutions that are well-defined and realistic are required. To recover the delay that

occurs in the network, the authors present novel routing rules or protocols methodology

based on SDN and Naive Bays algorithms (ML algorithms)[19]. According to the

simulation's results, their routing system exceeds the competition regarding the end-to-end

delay and data transmission ratio.

Moazzeni et al.[20] explain in their research article the purpose of SDN is to control

the very complex functionality of the controller connected to the networking system and

make its scalability easier. The controlling system in the SDN manages and handled by a

logically centralized device called a controller. When the link fails in the network first, this

controller activates its functionality, and here data plane is unavoidable. This single

controller is not so reliable in the network because of its single point of failure. The authors

say that we can use distributed controllers to reduce this complexity in the network. In their

proposed method, the researchers divided the big network into different small subnetworks,

where a single controller manages each network to lessen the effects of failure. Every

subnetwork's consistency is determined by considering the number of nodes in the network

and examining the connection failure rate, after which it is distributed among the controllers

using the Dijkstra Algorithm and Leader Election. With the newly established Coordinator

Finder Algorithm, the controller with the maximum consistency rate is chosen as the

manager[21]. When a controller in the network fails in the transitory technique, the

coordinator picks a suitable controller for the smaller network., improving accuracy and fault

tolerance while lowering latency. The authors use the Colored Petri-Net model to verify this

proposed method.

 International Journal of Innovations in Science & Technology

July 2022 | Special Issue Page | 162

For various years, the link failure problem has been a dangerous concern in the field

of Software-Defined Networks (SDN), according to Hu et al[22]. To guarantee network

strength and availability, both proactive and reactive methods are available. The latter

requires a lot of time to recover from a fault, while the former wastes a lot of TCAM and

bandwidth. The authors of this work introduce FTLink, an effective and adaptable link fault

tolerance technique. The writer gathers network information to create various backup

connections for every connection in the flow of the primary path. The author attempts to

design network backup connections as a multi-objective optimization problem with switch

TCAMs and link bandwidths set to a minimum. By combining flow features, the author

creates a two-step heuristic algorithm to inspect the backup links set. Step 1 of the algorithm

involves planning alternative links for each link that transmits elephant flows using the

greedy tracing technique, and Step 2 entails employing the bidirectional searching technique

to plan alternative links for each link that transmits mice flows. The resulting backup links

and additional flow rules are then stored in a global matching table created by the controller

programmers. This is how elastic fault recovery works: after confirming a broken

connection, FTLink searches for appropriate table entries and provides links by adding

additional flow rules to the switches. When compared to competing techniques, the results

demonstrate that FTLink is successful in terms of high-efficiency TCAM and transmission

capacity use, with a recovery time of fewer than 30 milliseconds. Experiments on models

conducted in the ideal network environment provide more evidence of FTLink's capabilities.

It is an important problem in the field of the network to recover link failure with

high speed and efficiency. To address this problem in SDN, multiple routes are defined in

proactive and adaptive manners according to the dynamic condition of traffic. In [23] Huu

et al. say that proactive techniques make use of only the network structure knowledge, and

to compute the backup path individual can use static load. The authors proposed a machine

learning system named Traffic Engineering (TE) that can understand and define the efficient

route, learn the traffic dynamically, and make backup paths after link failure adaptively.

Authors do experiments, train, test, and also validate the learning model using various

machine learning tools like linear regression, decision tree, SVM, NN, gradient boosting,

and random forest. The authors used the Mininet Evaluation Platform for their experiments.

Their results show that by using their proposed method, failure recovery time is reduced by

up to 50%, and network bandwidth utilization improves by 20% as compared to the baseline

technique.

Problem Statement.
 It can be observed that there would be a deterministic switch activation process
sequence in the physical network topology as the result of the way the registration mechanism
was designed, while the controller serves as a manager shown in Fig 2. Switch 1 was
immediately connected to the main SDN controller in this sequence, and this switch received
its initial response from the controller. It became a live switch and attempted to transmit
messages to all of its neighbors. Later, all of the switches will be triggered. An activation wave
is formed as a result of this operation, which propagates between all switches and activates
all switches connected to the network. State machines within each switch explain this process,
not the controller. In this network, the creation process controller performs the role of an
information assembler by putting the logical topology representation together[24].

 International Journal of Innovations in Science & Technology

July 2022 | Special Issue Page | 163

 In figure 2 there are 6 switches named s1, s2, s3, s4 s5, and s6 connected, and these

all switches are directly connected with a single main SDN controller. Five hostesses, PC 1

to PC 5 with IP address 192.168.1.101, 192.168.1.102, 192.168.1.103, 192.168.1.104,

192.168.1.105 simultaneously connected in this network for data communication with the

switches. If any host wants to communicate with another host, it will communicate through

s1, to s6 switches.

Figure 2 Network Architecture

 If PC 1 wants to send a message to PC 5, it must first connect with switch 2, whose

forwarding plane will send a command to the main SDN controller requesting or asking

from which path the message should be sent to PC 5. The SDN controller is connected to

all the network switches and has access to the network's data. There are several ways to get

from PC 1 to PC 5. This controller examines all paths from PC 1 to PC 5 and attempts to

determine the most efficient path between the two computers. When one or more links in

the network break and one or more paths from source to destination are busy for whatever

reason, the network has a problem. Suppose multiple data pathways become clogged or

overburdened. To ensure smooth communication, the SDN controller now has difficulty

determining the appropriate path with the lowest latency rate from source to destination. It

is the job of the main SDN controller to maintain and construct another alternative link

between sender and receiver for efficient communication whenever a particular link among

the computer systems in the network breaks down.

 To summarize, we're searching for a group solution in which all devices are pre-

configured with backup forwarding data rules to address all of the network difficulties

described above. Because those forwarding rules will be calculated for each link or node

failure, the primary and backup paths will be as short as feasible, substantially improving the

outdated path disjointed protection strategy.

Material and Methods.

We use the Linear Regression model for our proposed solution. It is one of the most

popular and widely used models in the machine learning area. Using statistics performs the

predictive analysis. Other continuous/real or quantitative values, such as sales, salaries, age,

and product prices, are likewise predicted using this method. The process for linear

regression reveals a linear relationship between one or more independent (x) variables and

a dependent (y) variable. The value of the dependent variable changes as the value of the

independent variable changes because linear regression establishes a linear relationship

 International Journal of Innovations in Science & Technology

July 2022 | Special Issue Page | 164

between them. A sloping straight line is used to represent the relationship between the

variables in the linear regression model[25]. SDN network takes some kinds of information

from network topologies like link failure and traffic data. If network bandwidth increases

from its limits, it goes to link failure and congested link[26]. To solve this problem, the

controller will request a linear regression model. The linear regression model now examines

all network traffic and calculates new pathways and secure links between sender and

destination. Our proposed strategy is depicted in Figure 3.

The controller in Software Defined Networking scans the entire networking system

and assembles or prepares to receive flows from the sending end to the receiving end[27].

When the controller gets a route calculation request from a host computer delivering data

via a networking node, random Quality of Services (QoS) matrices are generated for this

type of flow to mimic all QoS needs. The path from sending to receiving computer or

network node is estimated using algorithms placed in the main controller, and then it is

checked to see if it fits all of the QoS standards[28]. If this happens, an SDN controller is

used to program all of the network's machines; otherwise, the flow is stopped.

When a large amount of data must be transferred from PC 1 to PC 5, the controller's

algorithm takes different paths, such as switching 4 to switch 1 and switching 4 to switch 2.

When a large amount of traffic needs to be transferred from PC 3 to PC 5 or PC 4 to PC 5

at the same time, the network's pathways between PC 1 and PC 5 and PC 4 to PC 5 become

clogged. As a result, there is an increase in bandwidth overhead, and these pathways become

congested.

We set a 90 percent threshold link value for network congestion prevention in our

suggested effort. When network traffic exceeds the link threshold value, the controller

instructs the linear regression model to find new multiple alternate paths to bypass network

congestion. For data traffic, the controller creates a new flow table. According to the linear

regression model, the routing information between these switches changes. The suggested

method aims to make data transmission from the host to the target computer as reliable as

possible.

This ensures that path assignment decisions have already been made when traffic

enters the network domain. Furthermore, the calculation workload on the network's routers

will be reduced because of this. The suggested method uses source-to-destination pairings

to estimate the delay for all possible paths in the network. As a result, the linear regression

model must learn both incoming traffic characteristics and current network circumstances.

Source and destination Internet Protocol (IP) addresses, size of the packet, number of

packets, requested load, data rates, and available routes from the source to destination pair

are inputs from the entrance port router.

 International Journal of Innovations in Science & Technology

July 2022 | Special Issue Page | 165

Figure 3 Proposed Methodology Diagram

Furthermore, two critical network domain inputs are considered: congestion rate

and available routes, which can be classified as open or broken links. Based on all the

information acquired by the suggested solution, the algorithm's output will be the predicted

delays for all available routes. Incoming traffic will subsequently be assigned to the route

with the smallest estimated delay by the route computation module. Because the suggested

technique will compute the shortest path, all traffic delays are expected to be reduced.

Because delay is inversely related to throughput, throughput is expected to improve.

A flowchart depicting how the entire network works are shown in Figure 4. Suppose

paths between the host and destination computers are congested in this state diagram packet

delivered with the controller's algorithm. In that case, the controller switches to the

proposed algorithm and uses this method to find a new alternating path. The packets are

sent properly if the controller identifies network links that are not congested.

Figure 5 explains our flow of study. First, we collect datasets from an internet

resource. After pre-processing the dataset, we extract features from the dataset and then we

select features for our research work. We train and test our dataset using a Machine Learning

algorithm. This model predicts values and helps us for finding alternative routes.

Simulation System.

To analyze the justification of the intended algorithm, we must first define the

simulation environments and parameters listed in Table #1. This table covers the virtual

network as well as all the simulation's parameter values. We utilized the Mininet tool to

simulate the situation[29]. This virtual network has one SDN controller, six switches, five

computer systems, and about 23 edges that connect the switches and computer systems to

the controller.

In the simulation, we use the network structure shown in Fig 2. We must decide to

take the bandwidth of every edge 800Mbit to transmit data from one point to another under

the same situation.

 International Journal of Innovations in Science & Technology

July 2022 | Special Issue Page | 166

Figure 4 Flowchart of Proposed Method

The Dataset.

We collect our SDN dataset for simulation purposes from a very well-known

website. We check and compare our dataset with many other datasets and find our dataset

very best for our simulation. This dataset contains 134000 rows and 16 columns. We save

this dataset in a CSV file and extract the necessary features that can be used in our

simulation[30]. We delete unnecessary features from the dataset. We choose the columns to

identify the different features, such as switch_id, total_time, packet_in, packet_loss, etc, as

input and labels for output. We choose 70% data for training purposes and based on this

training. We choose 30 % data for testing purposes.

Results and Discussion.

The experimental findings exist in this section. The tests are run on an Intel Core i5

CPU running Python 3.7. The python code was executed, and results were obtained using

the Jupyter notebook and Mininet emulator[31]. Our method was implemented in a Pox

controller responsible for network monitoring, backup path computation, and forwarding

rules in switches[32]. The controller was installed in its virtual machine and is linked to

another virtual machine that runs the Mininet emulation platform. To generate traffic

between the nodes in the networks, the iperf3 program was utilized[33]. Wireshark collected

traffic statistics in normal and link failure scenarios, including aggregate flow size, round-

trip duration, and packet loss ratio. On the Mininet platform, we randomly disconnected a

link in the network topology to mimic a link failure while traffic flows were redirected across

the network. The controller's pre-installed backup path will be used to deflect all affected

flows.

 International Journal of Innovations in Science & Technology

July 2022 | Special Issue Page | 167

Figure 5 Flow of Study Diagram

Table 1.

Constraints Values

SDN Controller 1

Nodes 5

Switches 6

Edges 23

Simulation Tool Mininet

Bandwidth on edges 800Mbit

File Size 1GB to 3 GB

The recovery time and packet drop ratio in the event of a connection breakdown are

used to gauge how well the proposed system performs. To demonstrate the level of

reduction in recovery time, the suggested system is compared to the existing Segmentation

technique. The time how long it takes for packet transmission to resume after a network link

failure is recorded.

In figure 6, there is a comparison of flow entries between the proposed solution and

both FTLink and Shortest Path Rotes Algorithm (SPRA) techniques. Since there are fewer

entries in the flow table, there is less memory overhead associated with the controller's full

installation of flow entries in the switches[34].

Figure 6 Comparison of flow entries b/w proposed method with FTLink and SPRA

 International Journal of Innovations in Science & Technology

July 2022 | Special Issue Page | 168

Figure 7 Comparison b/w performance of the proposed method with FTLink and SPRA
Figure 7 shows a comparison of the proposed approach's performance with that of the FT
Link and SPRA methods[35]. It can be shown that the proposed method performs better
than either technique.

Here we must compare latency between the proposed solution and both state-of-

the-art methods. Because traffic is routed across numerous channels rather than depending

on a single lane after failure, as seen in Fig. 8, the SPRA and FTLink have higher latency

after failure, whereas the proposed solution’s latency shows identical statistical performance

before and after failure, as shown in Fig. 9.

Table # 2,3,4, and 5 describes all the simulation and comparison results among FTLink,

SPRA, and proposed techniques.

Figure 8 Latency with FTLink and SPRA

 International Journal of Innovations in Science & Technology

July 2022 | Special Issue Page | 169

Figure 9 Latency with a proposed method

Table 2. This table describes the flow entries between the state-of-the-art and proposed

model.

Flow Entries

SPRA FTLink Proposed

No of
Switches

Total
no of

Entries

No of
Switches

Total
no of

Entries

No of
Switches

Total
no of

Entries

7 7 7 3.5 7 0.7

Table 3. This table describes the performance of the network between the state-of-the-art

and proposed model.

Performance

SPRA FTLink Proposed

Request
made
per
second

Response
Time

Request
made
per
second

Response
Time

Request
made
per
second

Response
Time

8 80 8 56 8 40

Table 4. This table describes the latency of the network with FTlink and SPRA before and
after failure.

Table 5. This table describes the latency of the network with a proposed model before and
after failure.

Latency with FTLink and SPRA

Before Failure After Failure

No of
Packets

Latency No of
Packets

Latency

100 30 100 50

Latency with Proposed Method

Before Failure After Failure

No of Packets Latency No of
Packets

Latency

100 32 100 42

 International Journal of Innovations in Science & Technology

July 2022 | Special Issue Page | 170

Conclusion.

Network link failure is a major problem that must be identified and addressed soon

to prevent from loss of data packets. In the network connection, failure is caused by traffic

burden and a switch topology loop. Connection failures harm network dependability.

Recovery time must be kept to a minimum for the network to be more dependable and

efficient. The proposed technique manages packets with the least amount of latency when a

network link fails by calculating a list of shortest routes and moving packets from the failure

location. The controller aids in the computation of the shortest paths quickly, which may

aid in the recovery of problems in the computed backup paths. Once a network has

recovered from a loss, the proposed technique can handle failures in additional network

connections. The existing SDN controller technique increases the number of flow entries

by adding both primary and backup path entries to the switch. The suggested technique

installs flow entries only when they are needed, resulting in fewer flow entries and decreased

memory usage. According to the simulation results, the proposed method improves

performance by decreasing the number of flow entries in the switches during flow

computation and speeding up recovery.

More bandwidths will be used in the future, which may be accomplished by

transmitting packets with the best bandwidth while considering the combined capacity of all

links. The technique can be used in wireless mobile networks to provide authorized link

connectivity between mobile nodes while considering the packet loss ratio. In the event of

a link loss, the suggested approach enables a quick switchover between base stations.

REFERENCES
[1] M. Ahmid, O. Kazar, and L. Kahloul, “A secure and intelligent real-time health

monitoring system for remote cardiac patients,” Int. J. Med. Eng. Inform., vol. 14, no.
2, pp. 134–150, 2022, doi: 10.1504/IJMEI.2022.121130.

[2] Y. Wang, D. Jiang, L. Huo, and Y. Zhao, “A New Traffic Prediction Algorithm to
Software Defined Networking,” Mob. Networks Appl. 2019 262, vol. 26, no. 2, pp.
716–725, Dec. 2019, doi: 10.1007/S11036-019-01423-3.

[3] A. N. Shahbaz, H. Barati, and A. Barati, “Multipath routing through the firefly
algorithm and fuzzy logic in wireless sensor networks,” Peer-to-Peer Netw. Appl. 2020
142, vol. 14, no. 2, pp. 541–558, Oct. 2020, doi: 10.1007/S12083-020-01004-2.

[4] S. H. Haji et al., “Comparison of Software Defined Networking with Traditional
Networking,” Asian J. Res. Comput. Sci., no. June, pp. 1–18, 2021, doi:
10.9734/ajrcos/2021/v9i230216.

[5] D. S. Rana, S. A. Dhondiyal, and S. K. Chamoli, “Software Defined Networking
(SDN) Challenges, issues and Solution,” Int. J. Comput. Sci. Eng., vol. 7, no. 1, pp.
884–889, 2019, doi: 10.26438/ijcse/v7i1.884889.

[6] A. Shaghaghi, M. A. Kaafar, R. Buyya, and S. Jha, “Software-Defined Network
(SDN) data plane security: Issues, solutions, and future directions,” Handb. Comput.
Networks Cyber Secur. Princ. Paradig., pp. 341–387, Jan. 2019, doi: 10.1007/978-3-030-
22277-2_14/COVER.

[7] J. Ali, G. M. Lee, B. H. Roh, D. K. Ryu, and G. Park, “Software-defined
networking approaches for link failure recovery: A survey,” Sustain., vol. 12, no. 10,
2020, doi: 10.3390/su12104255.

[8] H. A. Eissa, K. A. Bozed, and H. Younis, “Software Defined Networking,” 19th Int.
Conf. Sci. Tech. Autom. Control Comput. Eng. STA 2019, no. March 2019, pp. 620–625,
2019, doi: 10.1109/STA.2019.8717234.

 International Journal of Innovations in Science & Technology

July 2022 | Special Issue Page | 171

[9] K. Bakhshi Kiadehi, A. M. Rahmani, and A. Sabbagh Molahosseini, “A fault-
tolerant architecture for internet-of-things based on software-defined networks,”
Telecommun. Syst., vol. 77, no. 1, pp. 155–169, May 2021, doi: 10.1007/S11235-020-
00750-1.

[10] X. Gao, M. Qiu, and M. Liu, “Machine Learning Based Network Censorship,” 2021
8th IEEE Int. Conf. Cyber Secur. Cloud Comput. (CSCloud)/2021 7th IEEE Int. Conf.
Edge Comput. Scalable Cloud, pp. 149–154, Jun. 2021, doi: 10.1109/CSCLOUD-
EDGECOM52276.2021.00036.

[11] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,”
Electron. Mark., vol. 31, no. 3, pp. 685–695, Apr. 2021, doi: 10.1007/s12525-021-
00475-2.

[12] Q. M. A. and M. . Kiran. I, Siddique. Z, Butt. A. R, Mudassir. A. I, “Towards Skin
Cancer Classification Using Machine Learning and Deep Learning Algorithms: A
Comparison,” I nternational J. Innov. Sci. Technol., vol. 3, no. special issue, pp. 110–
118, 2021.

[13] M. Alizamir, S. Kim, O. Kisi, and M. Zounemat-Kermani, “A comparative study of
several machine learning based non-linear regression methods in estimating solar
radiation: Case studies of the USA and Turkey regions,” Energy, vol. 197, Apr. 2020,
doi: 10.1016/J.ENERGY.2020.117239.

[14] S. Ray, “A Quick Review of Machine Learning Algorithms,” Proc. Int. Conf. Mach.
Learn. Big Data, Cloud Parallel Comput. Trends, Prespectives Prospect. Com. 2019, pp. 35–
39, Feb. 2019, doi: 10.1109/COMITCON.2019.8862451.

[15] M. Anjum.S. M, Riaz.O,Latif, S, “Diastolic Dysfunction Prediction with Symptoms
Using Machine Learning Approach,” Int. J. Innov. Sci. Technol., vol. 4, no. 3, pp. 714–
727, 2022, [Online]. Available:
https://journal.50sea.com/index.php/IJIST/article/view/280/

[16] A. Malik, B. Aziz, M. Adda, and C. H. Ke, “Smart Routing: Towards Proactive
Fault-Handling in Software-Defined Networks,” Comput. Networks, vol. 170, Apr.
2019, doi: 10.48550/arxiv.1904.00717.

[17] R. O. and S. W. Anjum. M. S, Mumtaz. S, “Heart Attack Risk Prediction with Duke
Treadmill Score with Symptoms using Data Mining,” I nternational J. Innov. Sci.
Technol., vol. 3, no. 4, pp. 174–185, 2021.

[18] L. El-Garoui, S. Pierre, and S. Chamberland, “A new sdn-based routing protocol
for improving delay in smart city environments,” Smart Cities, vol. 3, no. 3, pp.
1004–1021, 2020, doi: 10.3390/smartcities3030050.

[19] R. A. U. Ullah. A, Qayyum. H, Hassan. F, Khan. M. k, “Comparison of Machine
Learning Algorithms for Sepsis Detection,” Int. J. Innov. Sci. Technol., vol. 4, no. 1,
pp. 175–188, 2022, [Online]. Available:
https://journal.50sea.com/index.php/IJIST/article/view/190

[20] S. Moazzeni, M. R. Khayyambashi, and N. Movahhedinia, “Improving the
Reliability of Software-Defined Networks with Distributed Controllers Through
Leader Election Algorithm and Colored Petri-Net,” Wirel. Pers. Commun., vol. 109,
no. 1, pp. 645–656, Nov. 2019, doi: 10.1007/S11277-019-06583-9.

[21] R. A. Manzoor. S, Qayyum. H, Hassan. F, Ullah. A, Nawaz. A, “Melanoma
Detection Using a Deep Learning Approach,” Int. J. Innov. Sci. Technol., vol. 4, no. 1,
pp. 222–232, 2022.

[22] T. Hu, P. Yi, J. Lan, Y. Hu, and P. Sun, “FTLink: Efficient and flexible link fault
tolerance scheme for data plane in Software-Defined Networking,” Futur. Gener.
Comput. Syst., vol. 111, pp. 381–400, Oct. 2020, doi:

 International Journal of Innovations in Science & Technology

July 2022 | Special Issue Page | 172

10.1016/J.FUTURE.2019.11.015.
[23] T. Truong-Huu, P. Prathap, P. M. Mohan, and M. Gurusamy, “Fast and adaptive

failure recovery using machine learning in software defined networks,” 2019 IEEE
Int. Conf. Commun. Work. ICC Work. 2019 - Proc., May 2019, doi:
10.1109/ICCW.2019.8757169.

[24] M. Silva Freitas, R. Oliveira, D. Molinos, J. Melo, P. Frosi Rosa, and F. De Oliveira
Silva, “ConForm: In-band Control Plane Formation Protocol to SDN-Based
Networks,” Int. Conf. Inf. Netw., vol. 2020-January, pp. 574–579, Jan. 2020, doi:
10.1109/ICOIN48656.2020.9016580.

[25] R. B. Shohani and S. A. Mostafavi, “Introducing a New Linear Regression Based
Method for Early DDoS Attack Detection in SDN,” 2020 6th Int. Conf. Web Res.
ICWR 2020, pp. 126–132, Apr. 2020, doi: 10.1109/ICWR49608.2020.9122310.

[26] P. Kamboj and S. Pal, “Software-Defined Networking in Data Centers,” Softw.
Defin. Internet Everything Springer, pp. 177–203, 2022.

[27] A. Wang, Z. Zha, Y. Guo, and S. Chen, “Software-Defined Networking Enhanced
Edge Computing: A Network-Centric Survey,” Proc. IEEE, vol. 107, no. 8, pp.
1500–1519, Aug. 2019, doi: 10.1109/JPROC.2019.2924377.

[28] M. P. Nowak and P. Pecka, “Routing algorithms simulation for self-aware sdn,”
Electron., vol. 11, no. 1, 2022, doi: 10.3390/electronics11010104.

[29] L.-D. Chou, Y.-T. Yang, Y.-M. Hong, J.-K. Hu, and B. Jean, “A Genetic-Based
Load Balancing Algorithm in OpenFlow Network,” pp. 411–417, 2014, doi:
10.1007/978-94-007-7262-5_48.

[30] Y. Huang and Y. Sun, “A Dataset of Daily Interactive Manipulation,” Int. J. Rob.
Res., vol. 38, no. 8, pp. 879–886, Jul. 2018, doi: 10.48550/arxiv.1807.00858.

[31] M. Hasan, H. Dahshan, E. Abdelwanees, and A. Elmoghazy, “SDN Mininet
Emulator Benchmarking and Result Analysis,” 2nd Nov. Intell. Lead. Emerg. Sci. Conf.
NILES 2020, pp. 355–360, Oct. 2020, doi: 10.1109/NILES50944.2020.9257913.

[32] M. Y. Daha, M. S. M. Zahid, B. Isyaku, and A. A. Alashhab, “CDRA: A
Community Detection based Routing Algorithm for Link Failure Recovery in
Software Defined Networks,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 11, pp. 712–
722, 2021, doi: 10.14569/IJACSA.2021.0121181.

[33] I. Khan and K. Chen, “EBA: Efficient Bandwidth Aggregation for Connected
Vehicles with MPTCP,” IEEE Internet Things J., vol. 9, no. 8, pp. 5812–5823, Apr.
2022, doi: 10.1109/JIOT.2021.3065911.

[34] S. Petale and J. Thangaraj, “Link Failure Recovery Mechanism in Software Defined
Networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 7, pp. 1285–1292, 2020, doi:
10.1109/JSAC.2020.2986668.

[35] R. H. Jhaveri, R. Tan, A. Easwaran, and S. V. Ramani, “Managing industrial
communication delays with software-defined networking,” Proc. - 2019 IEEE 25th
Int. Conf. Embed. Real-Time Comput. Syst. Appl. RTCSA 2019, Aug. 2019, doi:
10.1109/RTCSA.2019.8864557.

Copyright © by authors and 50Sea. This work is licensed under
Creative Commons Attribution 4.0 International License.

