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n this article, we study the concept of θ-contraction map- ping in rectangular m-metric space.  

We obtain fixed point result for such mapping which can be approximated by iteration.  As 

an application of the result proved in this paper, the existence of a solution of forth order 

equations are established. The presented result improves, unify and generalized many known 

results in the literature. 

Introduction 
The Banach contraction principle ([6]) is one of the most notable result which has played a vital 
role in the development of a metric fixed point theory. This principle essentially states that, in a 

complete metric space (𝑋, 𝑑), any contraction T ∶  X →  X that is, if there exists  k ∈  [0, 1) 
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such that for any x, y ∈  X, we have 

    (1.0.1)                                                           d(T x, T y)  ≤  k d(x, y), 
has a unique fixed point. This principle and its variants provide a useful apparatus in guaranteeing 
the existence and uniqueness of solution of various nonlinear problems: differential equation, 
integral equation, integro-differential equations. There are many generalizations of the Banach 
contraction principle in the literature. These generalizations were made either by using the 
contractive condition or by imposing some additional conditions on an ambient space. There have 
been a number of generalization of metric space as, rectangular metric space, partial metric space, 

𝑚-metric space and rectangular 𝑚-metric space ( see e.g. [1, 2, 4, 11] and references mentioned 
therein.) Employing one of the above mentioned strategy, Branciari [7], introduced the concept of 
rectangular metric space and proved an analog of the Banach contraction principle in such 

spaces.In the recent past, Matthews [9] initiate the concept of partial metric spaces which is the 
classical extension of a metric space. After that, many researchers generalized some related results 

in the frame of partial metric spaces. Recently, Asadi et al. [3] introduced the notion of an m-metric 
space which is the one of interesting generalizations of a partial metric space. Latter on in 2018, 

Ozgür et al. [10] introduced concept of a rectangular 𝑚-metric space and proved analog of the 

Banach contraction principle on rectangular 𝑚-metric spaces. One of the interesting 

generalizations of Banach contraction principle was given by Jleli et.al in 2014, by introducing a 

new type of contraction called 𝜃-contraction. Following the authors of [8], let Θ be the set of all 

functions 𝜃: (0, ∞) ⟶ (1, ∞)  satisfying the following conditions: 

𝛩1).  𝜃 is strictly increasing: s <  t ⇒  θ(s)  <  θ(t); 

𝛩2).  For each sequence {𝑠𝑛} in ℝ+, lim
n→∞

𝑠𝑛 = 0,  if and only if lim
n→∞

𝜃( 𝑠𝑛) = 1; 

𝛩3).  There exists r ∈  (0, 1) and ℓ ∈  (0, ∞] such that lim
s→0+

𝜃(s)−1

𝑠𝑟 = ℓ. 

Jleli et.al showed that if we take  θ𝐵: (0, ∞)  →  (1, ∞),  θ𝐵(s)  =  e √𝑠, then  θ𝐵 ∈ Θ and the  θ𝐵-
contraction reduces to a Banach contraction. Therefore, the Banach contractions are a particular 

case of 𝜃-contractions. Meanwhile there exist 𝜃 -contractions which are not Banach contractions 

(see [8]). In order to state the main result of [8], we recall the following definition. 

Definition 1.0.1. [8] Let (X, d) be a metric space. A mapping T ∶  X →  X is called an 𝜃-

contractions if there exists θ ∈  Θ and k ∈  (0, 1) such that 

 (1.0.2)                                                   θ(d(T x, T y))  ≤ [θ(d(x, y))]𝑘  

holds for all x, y ∈  X with d(T x, T y)  >  0. The following theorem is the result of Jleli et.al: 

Theorem 1.0.2. [8] Let (X, d) be complete generalized metric space and T ∶  X →  X a 𝜃-

contractions mapping. Then Thas a unique fixed point. 

 The aim of this paper, is to prove analog of the 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 1.0.2 on rectangular 𝑚-metric space. 
As an application of the result proved in this paper, the existence of a solution of forth order 
differential equations is established. 
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PRELIMINARIES 
Definition 2.0.3. [10] Let 𝑋 be a non-empty set. A mapping 𝑚𝑟 ∶  X × X →  [0, ∞) is said to 

be 𝑚𝑟-metric if for any x, y ∈  X, the following conditions hold:  

(1) 𝑚𝑟(x, y) =  m𝑟x,y
 =  M𝑟x,y

⇔  x =  y,  

(2)  M𝑟x,y
 ≤  𝑚𝑟(x, y),  

(3) 𝑚𝑟(x, y)  =  𝑚𝑟( y, x),  
(4) 𝑚𝑟(x, y) − m𝑟x,y

≤  𝑚𝑟(x, u) − m𝑟x,u
+ 𝑚𝑟(u, v) − m𝑟u,v

+ 𝑚𝑟(v, y) − m𝑟v,y
 for all  

u, v ∈  X\{x, y}. 
where m𝑟x,y

 =  min{𝑚𝑟(x, x) , 𝑚𝑟(y, y)} and M𝑟x,y
 =  min{𝑚𝑟(x, x) , 𝑚𝑟(y, y)}. The pair 

(X, 𝑚𝑟) is called a rectangular 𝑚-metric space. 

Definition 2.0.4. [10] A sequence {x𝑛} in a rectangular 𝑚-metric space X  is said to be: (i) 

convergent to some x ∈  X if and only if lim
n→∞

(𝑚𝑟(x𝑛, x) − m𝑟x𝑛,y
= 0.  (In this case we write 

𝑥𝑛 →  x as 𝑛 →  ∞), (ii) a 𝑚𝑟-Cauchy sequence if and only if    lim
n,m→∞

(𝑚𝑟(x𝑛, x𝑚) −

m𝑟x𝑛,x𝑚
) and  lim

n,m→∞
(M𝑟x𝑛,x𝑚

− m𝑟x𝑛,x𝑚
)  exist and finite. 

A rectangular 𝑚-metric space 𝑋 is said to be 𝑚𝑟-complete if every 𝑚𝑟-Cauchy sequence in 𝑋 is 

convergent in 𝑋 as lim
n,m→∞

(𝑚𝑟(x𝑛, x𝑚) − m𝑟x𝑛,x𝑚
) = 0   and  lim

n,m→∞
(M𝑟x𝑛,x𝑚

− m𝑟x𝑛,x𝑚
) = 0. 

Lemma 2.0.5. [10] Assume that 𝑥𝑛  →  𝑥 and 𝑦𝑛  →  𝑦 as 𝑛 →  ∞ in a rectangular 𝑚-metric 

space. Then lim
n→∞

(𝑚𝑟(x𝑛, y𝑛) − m𝑟x𝑛,y𝑛
) = 𝑚𝑟(x, y) − m𝑟x,y

.  

Lemma 2.0.6. [10] Assume that xn → x as n → ∞ in a rectangular 𝑚-metric space. Then 

lim
n→∞

(𝑚𝑟(x𝑛, y) − m𝑟x𝑛,y
) = 𝑚𝑟(x, y) − m𝑟x,y

,         ∀ y ∈  X.  

 

MAIN RESULT 
Definition 3.0.7. Let (𝑋,  𝑚𝑟) be a rectangular 𝑚-metric space and 𝜃 ∈  𝛩. A mapping 𝑇 ∶  𝑋 →
 𝑋 is called 𝜃-contraction if there exist 𝑘 ∈  (0, 1) such that for all 𝑥, 𝑦 ∈  𝑋 with 𝑚𝑟(𝑇𝑥, 𝑇𝑦)  >
 0 we have  

(3.0.3)                                                  𝜃(𝑚𝑟(𝑇𝑥, 𝑇𝑦))  ≤  [𝜃(𝑚𝑟(𝑥, 𝑦))]𝑘 . 

 Before stating the main result, we first prove following lemma for the class of 𝜃-contraction 

mappings for rectangular 𝑚-metric space. 

Lemma 3.0.8. Let T be a 𝜃-contraction on rectangular 𝑚-metric space (𝑋,  𝑚𝑟). If Picard 
iteration defined by  

 (3.0.4)                                                       𝑥𝑚  =  𝑇𝑥𝑚−1,      𝑚 ∈  𝑁, 
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 where 𝑥0  ∈  𝑋. converges to ∈  𝑋, then lim
n→∞

𝑇𝑥𝑚 = 𝑇𝑢∗. 

Proof. We divide the proof into two cases. 

 Case 1 : Suppose that 

 (3.0.5)                                                            lim
n→∞

  𝑚𝑟(𝑇𝑥𝑚, 𝑇𝑢∗ )  =  0.  

Since,  𝑚𝑟 𝑇 𝑥𝑚,𝑇𝑢∗  =  min { 𝑚𝑟(𝑇𝑥𝑚,  𝑇𝑥𝑚 ),  𝑚𝑟(𝑇𝑢∗, 𝑇𝑢∗)}  ≤   𝑚𝑟(𝑇𝑥𝑚, 𝑇𝑢∗). Letting  

𝑚 →  ∞, into the inequality, we have lim
m→∞

 𝑚𝑟 𝑇 𝑥𝑚,𝑇𝑢∗  ≤  lim
m→∞

 𝑚𝑟(𝑇𝑥𝑚, 𝑇𝑢∗). By using 

(3.0.5), it follows that  

(3.0.6)                                                          lim
m→∞

 𝑚𝑟(𝑇𝑥𝑚, 𝑇𝑢∗) =  0. 

From (3.0.5) and (3.0.6), we get  lim
m→∞

(  𝑚𝑟(𝑇 𝑥𝑚, 𝑇𝑢∗)  −  𝑚𝑟 𝑇 𝑥𝑚,𝑇𝑢∗) =  0.  

Hence, 𝑇𝑥𝑚  →  𝑇𝑢∗ as 𝑚 →  ∞. 

Case 2 : On the other hand, suppose that 

(3.0.7)                                                          lim
m→∞

 𝑚𝑟(𝑇𝑥𝑚, 𝑇𝑢∗)  >  0 

Since 𝑚𝑟(𝑇𝑥𝑚, 𝑇𝑢∗) ∈  [0, ∞),  for all 𝑚 ∈  ℕ Therefore, there exists 𝑁 ∈  ℕ such that 

(3.0.8)                                                         𝑚𝑟(𝑇𝑥𝑚, 𝑇𝑢∗) >  0, ∀ 𝑚 ≥  𝑁.  

By using (3.0.3) and (3.0.8), we obtain that 

𝜃( 𝑚𝑟(𝑇𝑥𝑚, 𝑇𝑢∗))  ≤  [𝜃(𝑚𝑟(𝑥𝑚, 𝑢∗))]𝑘 <  𝜃(𝑚𝑟(𝑥𝑚, 𝑢∗)),      ∀𝑚 ≥  𝑁. 

By using (𝛩1), we get 

(3.0.9)                                                     𝑚𝑟(𝑇𝑥𝑚, 𝑇𝑢∗) < 𝑚𝑟(𝑥𝑚, 𝑢∗),    ∀𝑚 ≥  𝑁. 
Case (a) : Suppose that 

(3.0.10)                                                        𝑚𝑟(𝑢∗, 𝑢∗)  ≤  lim
m→∞

 𝑚𝑟(𝑥𝑚, 𝑥𝑚) . 

In this case, our claim is to show that  𝑚𝑟(𝑢∗, 𝑢∗) = 0. If lim
m→∞

 𝑚𝑟(𝑥𝑚, 𝑥𝑚) = 0. Then it 

follows from (3.0.10), we have 𝑚𝑟(𝑢∗, 𝑢∗) = 0. On the other hand, if lim
m→∞

 𝑚𝑟(𝑥𝑚, 𝑥𝑚) > 0. 

Therefore, there exists 𝑀 ∈ ℕ such that  

(3.0.11)                                                             𝑚𝑟(𝑥𝑚, 𝑥𝑚)  >  0,    ∀𝑚 ≥ 𝑀.  

By using (3.0.3), we have 𝜃(𝑚𝑟(𝑥𝑚, 𝑥𝑚))  ≤  [𝜃( 𝑚𝑟(𝑥𝑚−1, 𝑥𝑚−1))]𝑘 ,     ∀𝑚 ≥

 𝑀. Continuing this way, we can obtain 𝜃(𝑚𝑟(𝑥𝑚, 𝑥𝑚))  ≤  [𝜃(𝑚𝑟(𝑥0, 𝑥0))]𝑘𝑚
 , ∀𝑚 ≥  𝑀. It 

follows that 

(3.0.12)                                                         lim
m→∞

𝜃(𝑚𝑟(𝑥𝑚, 𝑥𝑚)) = 1. 

By using (𝛩2) in (3.0.12), we get lim
m→∞

 𝑚𝑟(𝑥𝑚, 𝑥𝑚) = 0. By using (3.0.10), we obtain 

 𝑚𝑟(𝑢∗, 𝑢∗)  ≤ lim
m→∞

 𝑚𝑟(𝑥𝑚, 𝑥𝑚) = 0. It follows that 

(3.0.13)                                                                       𝑚𝑟(𝑢∗, 𝑢∗)  =  0. 

Since 𝑚𝑟(𝑇𝑢∗, 𝑇𝑢∗) ∈  [0, ∞). If  𝑚𝑟(𝑇𝑢∗, 𝑇𝑢∗) = 0. Then from (3.0.13), we have 
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(3.0.14)                                                         𝑚𝑟(𝑇𝑢∗, 𝑇𝑢∗) = 0 =  𝑚𝑟(𝑢∗, 𝑢∗).  

On the other hand, if  𝑚𝑟(𝑇𝑢∗, 𝑇𝑢∗) >  0. It follows from (3.0.3), we get  

𝜃( 𝑚𝑟(𝑇𝑢∗, 𝑇𝑢∗))  ≤  [𝜃( 𝑚𝑟(𝑢∗, 𝑢∗))]𝑘 <  𝜃( 𝑚𝑟(𝑢∗, 𝑢∗)). 

By using (𝛩1), we obtain 𝑚𝑟(𝑇𝑢∗, 𝑇𝑢∗))  <   𝑚𝑟(𝑢∗, 𝑢∗). By using (3.0.13), the above 
inequality becomes 

(3.0.15)                                                 𝑚𝑟(𝑇𝑢∗, 𝑇𝑢∗)) = 0 =  𝑚𝑟(𝑢∗, 𝑢∗). 

In this case, from (3.0.14) and (3.0.15), we conclude that 

(3.0.16)           𝑚𝑟𝑥𝑚,𝑢∗   =  𝑚𝑖𝑛{ 𝑚𝑟(𝑥𝑚, 𝑥𝑚),  𝑚𝑟(𝑢∗, 𝑢∗)} =  𝑚𝑟(𝑢∗, 𝑢∗) =  0, ∀𝑚 ≥  𝑀.  

(3.0.17)    𝑚𝑟 𝑇𝑥𝑚,𝑇𝑢∗  =  min{ 𝑚𝑟(𝑇𝑥𝑚, 𝑇𝑥𝑚),  𝑚𝑟(𝑇𝑢∗, 𝑇𝑢∗)} =  𝑚𝑟(𝑇𝑢∗, 𝑇𝑢∗) = 0, ∀𝑚 ≥

 𝑀. Since, 𝑥𝑚 → 𝑢∗as 𝑚 → ∞. This implies that  𝑚𝑟(𝑥𝑚, 𝑢∗)  − 𝑚𝑟𝑥𝑚,𝑢∗  →  0, 𝑚 →  ∞. By 

using (3.0.16), into the above inequality, we have 

(3.0.18)                                                        𝑚𝑟(𝑥𝑚, 𝑢∗)  →  0,        𝑚 →  ∞. 

Letting m → ∞, in (3.0.9), we have 

(3.0.19)                                        lim
𝑚→∞

 𝑚𝑟(𝑇𝑥𝑚, 𝑇𝑢∗) <  𝑙𝑖𝑚 𝑚 → ∞  lim
𝑚→∞

 𝑚𝑟(𝑥𝑚, 𝑢∗) 

By using (3.0.18) into the (3.0.19), we get  

(3.0.20)                                                     lim
𝑚→∞

 𝑚𝑟(𝑇𝑥𝑚, 𝑇𝑢∗) =  0. 

Letting 𝑚 →  ∞, in (3.0.17), we have 

(3.0.21)                                                       𝑚𝑟 𝑇𝑥𝑚,𝑇𝑢∗  →  0,         𝑚 →  ∞ 

By combining (3.0.20) and (3.0.21), we obtain 𝑚𝑟(𝑇𝑥𝑚, 𝑇𝑢∗)  −   𝑚𝑟 𝑇𝑥𝑚,𝑇𝑢∗  →  0,    𝑚 →

 ∞. Thus 𝑇𝑥𝑚 →  𝑇𝑢∗ 𝑎𝑠 𝑚 →  ∞.  
Case (b) : On the other hand, suppose that 

(3.0.22)                                                          𝑚𝑟(𝑢∗ , 𝑢∗ ) ≥  lim
m→∞

 𝑚𝑟(𝑥𝑚, 𝑥𝑚). 

Then in this case, our claim is to show that  

(3.0.23)                                                                      lim
m→∞

 𝑚𝑟 𝑇𝑥𝑚,𝑇𝑢∗  =  0. 

If  𝑚𝑟(𝑢∗ , 𝑢∗ ) = 0. Then it follows form (3.0.22), we obtain (3.0.23). If  𝑚𝑟(𝑢∗ , 𝑢∗ )  >  0. 

Then in this case, we further assume that lim
m→∞

 𝑚𝑟(𝑥𝑚, 𝑥𝑚)  =  0. Then it is easy to see 

that lim
m→∞

 𝑚𝑟𝑥𝑚,𝑢∗  =  0. Now on the other hand, suppose that lim
m→∞

 𝑚𝑟(𝑥𝑚, 𝑥𝑚) >  0. Based on 

the same procedure as in case (a), we obtain lim
m→∞

 𝑚𝑟(𝑥𝑚, 𝑥𝑚) = 0. Hence, our claim is true. As 

𝑥𝑚  →  𝑢∗ as 𝑚 →  ∞. We have 𝑚𝑟(𝑥𝑚, 𝑢∗) −   𝑚𝑟𝑥𝑚,𝑢∗  →  0, as  𝑚 →  ∞. By using (3.0.23), 

into the above, it follows that 

(3.0.24)                                                                  lim
m→∞

 𝑚𝑟(𝑥𝑚, 𝑢∗)  =  0. 

By using (3.0.24), it follows from (3.0.9), we have the following 
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(3.0.25)                                                                 lim
m→∞

 𝑚𝑟(𝑇𝑥𝑚, 𝑇𝑢∗)  =  0. 

Moreover, we have 

 (3.0.26 )                                                                 𝑚𝑟 𝑇𝑥𝑚,𝑇𝑢∗  ≤   𝑚𝑟(𝑇𝑥𝑚, 𝑇𝑢∗). 

 Letting m → ∞, we obtain 

 (3.0.27)                                                                     lim
m→∞

 𝑚𝑟 𝑇𝑥𝑚,𝑇𝑢∗ =  0.  

By using (3.0.26) and (3.0.27), we have  𝑇𝑥𝑚  →  𝑇𝑢∗  as 𝑚 →  ∞. 

Proposition 3.0.9. Let (𝑋, 𝑚𝑟) be a rectangular 𝑚-metric space and 𝑇 ∶  𝑋 →  𝑋 be a 𝜃-

contraction mapping. If the Picard iteration defined by 𝑥𝑚  =  𝑇𝑥𝑚−1 for 𝑚 ≥  1, (𝑥0 ∈  𝑋) has 

the property 𝑚𝑟 (𝑥𝑛, 𝑥𝑛)  =  0 for some 𝑛 ∈  ℕ. Then 

(3.0.28)                                                          𝑚𝑟(𝑥𝑚, 𝑥𝑚) =  0,   ∀𝑚 ≥  𝑛. 

Proof. We will prove it by induction on 𝑚. Suppose that the result is true for 𝑚 = 𝑘 >  𝑛. This 
can also be expressed as 

 (3.0.29)                                                           𝑚𝑟(𝑥𝑘, 𝑥𝑘)  =  0. 

We want to prove that 𝑚𝑟(𝑥𝑘+1, 𝑥𝑘+1)  =  0. On contrary suppose that 𝑚𝑟(𝑥𝑘+1, 𝑥𝑘+1) >  0. 
By using (3.0.3), we have 𝜃 (𝑚𝑟(𝑥𝑘+1, 𝑥𝑘+1))  ≤  [𝜃 (𝑚𝑟(𝑥𝑘, 𝑥𝑘))]𝑘  <  𝜃(𝑚𝑟(𝑥𝑘, 𝑥𝑘)). It 
follows from (Θ1),𝑚𝑟(𝑥𝑘+1, 𝑥𝑘+1)  <  𝑚𝑟(𝑥𝑘, 𝑥𝑘).By using (3.0.29) into the above inequality, 
we obtain the desired result. 

Proposition 3.0.10. Let (𝑋, 𝑚𝑟)  be a rectangular 𝑚-metric space and 𝑇 ∶  𝑋 →  𝑋 be a 𝜃-

contraction mapping. Suppose that the Picard iteration defined by 𝑥𝑚  =  𝑇𝑥𝑚−1        𝑚 ≥
 1, (𝑥0 ∈  𝑋),  Then, for every fixed 𝑛 ∈ ℕ, we have 

 (3.0.30)            𝑚𝑟𝑥𝑛,𝑥𝑚
 =  𝑚𝑖𝑛{𝑚𝑟(𝑥𝑛, 𝑥𝑛), 𝑚𝑟(𝑥𝑚, 𝑥𝑚)} =  𝑚𝑟(𝑥𝑚, 𝑥𝑚),     𝑚 >  𝑛. 

Proof. On contrary suppose that 

 (3.0.31)                                     𝑚𝑟𝑥𝑛,𝑥𝑚
=  𝑚𝑟(𝑥𝑛, 𝑥𝑛),      ∀𝑚 >  𝑛.  

Now, we divide the proof into two following cases. 

 Case 1 : If 𝑚𝑟(𝑥𝑛, 𝑥𝑛) =  0. By 𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 3.0.9, we have𝑚𝑟(𝑥𝑚, 𝑥𝑚) =  0, ∀m > n. 

 Consider 𝑚𝑟𝑥𝑛,𝑥𝑚
= 𝑚𝑖𝑛{𝑚𝑟(𝑥𝑛, 𝑥𝑛), 𝑚𝑟(𝑥𝑚, 𝑥𝑚)} =  𝑚𝑖𝑛{0, 0} = 0 = 𝑚𝑟(𝑥𝑚, 𝑥𝑚), ∀𝑚 >

 𝑛. Therefore, it follows that 𝑚𝑟𝑥𝑛,𝑥𝑚
= 𝑚𝑟(𝑥𝑚, 𝑥𝑚), ∀𝑚 >  𝑛. 

Case 2 : If 𝑚𝑟(𝑥𝑛, 𝑥𝑛) >  0. It follows from (3.0.31), 

(3.0.32)                                                𝑚𝑟(𝑥𝑚, 𝑥𝑚)  >  0 ∀𝑚 >  𝑛. 

 By using (3.0.3) and (3.0.32), we have  

𝜃 (𝑚𝑟(𝑥𝑚, 𝑥𝑚)) ≤  [𝜃 (𝑚𝑟(𝑥𝑚, 𝑥𝑚))]
𝑘

 ≤ · · · ≤  [𝜃 (𝑚𝑟(𝑥𝑛, 𝑥𝑛))]
𝑘𝑚−𝑛

< 𝜃 (𝑚𝑟(𝑥𝑛, 𝑥𝑛)), 

By using (𝛩1), we obtain 𝑚𝑟(𝑥𝑚, 𝑥𝑚)  <  𝑚𝑟(𝑥𝑛, 𝑥𝑛) ; ∀𝑚 >  𝑛, which is a contradiction on 
the fact that (3.0.31).  
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Theorem 3.0.11. Let (𝑋, 𝑚𝑟)   be a complete rectangular 𝑚-metric space and 𝑇 ∶  𝑋 →  𝑋 be a 

𝜃-contraction mapping. Then 𝑇 is a Picard operator.  

Proof. We divide the proof into two following cases. 

 Case 1 : If there exists a natural number 𝑛 such that 𝑥𝑛+1  =  𝑥𝑛. Clearly, in this case 𝑥𝑛 is a 

fixed point of 𝑇.  

Case 2 : Now suppose that 𝑥𝑛+1 ≠  𝑥𝑛 for all 𝑛 ∈  ℕ. We divide this case into two further 
subcases. Subcase 1 : If 

 (3.0.33)                                                          𝑚𝑟(𝑥𝑛+1, 𝑥𝑛)  =  0,  

for some 𝑛 ∈  ℕ. Notice that 𝑚𝑟𝑥𝑛+1,𝑥𝑛
 ≤   𝑚𝑟(𝑥𝑛+1, 𝑥𝑛) =  0. Therefore, it follows that  

(3.0.34)                                                                 𝑚𝑟𝑥𝑛+1,𝑥𝑛
=  0. 

 Furthermore, it follows from the 𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 3.0.10, we have  

(3.0.35)                                                              𝑚𝑟𝑥𝑛+1,𝑥𝑛
 = 𝑚𝑟(𝑥𝑛+1, 𝑥𝑛+1). 

By combining (3.0.34) and (3.0.35), we get 

 (3.0.36)                                                       𝑚𝑟(𝑥𝑛+1, 𝑥𝑛+1) =  0.  

Since 𝑚𝑟(𝑥𝑛+1, 𝑥𝑛+1) =  0., it follows from the 𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 3.0.9, we obtain  

(3.0.37)                                                       𝑚𝑟(𝑥𝑛+2, 𝑥𝑛+2) =  0.  
Now from here, we further divide subcase 1, into two cases. 

 Subcase 1𝑎: If 

 (3.0.38)                                                       𝑚𝑟(𝑥𝑛+1, 𝑥𝑛+2) =  0. 

 It follows from (3.0.36), (3.0.37) and (3.0.38), we have  

𝑚𝑟(𝑥𝑛+1, 𝑥𝑛+1) = 𝑚𝑟(𝑥𝑛+2, 𝑥𝑛+2) = 𝑚𝑟(𝑥𝑛+1, 𝑥𝑛+2) 0. 
 By using the property of 𝑚𝑟, it follows that 𝑥𝑛+1 =  𝑥𝑛+2. Moreover, this equation can also be 

written as 𝑥𝑛+1 =  𝑇𝑥𝑛+1. Clearly, 𝑥𝑛+1 is the fixed point. As a result, the theorem is proved. 

Subcase1𝑏 : On the other hand, suppose that 

 (3.0.39)                                                        𝑚𝑟(𝑥𝑛+1, 𝑥𝑛+2) > 0. 

 By using (3.0.3), we have 

 𝜃 (𝑚𝑟(𝑥𝑛+1, 𝑥𝑛+2))  ≤  [𝜃 (𝑚𝑟(𝑥𝑛, 𝑥𝑛+1))]𝑘  <  𝜃 (𝑚𝑟(𝑥𝑛, 𝑥𝑛+1)). 

By using (Θ1), this gives 𝑚𝑟(𝑥𝑛+1, 𝑥𝑛+2)  <  𝑚𝑟(𝑥𝑛, 𝑥𝑛+1). By using (3.0.33) we have 

𝑚𝑟(𝑥𝑛+1, 𝑥𝑛+2) = 0, which is a contradiction of the fact (3.0.39). 

Subcase 2 : Now, we suppose that 𝑚𝑟(𝑥𝑛+1, 𝑥𝑛) >  0,  for all 𝑛 ∈  ℕ. Let 𝛽𝑛  =
  𝑚𝑟(𝑥𝑛, 𝑥𝑛+1)∀𝑛 ∈  𝑁. Then by (3.0.3), we get 

 (3.0.40)           𝜃 (𝛽𝑛)  ≤  [𝜃 (𝛽𝑛−1)]𝑘  ≤  [𝜃 (𝛽𝑛−2)]𝑘2
 ≤ · · · ≤  [𝜃 (𝛽0)]𝑘𝑛

 , ∀ 𝑛 ∈  ℕ.  
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Taking letting  𝑛 →  ∞ in (3.0.40), we get  lim
𝑛→∞

𝜃 (𝛽𝑛)  =  1. By using (𝛩2), we have 

lim
𝑛→∞

𝛽0 = 0. Now from (𝛩3), there exists 𝑟 ∈  (0, 1) and ℓ ∈  (0, ∞] such that  

lim
𝑛→∞

𝜃 (𝛽𝑛) − 1
𝑟⁄  =  ℓ. 

Suppose that ℓ <  ∞. In this case, let  

(3.0.41)                                                                   𝐵 =  ℓ/2 >  0. 

 It follows that, there exists 𝑛0 ∈  ℕ such that |
𝜃(𝛽𝑛)− 1

(𝛽𝑛)𝑟
− ℓ| ≤  𝐵, ∀𝑛 ≥  𝑛0. It follows 

that −𝐵 + ℓ ≤
𝜃(𝛽𝑛)− 1

(𝛽𝑛)𝑟  , ∀𝑛 ≥  𝑛0. By using (3.0.41), we obtain 

𝐵 ≤
𝜃(𝛽𝑛) −  1

(𝛽𝑛)𝑟
 , ∀𝑛 ≥  𝑛0. 

It asserts that 𝑛(𝛽𝑛)𝑟  ≤  𝐴𝑛[𝜃(𝛽𝑛)  −  1], ∀𝑛 ≥  𝑛0, where 𝐴 =  1/𝐵. 

Suppose now that  ℓ =  ∞. Let 𝐵 >  0 be an arbitrary positive number. It follows that, there 

exists 𝑛0 ∈  ℕ. such that 

𝜃(𝛽𝑛) −  1

(𝛽𝑛)𝑟
≥ 𝐵 , ∀𝑛 ≥  𝑛0. 

By following the above process, we have 𝑛(𝛽𝑛)𝑟  ≤  𝐴𝑛[𝜃(𝛽𝑛)  −  1], ∀𝑛 ≥  𝑛0, where 𝐴 =
 1/𝐵. Therefore if ℓ ∈  (0, ∞], there exist 𝐴 >  0 and 𝑛0 ∈  ℕ such that 

               𝑛(𝛽𝑛)𝑟  ≤  𝐴𝑛[𝜃(𝛽𝑛) −  1],               ∀𝑛 ≥  𝑛0. 

By using (3.0.3), we obtain 𝑛(𝛽𝑛)𝑟  ≤  𝐴𝑛[𝜃(𝛽0)𝑘𝑛
−  1],     ∀𝑛 ≥  𝑛0.  

Letting 𝑛 →  ∞ in the inequality, we obtain lim
𝑛 → ∞

𝑛(𝛽𝑛)𝑟 =  0. Thus, there exist 𝑛1 ∈  ℕ such 

that  𝛽𝑛  = 𝑚𝑟(𝑥𝑛, 𝑥𝑛+1)  ≤  
1

𝑛
1

𝑟⁄
1 ,                ∀𝑛 ≥  𝑛1. 

Now, we will prove that  

(3.0.42)                                               lim
𝑛→∞

𝑚𝑟(𝑥𝑛, 𝑥𝑛+2)  =  0. 

 If 𝑚𝑟(𝑥𝑛, 𝑥𝑛+2) = 0 for all  𝑛 ∈  ℕ, then we have (3.0.42). On the other hand, if 

𝑚𝑟(𝑥𝑛, 𝑥𝑛+2) > 0  for all  𝑛 ∈  ℕ. By using (3.0.3), we get 

𝜃 (𝑚𝑟(𝑥𝑛, 𝑥𝑛+2)) ≤  [𝜃 (𝑚𝑟(𝑥𝑛−1, 𝑥𝑛+1))]
𝑘

 ,           ∀𝑛 ∈  ℕ. 

Continuing this way, we have 

 (3.0.43)                                  𝜃 (𝑚𝑟(𝑥𝑛, 𝑥𝑛+2))  ≤  [𝜃 (𝑚𝑟(𝑥0, 𝑥2))]𝑘𝑛 ,     ∀ 𝑛 ∈  ℕ.  

Letting 𝑛 →  ∞  in (3.0.43), we obtain lim
𝑛 → ∞

 𝜃 (𝑚𝑟(𝑥𝑛, 𝑥𝑛+2))  =  1. By using (𝛩2), we get 

lim
𝑛 → ∞

 𝑚𝑟(𝑥𝑛, 𝑥𝑛+2)  = 0. Now, we prove that the sequence {𝑥𝑛}𝑛∈ℕ   is a 𝑚𝑟-Cauchy. 

Let 𝑚 >  𝑛 with 𝑚 =  𝑛 +  𝑜 where 𝑜 >  2, we will consider two cases. 
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 Case (i): For 𝑜 is odd. Let 𝑜 =  2𝑝 +  1, where 𝑝 ∈  ℕ. Then   𝑚𝑟(𝑥𝑛, 𝑥𝑚)– 𝑚𝑟𝑥𝑛,𝑥𝑚
 =

 𝑚𝑟(𝑥𝑛, 𝑥𝑛+2𝑝+1)– 𝑚𝑟𝑥𝑛,𝑥𝑛+2𝑝+1
  

                     ≤  𝑚𝑟(𝑥𝑛, 𝑥𝑛+1)  − 𝑚𝑟𝑥𝑛,𝑥𝑛+1
+ · · ·  + 𝑚𝑟(𝑥𝑛+2𝑝, 𝑥𝑛+2𝑝+1)  −  𝑚𝑟𝑥𝑛+2𝑝,𝑥𝑛+2𝑝+1

  

                        <  𝑚𝑟(𝑥𝑛, 𝑥𝑛+1)  + · · ·  + 𝑚𝑟(𝑥𝑛+2𝑝, 𝑥𝑛+2𝑝+1)  =  𝛽𝑛  + · · ·  + 𝛽𝑛+2𝑝 

                                          ≤ ∑ 𝛽𝑖
∞
𝑛=1  ≤ ∑ 1

𝑖
1

𝑟⁄⁄∞
𝑛=1 < 𝜖. 

Case (ii): For 𝑜 is even. Let 𝑜 =  2𝑝, where 𝑝 ∈  ℕ Then 

𝑚𝑟(𝑥𝑛, 𝑥𝑚)– 𝑚𝑟𝑥𝑛,𝑥𝑚
 =  𝑚𝑟(𝑥𝑛, 𝑥𝑛+2𝑝+1)– 𝑚𝑟𝑥𝑛,𝑥𝑛+2𝑝+1

    

≤  𝑚𝑟(𝑥𝑛, 𝑥𝑛+2) − 𝑚𝑟𝑥𝑛,𝑥𝑛+2
+  𝑚𝑟(𝑥𝑛+2, 𝑥𝑛+3) −  𝑚𝑟𝑥𝑛+2,𝑥𝑛+3

+ · · 

·  + 𝑚𝑟(𝑥𝑛+2𝑝−1, 𝑥𝑛+2𝑝)  −  𝑚𝑟𝑥𝑛+2𝑝−1,𝑥𝑛+2𝑝
  

                            < 𝑚𝑟(𝑥𝑛, 𝑥𝑛+2) + 𝑚𝑟(𝑥𝑛+2, 𝑥𝑛+3) + · · ·  + 𝑚𝑟(𝑥𝑛+2𝑝−1, 𝑥𝑛+2𝑝)    

                             ≤  𝑚𝑟(𝑥𝑛, 𝑥𝑛+2)  + ∑ 𝛽𝑖
∞
𝑛=1 ≤  𝑚𝑟(𝑥𝑛, 𝑥𝑛+2) + ∑ 1

𝑖
1

𝑟⁄⁄∞
𝑛=1 < 𝜖. 

Indeed, the series ∑ 1
𝑖

1
𝑟⁄⁄∞

𝑛=1  converges and lim
𝑛→∞

𝑚𝑟(𝑥𝑛, 𝑥𝑛+2)  =  0, this implies that 

lim
𝑛,𝑚→∞

(𝑚𝑟(𝑥𝑛, 𝑥𝑚)– 𝑚𝑟𝑥𝑛,𝑥𝑚
) , exist and finite. 

Now, if 𝑀𝑟𝑥𝑛,𝑥𝑚
= 0 for all 𝑚 >  𝑛, then 𝑚𝑟𝑥𝑛,𝑥𝑚

= 0  for all 𝑚 >  𝑛, which implies that 

𝑀𝑟𝑥𝑛,𝑥𝑚
− 𝑚𝑟𝑥𝑛,𝑥𝑚

= 0, ∀m >  n. This implies that lim
𝑛,𝑚→∞

(𝑀𝑟(𝑥𝑛, 𝑥𝑚)– 𝑚𝑟𝑥𝑛,𝑥𝑚
) = 0. 

Now, we may assume that 𝑀𝑟𝑥𝑛,𝑥𝑚
 >  0, ∀𝑚 >  𝑛. From 𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 3.0.10, we obtain 

𝑀𝑟𝑥𝑛,𝑥𝑚
  =  𝑚𝑟(𝑥𝑛, 𝑥𝑛)  >  0, ∀𝑚 >  𝑛. Suppose µ𝑛 =  𝑚𝑟(𝑥𝑛, 𝑥𝑛) for all 𝑛 ∈  ℕ. Then by 

(3.0.3), we obtai 

(3.0.44)                                𝜃( µ𝑛)  ≤  [𝜃( µ𝑛−1)]𝑘  ≤  [𝜃( µ𝑛−2)]𝑘2
≤ · · · ≤  [𝜃( µ0)]𝑘𝑛

 . 

On taking limit as 𝑛 →  ∞, in (3.0.44), we get lim
𝑛→∞

𝜃( µ𝑛)  =  1. By using (𝛩2), we have 

(3.0.45)                                                                lim
𝑛→∞

 µ𝑛  =  0. 

Based on the same procedure, we obtain µ𝑛  = 𝑚𝑟(𝑥𝑛, 𝑥𝑛)  ≤  1
𝑛

1
𝑟1

⁄⁄  , ∀𝑛 ≥  𝑛3. Therefore, 

we obtain 

𝑀𝑟𝑥𝑛,𝑥𝑚
− 𝑚𝑟𝑥𝑛,𝑥𝑚

= 𝑚𝑟(𝑥𝑛, 𝑥𝑛) − 𝑚𝑟(𝑥𝑚, 𝑥𝑚)

< 𝑚𝑟(𝑥𝑛, 𝑥𝑛) + 𝑚𝑟(𝑥𝑛+1, 𝑥𝑛+1) +· · ·  +𝑚𝑟(𝑥𝑚, 𝑥𝑚) 

≤  µ𝑛  +  µ𝑛+1  + · · ·  + µ𝑚  ≤ ∑ µ𝑖

∞

𝑛=1

≤ ∑ 1
𝑛

1
𝑟1

⁄⁄ < 𝜖.

∞

𝑛=1

  



                                             International Journal of Innovations in Science & Technology 

June 2022 | Vol 4|Issue 3        876 

Since the series ∑ 1
𝑛

1
𝑟1

⁄⁄
∞
𝑛=1  converges, this implies that lim

𝑛,𝑚→∞
(𝑚𝑟(𝑥𝑛, 𝑥𝑚)– 𝑚𝑟𝑥𝑛,𝑥𝑚

) exist 

and finite. Based on the above argument we conclude that {𝑥𝑛}𝑛∈ℕ is an 𝑚𝑟-Cauchy sequence. 

Since  (𝑋, 𝑚𝑟) is a complete rectangular m-metric space so 𝑥𝑛 converges to 𝑢∗ ∈  𝑋. Since 

𝑚𝑟(𝑥𝑛, 𝑥𝑛) > 0, by using (3.0.3) and (𝛩2), we conclude that 

 (3.0.46)                                                             lim
𝑛→∞

𝑚𝑟(𝑥𝑛, 𝑇𝑥𝑛) = 0. 

   By using 𝑚𝑟𝑥𝑛,𝑇𝑥𝑛
≤  𝑚𝑟(𝑥𝑛, 𝑇𝑥𝑛), we have 

 (3.0.47)                                                                lim
𝑛→∞

𝑚𝑟𝑥𝑛,𝑇𝑥𝑛
= 0. 

By using (3.0.46) and (3.0.47), we have  

(3.0.48)                                                     lim
𝑛→∞

𝑚𝑟(𝑥𝑛, 𝑇𝑥𝑛) − 𝑚𝑟𝑥𝑛,𝑇𝑥𝑛
= 0.    

Since 

 (3.0.49)                                                                 𝑥𝑛  →  𝑢∗ ,        𝑛 →  ∞. 

 Therefore, it follows from 𝐿𝑒𝑚𝑚𝑎 3.0.8, we obtain  

(3.0.50)                                                                  𝑇𝑥𝑛  →  𝑇𝑢∗ ,        𝑛 →  ∞. 

By using (3.0.49) and (3.0.50) into the 𝐿𝑒𝑚𝑚𝑎 2.0.5, then (3.0.48) becomes  

(3.0.51)                                                                    𝑚𝑟(𝑢∗, 𝑇𝑢∗) =  𝑚𝑟𝑢∗,𝑇𝑢∗  .  

By 𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 3.0.10, we have 𝑚𝑟𝑥𝑛,𝑇𝑥𝑛
= 𝑚𝑟(𝑇𝑥𝑛, 𝑇𝑥𝑛), ∀𝑛 ∈  ℕ. Letting 𝑛 →  ∞ in the 

this equality, we obtain lim
𝑛 → ∞

𝑚𝑟𝑥𝑛,𝑇𝑥𝑛
= lim

𝑛 → ∞
𝑚𝑟(𝑇𝑥𝑛, 𝑇𝑥𝑛) Therefore, we have  

(3.0.52)                                                  lim
𝑛 → ∞

( 𝑚𝑟𝑥𝑛,𝑇𝑥𝑛
− 𝑚𝑟(𝑇𝑥𝑛, 𝑇𝑥𝑛)) = 0. 

By using (3.0.49) and (3.0.50) into the 𝐿𝑒𝑚𝑚𝑎 2.0.5, then (3.0.52) becomes  

(3.0.53)                                                  𝑚𝑟𝑢∗,𝑇𝑢∗  − 𝑚𝑟(𝑇𝑢∗, 𝑇𝑢∗)  =  0.  

By using (3.0.51) and (3.0.53), we have 

 (3.0.54)                                            𝑚𝑟(𝑢∗, 𝑇𝑢∗) =  𝑚𝑟𝑢∗,𝑇𝑢∗ =  𝑚𝑟(𝑇𝑢∗, 𝑇𝑢∗). 

 From (3.0.48), we obtain 

 (3.0.55)                                                 lim
𝑛 → ∞

( 𝑚𝑟(𝑥𝑛, 𝑥𝑛−1) − 𝑚𝑟𝑥𝑛,𝑇𝑥𝑛
) = 0. 

By using (3.0.49) and (3.0.50) into the 𝐿𝑒𝑚𝑚𝑎 2.0.5, then (3.0.55) becomes  

(3.0.56)                                                              𝑚𝑟(𝑢∗, 𝑢∗) =  𝑚𝑟𝑢∗,𝑇𝑢∗ .  

 By using (3.0.54) and (3.0.56), we get 𝑚𝑟(𝑢∗, 𝑢∗)  = 𝑚𝑟(𝑇𝑢∗, 𝑢∗) = 𝑚𝑟(𝑇𝑢∗, 𝑇𝑢∗). This 

implies that  𝑇𝑢∗ = 𝑢∗. 

For the uniqueness of fixed point, suppose that there exist two elements 𝑥, 𝑦 ∈  𝑋 such that 𝑥 =
 𝑇 𝑥 and 𝑦 =  𝑇 𝑦 with 𝑥 ≠  𝑦. In order to proof the uniqueness of the fixed point, we divide 
into two cases. 
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Case A : If 𝑚𝑟(𝑇 𝑥, 𝑇 𝑦)  =  𝑚𝑟(𝑥, 𝑦)  =  0. Without loss of generality, suppose that 𝑚𝑟𝑥,𝑦
=

𝑚𝑟(𝑥, 𝑥). Notice that 𝑚𝑟(𝑥, 𝑥) = 𝑚𝑟𝑥,𝑦
≤  𝑚𝑟(𝑥, 𝑦)  =  0. It follows that 𝑚𝑟(𝑥, 𝑥) =  0.  

Further, we divide case A into two subcases.  

Subcase A1 : If 𝑚𝑟(𝑦, 𝑦)  =  0. Then it is easy to check that 𝑥 =  𝑦.  

Subcase A2 : On the other hand, if 𝑚𝑟(𝑦, 𝑦)   >  0. By using (3.0.3), we have (𝑚𝑟(𝑦, 𝑦)) <
 𝜃(𝑚𝑟(𝑦, 𝑦)),. By (𝛩1), we get 𝑚𝑟(𝑦, 𝑦)  <  𝑚𝑟(𝑦, 𝑦). which is a contradiction. 

Case B : If 𝑚𝑟(𝑇 𝑦, 𝑇 𝑦) =  𝑚𝑟(𝑥, 𝑦)  >  0. By using (3.0.3), we deduce 𝜃(𝑚𝑟(𝑥, 𝑦))  <
 𝜃(𝑚𝑟(𝑥, 𝑦)). By using (𝛩1), we have 𝑚𝑟(𝑥, 𝑦)  <  𝑚𝑟(𝑥, 𝑦). which leads to a contradiction.  

 We now provide examples that support 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 3.0.11.  

Example 3.1. Let 𝑋 =  [0, ∞) be endowed with rectangular 𝑚-metric 𝑚𝑟(𝑥, 𝑦)  =  
|𝑥|+|𝑦|

2 
 for 

all 𝑥, 𝑦 ∈  𝑋. Then (𝑋, 𝑚𝑟) is an complete rectangular 𝑚-metric space. Let 𝜃 ∶  (0, ∞)  →

 (1, ∞) be a mapping defined as 𝜃(𝑥)  =  𝑒√ 𝑥  , for all 𝑥 ∈  𝑋. Define 𝑇 ∶  𝑋 →  𝑋 as (𝑥)  =
𝑥

2
  

, for all 𝑥 ∈  𝑋. It is easy to check that for the value of 𝑘 = √1/2 , 𝑇 is 𝜃-contraction. 

Therefore, by 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 3.0.11, 𝑇 has a unique fixed point 0. 

Example 3.2. Let 𝑋 =  {1, 2, 3, 4}. Define 𝑚𝑟 ∶  𝑋 ×  𝑋 →  [0, ∞) as 

 𝑚𝑟(1, 1) =   𝑚𝑟(2, 2) =   𝑚𝑟(3, 3) =  0 𝑎𝑛𝑑  𝑚𝑟(4, 4) =  5 

  𝑚𝑟(1, 2)  =   𝑚𝑟(2, 1)  =  3 ,     𝑚𝑟(1, 3)  =   𝑚𝑟(3, 1)  =  1 , 𝑚𝑟(1, 4)  =  𝑚𝑟(4, 1)  =  4 

   𝑚𝑟(2, 3)  =   𝑚𝑟(3, 2)  =  1,    𝑚𝑟(2, 4)  =   𝑚𝑟(4, 2)  =  4 ,   𝑚𝑟(3, 4)  =   𝑚𝑟(4, 3)  =  4. 

Clearly, (𝑋, 𝑚𝑟) is a complete rectangular m-metric space. On the other hand, the (𝑋, 𝑚𝑟) is not 

a 𝑚-metric space.Define 𝑇 ∶  𝑋 →  𝑋 as 

𝑇(𝑥)  =  {
1,       𝑥 =  1, 2, 3 
3,               𝑥 =  4

 

For 𝑥 ∈  {1, 2, 3} and 𝑦 =  4, we have 𝑚𝑟(𝑇 𝑥, 𝑇 𝑦)  =  𝑚𝑟(1, 3)  =  1 >  0. Therefore,  

𝑒√ 𝑚𝑟(𝑇(𝑥),𝑇(𝑦)) 𝑒𝑚𝑟(𝑇 (𝑥),𝑇 (𝑦))
  ≤  [𝑒√ 𝑚𝑟(𝑥,𝑦)𝑒𝑚𝑟(𝑥,𝑦)

 ]
0.9

  . 

Suppose 𝜃(𝑥)  =  𝑒√ 𝑥𝑒𝑥  and 𝑘 =  0.9, we see that 𝑇 is a 𝜃-contraction which satisfies 

𝑇ℎ𝑒𝑜𝑟𝑒𝑚 3.0.11. Moreover, 𝑥 =  1 is the fixed point of 𝑇. 

 

APPLICATION TO FOURTH ORDER DIFFERENTIAL EQUATION 

In this section, we apply 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 3.0.11 to find the existence and uniqueness of fourth order 
differential equation. We consider the problem 

 (4.0.57)                              {
𝑦4(𝑡) =  𝑔(𝑡, 𝑦(𝑡), 𝑦′, 𝑦′′, 𝑦′′′),

  𝑦(0) = 𝑦′(0) = 𝑦′′(1) = 𝑦′′′(1) = 0;       𝑡 ∈ [0,1],
 

where 𝑔: [0,1] × ℝ3 ×  ℝ →  ℝ is a continuous function. This problem known as a boundary value 
problem is employed to model such phenomena as deformations of an elastic beam in its 
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equilibrium state, where one endpoint is free while the other is fixed. In this section, we study the 

existence of solution of a fourth order differential equation boundary value problem. Let S =
C[0, 1], where C[0, 1] represents the space of all continuous functions defined on the closed 

interval [0, 1]. A rectangular 𝑚-metric space on 𝑆 (see [5]) is given by 

𝑚𝑟(𝑥, 𝑦) =  sup
𝑡∈[0,1]

|𝑥(𝑡) + 𝑦(𝑡)|

2
. 

Note that the space S = (C[0, 1], 𝑚r) is a complete rectangular 𝑚-metric space. It follows from 

[1] that the boundary value problem for (4.0.57) can be written in the following integral form: 

𝑦(𝑡) = ∫ 𝒢(𝑡, 𝑠)𝑔(𝑠, 𝑦(𝑠), 𝑦′(𝑠))𝑑𝑠,     𝑦 ∈ 
1

0

C[0, 1], 

where  𝒢(𝑡, 𝑠) is Green’s function of the homogenous linear problem 𝑦4(𝑡) = 𝑦(0) = 𝑦′(0) =
𝑦′′(1) = 𝑦′′′(1) = 0, which is explicitly given by 

 

(4.0.58)                                    𝒢(𝑡, 𝑠) = {

1

6
𝑡2(3𝑠 − 𝑡),          0 ≤ 𝑡 ≤ 𝑠 ≤ 1 

  
1

6
𝑠2(3𝑡 − 𝑠),          0 ≤ 𝑠 ≤ 𝑡 ≤ 1 

 

Theorem 4.0.12. Assume that the following conditions are satisfied: 

1) g : [0, 1] × R 3 × R → R is continuous.  

2) There exists τ ∈ [1, ∞) such that the following condition holds for all x, y ∈ S 

|g(s, x(s), x′(s))| +  |g(s, y(s), y′(s))| ≤  6e−τ (|x(s)| + |y(s)|),     s ∈ [0, 1] 

3) There exists y0 ∈ X such that, for all t ∈ [0, 1], we have 

                                      𝑦0𝑡 =  ∫ 𝒢(𝑡, 𝑠)𝑔(𝑠, 𝑦0(𝑠), 𝑦0
′ (𝑠))𝑑𝑠.

1

0

 

Then the boundary value problem (4.0.57) has a solution in S. 

Proof.  If we define a mapping 𝑇: 𝑆 → 𝑆 by 

𝑇(𝑦)(𝑡) =  ∫ 𝒢(𝑡, 𝑠)𝑔(𝑠, 𝑦(𝑠), 𝑦′(𝑠))𝑑𝑠
1

0

, 

then y =  T(y), which yields that boundary value problem has a unique solution. Consider 

         
|𝑇(𝑥)(𝑡)| + |𝑇(𝑦)(𝑡)|

2

=
|∫ 𝒢(𝑡, 𝑠)𝑔(𝑠, 𝑥(𝑠), 𝑥′(𝑠))𝑑𝑠

1

0
| + |∫ 𝒢(𝑡, 𝑠)𝑔(𝑠, 𝑦(𝑠), 𝑦′(𝑠))𝑑𝑠

1

0
|

2
 

                                                                    ≤  ∫ 𝒢(𝑡, 𝑠) (
|𝑔(𝑠,𝑥(𝑠),𝑥′(𝑠))|+|𝑔(𝑠,𝑦(𝑠),𝑦′(𝑠))|

2
) 𝑑𝑠

1

0
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           ≤ ∫
1

2
s2 6e−τ  

|𝑥(𝑠)| + |𝑦(𝑠)|

2
𝑑𝑠

1

0

 

≤  6e−τ  𝑚𝑟(𝑥, 𝑦) ∫
1

2
s2 𝑑𝑠

1

0

 

= e−τ  𝑚𝑟(𝑥, 𝑦),                       
which yields 

(4.0.59)                                        𝑚𝑟(𝑇(𝑥), 𝑇(𝑦)) ≤  e−τ  𝑚𝑟(𝑥, 𝑦)                                                                    

where  0 < e−τ < 1 as −τ ≥ 1.  So we can say   

(4.0.60)                                                        𝑒𝑚𝑟(𝑇(𝑥),𝑇(𝑦)) ≤  𝑒𝑚𝑟(𝑥,𝑦).    

By using (4.0.59) and (4.0.60), we have  

𝑚𝑟(𝑇(𝑥), 𝑇(𝑦))𝑒𝑚𝑟(𝑇(𝑥),𝑇(𝑦)) ≤  e−τ  𝑚𝑟(𝑥, 𝑦)𝑒𝑚𝑟(𝑥,𝑦). 

Further, we have  

𝑒
√𝑚𝑟(𝑇(𝑥),𝑇(𝑦))𝑒𝑚𝑟(𝑇(𝑥),𝑇(𝑦))

≤ [𝑒
√𝑚𝑟(𝑥,𝑦)𝑒𝑚𝑟(𝑥,𝑦)

]

√ e−τ 

 

where,   𝑟 = √ e−τ   hence  

𝜃(𝑚𝑟(𝑇(𝑥), 𝑇(𝑦))) ≤ [𝜃(𝑚𝑟(𝑥, 𝑦))]
𝑟

  

which gives 𝜃(𝑥) = 𝑒√𝑥𝑒𝑥
. So conditions of 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 3.0.11 are satisfied. Hence, the fourth 

order differential equation given in (4.0.57) has a unique solution. 

 

 

 

CONCLUSION 
(1) We introduced the class of 𝜃-contraction mappings in the set up of rectangular 𝑚-metric 

spaces. 

(2) We obtain fixed point 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 3.0.11 in the context of rectangular 𝑚-metric spaces 
and justify our result with some examples. 

(3) As an application of our result (𝑇ℎ𝑒𝑜𝑟𝑒𝑚 3.0.11), the existence of the solution to the 
problem of forth order differential equation is presented. 
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