This research express the
effects of flood in all aspects through animation so that
these can be publicly available. There are so many benefits of online map like they are
tranquilly controlled and their display speed is more rapid with the selection panel of the base
map which shows topographic features [10].
Visual interpretations give more vivid information and a detailed story to laymen. Not
only the Inundation of HEC-RAS can be understood by an analyst but other aspect e.g.,
velocity, stress, and area coverage information is available on click. Available open-source
development provide easy and robust platforms to facilitate user in different domains of daily
life.
Conclusion
The objective of this research was to automate the flood results of HEC-RAS. So,
the maps have sufficient information for the both layman and for the analyst. The tables, facts,
and outputs were presented in Web-GIS via backend coding available on click at the point
with their location coordinates, coordinate system, velocity and stress, etc.
● This research showed that Leaflet selection proves to be one of the best open-source
mapping libraries freely available as compared to others because of its broad range of
features and flexibility
● Geo Server WMS Animator is a good animation tool that provides an animation built-in
tool than the rest to use animation analysis.
● This study also reported that Geo Server is one of the best choices among free and opensource map servers
available, as it offers many OGC services.
● After the combination of GIS capabilities including web skills and technologies, it
becomes easier for users to get different geospatial datasets without purchasing costly GIS
software instead that they can use a web browser [26].
Conflict of Interest Statement:The authors have no conflict of interest in publishing this
research with IJIST.
Project Details:Nil
Acronyms:
AJAX: Asynchronous JavaScript and XML
API: Application Programming Interface
CRS: Coordinate Reference System
CSS: Cascading Style Sheet
DB: Database
DBMS: Database Management
System
GIS: Geographic Information System
GML: Geographic Markup Language
HTML: Hypertext Markup Language
JS: JavaScript
JSON: JavaScript Object Notation
OGC: Open Geospatial Consortium
OSM: Open Street maps
SQL: Structured Query Language
SRID: Spatial Reference
Identification
SRS: Spatial Reference System
UI: User Interface
URI: Universal Resource Identifier
URL: Uniform Resource Locator
WFS: Web Feature Service
WMS: Web Mapping Service
XLink: XML Linking Language
XML: Extensible Markup Language
SLD: Styled Layer Descriptor
GUI: Graphical User Interface
QGIS: Quantum Geographical
Information System
[1] K. Uddin, D. R. Gurung, A. Giriraj, and B. Shrestha, “Application of Remote Sensing
and GIS for Flood Hazard Management: A Case Study from Sindh Province,
Pakistan,” Am. J. Geogr. Inf. Syst., vol. 2, no. 1, pp. 1–5, Dec. 2013, doi:
10.5923/J.AJGIS.20130201.01.
[2] T. Tingsanchali, “Urban flood disaster management,” Procedia Eng., vol. 32, pp. 25–37, Jan. 2012, doi:
10.1016/J.PROENG.2012.01.1233.
[3] A. T. N. Dang and L. Kumar, “Application of remote sensing and GIS-based
hydrological modelling for flood risk analysis: a case study of District 8, Ho Chi Minh
city, Vietnam,”
http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=tgnh20#
.VsXodSCLRhE, vol. 8, no. 2, pp. 1792–1811, Dec. 2017, doi:
10.1080/19475705.2017.1388853.
[4] K. Khosravi et al., “A comparative assessment of flood susceptibility modeling using
Multi-Criteria Decision-Making Analysis and Machine Learning Methods,” J. Hydrol.,
vol. 573, pp. 311–323, Jun. 2019, doi: 10.1016/J.JHYDROL.2019.03.073.
[5] A. A. Memon, S. Muhammad, S. Rahman, and M. Haq, “Flood monitoring and
damage assessment using water indices: A case study of Pakistan flood-2012,” Egypt.
J. Remote Sens. Sp. Sci., vol. 18, no. 1, pp. 99–106, Jun. 2015, doi:
10.1016/J.EJRS.2015.03.003.
[6] K. Chohan et al., “Riverine Flood Damage Assessment of Cultivated Lands along
Chenab River Using GIS and Remotely Sensed Data: A Case Study of District
Hafizabad, Punjab, Pakistan,” J. Geogr. Inf. Syst., vol. 7, no. 5, pp. 506–526, Sep. 2015,
doi: 10.4236/JGIS.2015.75041.
[7] S. Mourato, P. Fernandez, F. Marques, A. Rocha, and L. Pereira, “An interactive
Web-GIS fluvial flood forecast and alert system in operation in Portugal,” Int. J.
Disaster Risk Reduct., vol. 58, p. 102201, May 2021, doi:
10.1016/J.IJDRR.2021.102201.
[8] S. Steiniger and A. J. S. Hunter, “The 2012 free and open source GIS software map –
A guide to facilitate research, development, and adoption,” Comput. Environ. Urban
Syst., vol. 39, pp. 136–150, May 2013, doi:
10.1016/J.COMPENVURBSYS.2012.10.003.
[9] A. T. Kulkarni, J. Mohanty, T. I. Eldho, E. P. Rao, and B. K. Mohan, “A web GIS
based integrated flood assessment modeling tool for coastal urban watersheds,”
Comput. Geosci., vol. 64, pp. 7–14, Mar. 2014, doi: 10.1016/J.CAGEO.2013.11.002.
[10] J. Zavala-Hidalgo, A. Fernández-Eguiarte, R. Romero-Centeno, and O. ZavalaRomero, “Digital Atlas of Mexico
Provides Accessible Climate Information,” Eos,
Trans. Am. Geophys. Union, vol. 91, no. 14, pp. 125–126, Apr. 2010, doi:
10.1029/2010EO140001.
[11] I. Demir et al., “Data-Enabled Field Experiment Planning, Management, and
Research Using Cyberinfrastructure,” J. Hydrometeorol., vol. 16, no. 3, pp. 1155–1170,
Jun. 2015, doi: 10.1175/JHM-D-14-0163.1.
[12] P. H. Hsu, S. Y. Wu, and F. T. Lin, “Disaster management using GIS technology: A
case study in Taiwan.” pp. 1510–1519, 2005. Accessed: Apr. 25, 2023. [Online].
Available: https://researchoutput.ncku.edu.tw/en/publications/disastermanagement-using-gis-technology-a-case-study-in-taiwan
[13] W. F. Krajewski et al., “Real-Time Flood Forecasting and Information System for the
State of Iowa,” Bull. Am. Meteorol. Soc., vol. 98, no. 3, pp. 539–554, Mar. 2017, doi:
10.1175/BAMS-D-15-00243.1.
[14] Z. C. Aye, T. Sprague, V. J. Cortes, K. Prenger-Berninghoff, M. Jaboyedoff, and M.
H. Derron, “A collaborative (web-GIS) framework based on empirical data collected
from three case studies in Europe for risk management of hydro-meteorological
hazards,” Int. J. Disaster Risk Reduct., vol. 15, pp. 10–23, Mar. 2016, doi:
10.1016/J.IJDRR.2015.12.001.
[15] I. Demir, E. Yildirim, Y. Sermet, and M. A. Sit, “FLOODSS: Iowa flood information
system as a generalized flood cyberinfrastructure,” https://doi.org/10.1080/15715124.2017.1411927, vol. 16, no. 3, pp.
393–400, Jul. 2017,
doi: 10.1080/15715124.2017.1411927.
[16] E. Yildirim and I. Demir, “An integrated web framework for HAZUS-MH flood loss
estimation analysis,” Nat. Hazards, vol. 99, no. 1, pp. 275–286, Oct. 2019, doi:
10.1007/S11069-019-03738-6/METRICS.
[17] H. J. Henriksen, M. J. Roberts, P. van der Keur, A. Harjanne, D. Egilson, and L.
Alfonso, “Participatory early warning and monitoring systems: A Nordic framework
for web-based flood risk management,” Int. J. Disaster Risk Reduct., vol. 31, pp. 1295–
1306, Oct. 2018, doi: 10.1016/J.IJDRR.2018.01.038.
[18] “(PDF) WebGIS for water level monitoring and flood forecasting using Open Source
Technology.”
https://www.researchgate.net/publication/343181650_WebGIS_for_water_level_m
onitoring_and_flood_forecasting_using_Open_Source_Technology (accessed Apr.
25, 2023).
[19] “GeoServer The Open Source Solution for the interoperable management of
geospatial data @ GFOSS Day 2013.”
https://www.slideshare.net/geosolutions/geoserver-the-open-source-solution-forthe-interoperable-management-of-geospatial-data
(accessed Apr. 25, 2023).
[20] Z. Huang and Z. Xu, “A method of using geoserver to publish Economy
Geographical Information,” 2011 Int. Conf. Control. Autom. Syst. Eng. CASE 2011,
2011, doi: 10.1109/ICCASE.2011.5997789.
[21] M. Bhandari, N. Nyaupane, S. R. Mote, A. Kalra, and S. Ahmad, “2D Unsteady Flow
Routing and Flood Inundation Mapping for Lower Region of Brazos River
Watershed,” World Environ. Water Resour. Congr. 2017 Hydraul. Waterw. Water Distrib.
Syst. Anal. - Sel. Pap. from World Environ. Water Resour. Congr. 2017, pp. 292–303, 2017,
doi: 10.1061/9780784480625.027.
[22] A. Viloria, G. C. Acuña, D. J. A. Franco, H. Hernández-Palma, J. P. Fuentes, and E.
P. Rambal, “Integration of Data Mining Techniques to PostgreSQL Database
Manager System,” Procedia Comput. Sci., vol. 155, pp. 575–580, Jan. 2019, doi:
10.1016/J.PROCS.2019.08.080.
[23] M. G. Jung, S. A. Youn, J. Bae, and Y. L. Choi, “A study on data input and output
performance comparison of MongoDB and PostgreSQL in the big data
environment,” Proc. - 8th Int. Conf. Database Theory Appl. DTA 2015, pp. 14–17, Mar.
2016, doi: 10.1109/DTA.2015.14.
[24] A. Alshamrani and A. Bahattab, “A Comparison Between Three SDLC Models
Waterfall Model, Spiral Model, and Incremental/Iterative Model”, Accessed: Apr. 25,
2023. [Online]. Available: www.IJCSI.org
[25] D. Edler and M. Vetter, “The Simplicity of Modern Audiovisual Web Cartography:
An Example with the Open-Source JavaScript Library leaflet.js,” KN - J. Cartogr.
Geogr. Inf., vol. 69, no. 1, pp. 51–62, May 2019, doi: 10.1007/S42489-019-00006-
2/FIGURES/13.
[26] K. Kalabokidis et al., “Virtual Fire: A web-based GIS platform for forest fire control,”
Ecol. Inform., vol. 16, pp. 62–69, Jul. 2013, doi: 10.1016/J.ECOINF.2013.04.007.