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he market share of illicit tobacco products in Pakistan has seen a significant surge in 
recent years. In 2022, it reached a staggering 42.5%. Since January 2023, there has been 
a sharp 32.5% increase in volumes of Duty Not Paid (DNP) products and a remarkable 

67% surge in the quantities of smuggled cigarettes. This rise can be attributed to the unregistered 
and unlicensed tobacco cultivation in Pakistan. This sector has largely relied on conventional 
methods for data collection in the field, primarily managed by the country's crop statistical 
departments. The utilization of cutting-edge artificial intelligence techniques and satellite 
imagery for generating crop statistics has the potential to address this issue effectively. We 
established a synergy by combining images from two remote sensing satellites and collected field 
data to detect tobacco crops using Recurrent Neural Networks (RNN). The results affirm the 
effectiveness of these techniques in detecting and estimating the acreage of tobacco crops in the 
observed areas, particularly in a union council of the Swabi region. We conducted surveys to 
collect training and validation data through our proprietary smartphone application, GeoSurvey. 
The collected data was subsequently refined, preprocessed, and organized to prepare it for use 
with our deep learning algorithm. The model we developed for the detection and acreage 
estimation of tobacco crops is called Convolutional Long Short-Term Memory (ConvLSTM). 
We created two datasets from the acquired satellite images for comparison. Our experimentation 
results demonstrated that the use of ConvLSTM for the synergy of Sentinel-2 and Planet-Scope 
imagery yields higher training and validation accuracy, reaching 98.09% and 96.22%, 
respectively. In comparison, the use of time series Sentinel-2 images alone achieved training and 
testing accuracy of 97.78% and 95.56%. 
Keywords: Tobacco, Artificial Intelligence, Deep Learning, Recurrent Neural Networks, 
Remote Sensing, Sentinel-2, Planet-Scope. 
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Introduction: 
Tobacco cultivation holds significant economic importance in Khyber Pakhtunkhwa 

(KP), Pakistan, involving a substantial workforce and yielding an annual production of 100,000 
tons. The profits generated from tobacco farming are considerable, and it is in high demand 
among cigarette manufacturers. Agriculture, including tobacco cultivation, contributes around 
21% to the country's Gross Domestic Product (GDP) [1], with KP accounting for a substantial 
55% of the national tobacco production. In Pakistan, traditional techniques are used for 
monitoring tobacco plantations. These techniques are human-centric and require many 
surveyors to monitor and take records. Most of the tobacco fields are left out in these surveys. 
However, accurately estimating tobacco crops has become a challenge for government data 
analysts. This inaccuracy has resulted in significant losses in tax revenue and the proliferation of 
illicit tobacco production, which has notably surged over the past five years [2]. The primary 
cause of this unlawful growth of tobacco can be linked to tax evasion. Farmers must acquire a 
license from government bodies to regulate the cultivation of excess tobacco on plantations, 
they unlawfully plant tobacco crops just to bypass this phase.  The data illustrating the market 
share of illicit tobacco from 2010 to 2022, as shown in Figure 1, exhibits a noticeable pattern of 
fluctuations. In 2010, illicit tobacco accounted for 18.90% of the market share, and this 
percentage witnessed a gradual increase in the following years. There was a substantial spike, 
with illegal tobacco comprising 40.60% of the market by 2016, followed by a slight increase up 
to 41.20% by 2017.  There has been a decline in the market share of unauthorized tobacco at 
the start of the year 2018, with some fluctuations but it showcased an overall downward trend. 
However, in 2022, this share increased up to 42.50%. Understanding these variations is crucial 
for policymakers and authorities to implement effective measures to combat the furtive tobacco 
trade. A recent report published by the Pakistan Bureau of Statistics (PBS) stated a loss of Rs. 
240 billion annually due to unlicensed tobacco products in the market. 

There has been a considerable amount of work done to ensure the sale of illegal tobacco-
based products, top in the line are cigarettes. Developed countries with mainstream systems 
have started the use of advanced technologies like high-tech packaging, labeling, and track and 
trace systems, but still, at the time of plantation, there needs to be a system powered by AI and 
satellite technology. 

To address this issue, Remote Sensing (RS) technology, which employs satellites to 
observe Earth from space, can be a valuable tool [3]. There is a pressing need to develop 
advanced Artificial Intelligence (AI) algorithms for generating accurate crop statistics, 
particularly for crops like tobacco. One effective approach involves Neural Networks-based 
models for crop classification. To tackle the issues related to obtaining precise crop statistics for 
governmental statistical bodies, it is crucial to explore innovative research methods aimed at 
resolving these issues. The incorporation of RS technology along with advanced neural network 
algorithms, including Convolutional Neural Networks (CNN) and RNN. There are several 
advantages as well as challenges in implementation of such a system. These include; 
Advantages of AI and Satellite Technology: 

 Enhanced surveillance and quick detection 

 Cost-effective solution 

 Combat tax evasion and environmental impact 

 Precision in detection and support for law enforcement 
Challenges in Implementing Technology: 

 Privacy concerns and accuracy issues 

 Initial setup costs and technical expertise 

 Adapting illicit growers 
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 Legal and ethical considerations 

 
Figure 1. Illicit tobacco market share over the past decade. 

Related Work: 

Utilizing the synergy between the Global Navigation Satellite System (GNSS) and 
Geographic Information System (GIS) enables an improved assessment of the variations in 
agricultural fields. This integration combines accurate positioning data from GNSS with the 
spatial analysis capabilities of GIS, leading to a deeper understanding of the diversity within 
these fields [4]. RS satellites offer a diverse array of features, including multiple channel options 
with specific wavelengths, varying spatial, temporal, and spectral resolutions, as well as different 
revisit times. Currently, RS satellites play a pivotal role in the detection, monitoring, and 
estimation of various aspects of crops, encompassing their health, growth status, and maturity 
[5] [6]. Numerous satellites, such as GeoEye-1, Ikonos, Formosat-2, Advanced Land 
Observation System (ALOS), SPOT 6, and SPOT 7, have been purposefully developed for the 
task of agricultural monitoring. These satellites enable precise analysis of crop health, vegetation 
detection, and drought mapping [7][8]. The deployment of ESA's Sentinel-2A and Sentinel-2B 
sibling RS satellites in 2015 and 2017, respectively, marked a notable advancement in the 
accessibility of open data for RS applications. These Sentinel-2 satellites furnish Multispectral 
Images (MSI) that encompass a total of 13 spectral bands. The temporal frequency of Sentinel-
2 satellites is noteworthy, as they return to similar locations on Earth every 5 days. This rapid 
revisit rate ensures consistent and frequent monitoring of dynamic processes, including changes 
in vegetation growth and alterations to the land surface. The increased temporal resolution 
greatly enhances our ability to monitor and analyze time-sensitive phenomena in various 
environmental and agricultural contexts [9]. 

Planet-Scope is a well-recognized commercial fleet of multispectral satellites renowned 
for its high-resolution imagery. Under Planet's management, this satellite constellation plays a 
pivotal role as a valuable source of Earth observation data. Planet-Scope Satellites (PSS) capture 
multispectral images with impressive detail, allowing for in-depth analysis and continuous 
monitoring of the Earth's surface [10]. 

RS has found extensive application among researchers for conducting both quantitative 
and qualitative assessments of tobacco crops. This approach is particularly favored for its user-
friendly interface, rapid task completion, cost-effectiveness, and eco-friendliness. Nonetheless, 
it is crucial to consider variables such as the quality of RS data, the specific sensor utilized, and 
the chosen analysis methodologies, as these factors can influence the accuracy and reliability of 
the obtained results. 
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Liao et al. employed a DL model to delineate agricultural zones in Southwestern Ontario. 
They utilized multi-temporal polarimetric Synthetic Aperture Radar (SAR) and available multi-
spectral RS data for crop classification. This study introduced the use of a one-dimensional 
Convolutional Neural Network (CNN) and suggested that the optimal crop classification results 
were achieved by combining multispectral data from VENµS and RADARSAT-2 through the 
Minimum Noise Fraction (MNF) transformation [11]. 

Zhang et al. compiled spectral data encompassing 16 different crop species across 
various experimental scenarios [12].  Systematically, they built a spectral database to aid the 
assessment of crop classification techniques and continuous monitoring of crop status. Their 
approach involved the utilization of observations based on JM distance and ISODATA for 
Random Forest (RF) [13], K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) 
[14]. Their methodology played a pivotal role in the establishment of a comprehensive plant 
spectral library. 

For tobacco crop detection, several multi-step algorithms have been proposed. In [15], 
Sun et al. introduced a two-step CNN approach that utilized RGB images to classify them into 
tobacco and non-tobacco fields. 

Palchowdhuri et al. presented a three-step algorithm [16]. Their method involved the 
integration of high and very-high-resolution images, the computation of various Vegetation 
Indices (VIs), and ultimately, classification using a combination of algorithms. They 
incorporated multispectral and hyperspectral images with limited temporal data, sourced from 
three images of Coalville (UK) captured by Sentinel-2 and WorldView-3 [17] during the period 
from April to July 2016. Three VIs, specifically the Normalized Difference Vegetation Index 
(NDVI) [18], Soil-Adjusted Vegetation Index (SAVI) [19], and green NDVI (GNDVI) were 
derived from the red, green, and Near-Infrared (NIR) bands. Following this, they conducted 
supervised image classification using a combination of Decision Tree (DT) [20]and Random 
Forest (RF) algorithms. 

In their study, Fan et al. employed images captured by Unmanned Aerial Vehicles 
(UAVs) in fourteen tobacco-growing regions to identify and count tobacco plants [21]. The 
researchers developed a three-step algorithm based on DNN. These steps involved plant 
extraction, subsequent classification into tobacco and non-tobacco plants, and post-processing 
of the classified images. 

In their efforts to classify plantation regions, they implemented watershed segmentation 
as a method to delineate areas with tobacco plants from those devoid of them, contributing to 
a more precise categorization. Afterward, a CNN was trained using the segmented data to 
perform the classification task. Finally, post-processing was conducted to remove non-tobacco 
regions. This approach achieved an impressive overall accuracy rate of 91%. 

In recent years, there has been a significant increase in the popularity of  DL models, 
particularly Artificial Neural Networks (ANNs) that are distinguished by their multiple hidden 
layers. This growing interest is driven by ANNs' remarkable ability to understand and learn end-
to-end data representations, reducing the need for manual feature extraction based on human 
expertise and experience [22][23]. 

DL has risen to prominence as a revolutionary technology in the fields of Machine 
Learning (ML), data mining, and RS science [24]. This ascent is primarily attributed to the 
versatility of DL models, their ability to autonomously learn without the need for expert 
supervision, computational efficiency, and their exceptional capability to represent features, 
particularly in the context of image classification [25]. [8] highlighted the remarkable utility of 
Sentinel-2 and Planet-Scope Dove imagery, renowned for their exceptionally high spatial 
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resolution. These images were effectively employed to extract information about various 
vegetation phenology stages, even in challenging terrains characterized by short-term vegetation 
seasons. To discern between different phases of crop growth, they introduced an innovative 
approach that incorporates spatiotemporal RS images and employs 3D CNNs instead of 
conventional 2D CNNs for crop classification [26]. 

Among the various types of Recurrent Neural Network (RNN) models, Long Short-
Term Memory (LSTM) has established itself as highly effective in managing sequential data 
challenges [27][28]. LSTMs are purposefully designed to address the intricacies of long-term 
dependencies between events with temporal gaps, excelling in the acquisition and retention of 
information [29]. Notably, unlike Simple Recurrent Neural Networks (SRNNs), LSTMs do not 
grapple with significant optimization hurdles [30]. Consequently, LSTM models are 
exceptionally well-suited for a wide array of applications, including tasks such as speech 
synthesis, handwriting recognition, language translation, and the analysis of audio and video data 
[31][32][33]. 

 
Figure 2. Operational procedure of the utilized technique operational 

A substantial amount of information is required to gather the necessary data for training 
DL models. Surveys were conducted in tobacco-growing regions to collect Ground Truth Data 
(GTD) to address this requirement. Additionally, satellite data from sources like Sentinel-2 and 
Planet-Scope were used for in-depth analysis. Once the model was trained, it underwent 
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validation tests using test data and validation surveys to ensure its accuracy. This integrated 
approach has the potential to tackle the issue of illegitimate tobacco growth, enhance the 
accuracy of crop statistics, and provide benefits to both the government and the economy. 
Figure 2 illustrates the procedural diagram of the steps employed in this research. Ground truth 
surveys were conducted in four districts to collect tobacco and other vegetation data in the form 
of shapefiles, which were then refined through our in-house data preprocessing platform, Geo 
Survey Web. Satellite data from Sentinel-2 was obtained from the ESA Copernicus data hub. 
These images underwent preprocessing for geometric and radiometric correction. The refined 
data from the surveys was overlaid onto the preprocessed Sentinel-2 image time series data to 
record training pixels for different classes in the Sentinel-2 time series images. This data was 
subsequently fed into CNN and LSTM networks for crop categorization. The study employed 
various accuracy metrics, including Precision, Recall, Overall Accuracy, and F1-Score. 
Study Site:  

GTD was obtained from four distinct locations to ensure data diversity. These regions 
encompass Chotalahor, Charbagh, Mandani, and Yarhussain. However, the pilot region selected 
for testing purposes is Dobian, a tehsil in the Swabi district (Figure 3). 

 
Figure 3. Study site under observation 

Objectives: 

 The primary objective of this study is to propose effective measures for curbing illicit 
tobacco crop growth in Pakistan.  

 To outline the methodology for estimating tobacco crops utilizing satellite imagery.  

 To formulate a state-of-the-art deep learning algorithm for accurate land use and land 
cover classification. 

Novelty:  
This research introduces the implementation of cutting-edge  RNN to address the urgent 

problem of unlawful tobacco growth in Pakistan. It leverages satellite data, combining 
information from two distinct satellite systems: Sentinel-2 and Planet-Scope. The ConvLSTM 
model is employed to train and evaluate the model using field-collected data, representing a 
novel approach to satellite-based crop statistics generation. 
Material and Methods: 

The study encompasses the execution of experiments utilizing two sets of field-collected 
data. Table 1 delineates these two configurations for the experimental setups. Data from five 
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dates of Sentinel-2 were harnessed to construct a concise temporal frame for May 2022. Sentinel-
2 provided 10 bands with spatial resolutions of 10 and 20 meters. The experimental 
configuration was devised with consideration for these data channels from both satellites. 
Setup-S2only has complete bands of Sentinel-2 and Planet-Scope, with varying resolutions, i.e., 
from 10 meters to 20 meters, while Setup-PS-S2cat contains data channels from Senitnel-2 and 
Planet-Scope. This is to test and compare the performance of data channels based on their 
resolutions.  

Table 1. Datasets generated for the experiments. 

Ground Truth Data: 
The GTD collected during ground truth surveys in three districts, Swabi, Charsadda, 

and Mardan, was divided between training and testing datasets. The models were trained on the 
training data, while the testing data, which the model had never seen before, was used for 
validation purposes. The data was split with a proportion of 70% for training and 30% for 
testing, as shown in Table 2. 

Table 2. Proportion of Training and Testing Data Split 

Type Number of Training Pixels Number of Testing Pixels 

Flue Cured Virginia 85,602 22,839 

Other Vegetation 199,128 59,061 
Urban Settlements 43,917 19424 

Water bodies 18,475 3964 

Deep Learning Architectures: 
The operational procedures of employed architectures and the fine-tuning of 

hyperparameters are elaborated here. The results have been obtained through thorough 
hyperparameter tuning, primarily carried out through an iterative trial-and-error process, which 
aligns with the nature of Neural Networks (NN). The experiments were conducted using the 
following architectural configurations. 
Long Short-Term Memory (LSTM): 

LSTM, represents a specialized type of RNN designed to excel in processing sequential 
data while retaining critical information over extended timeframes. It stands as an advanced 
evolution of RNNs, primarily distinguished by its ingenious solution to the vanishing gradient 
problem often encountered in traditional RNN training. The key innovation within LSTMs is 
their utilization of a gating mechanism, which selectively updates and retains information, 
granting them the capability to effectively capture and utilize data over prolonged periods. 

The credit for the development of LSTM networks goes to Sepp Hochreiter and Jürgen 
Schmidhuber, who introduced this concept in a seminal paper published in 1997 [27]. 
Subsequently, numerous researchers, including notable figures like Alex Graves, Felix Gers, and 
Jurgen Schmidhuber himself, have made substantial contributions to refining and popularizing 
LSTM networks. These networks have demonstrated exceptional effectiveness across a wide 
array of applications and have achieved extensive adoption in diverse fields. 

LSTM networks offer a compelling solution to address the persistent challenge known 
as the vanishing gradient problem, a common issue encountered in traditional RNNs. They 

Setup Platform Sentinel-2 Bands 
Utilized 

Planet Scope 
Bands Utilized 

Total 
Channels 

Setup-S2only 5 Dates Sentinel-2 (May 
2022) 

B2, B3, B4, B5, B6, 
B7, B8, B8A, B11, 

B12, NDVI 

 55 

Setup-PS-S2cat Sentinel-2 Cat with 
Planet Scope (May 2022) 

B2, B3, B4, B5, B6, 
B7, B8, B8A, B11, 

B12, NDVI 

B1. B2, B3, B4, 
NDVI 

55 
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achieve this by incorporating feedback connections that enable them to retain crucial 
information over prolonged periods. LSTMs exhibit a versatile nature, capable of processing 
both individual data points, such as images, and entire sequences of data, including applications 
in speech or video analysis. These networks have found practical utility in a range of tasks, 
spanning unsegmented, connected handwriting recognition, speech recognition, and the 
detection of anomalies in network traffic or Intrusion Detection Systems (IDSs). 

A significant advantage of LSTMs lies in their ability to adeptly capture long-term 
temporal dependencies, surpassing many other neural network architectures in this regard, all 
while circumventing the intricacies of optimization. This unique capability has elevated LSTMs 
to a prominent position in tasks where preserving the sequential order of information is of 
utmost importance. Notable applications include natural language processing, video analysis, 
and the forecasting of time-series data. A schematic diagram of LSTM is presented in Figure 4. 
In contrast to a typical RNN, LSTM incorporates an extended memory module explicitly 
designed to maintain critical information for subsequent layers. Each LSTM layer includes a 
Long Memory unit, often referred to as the Cell State. The core concept behind LSTMs is 
centered on the utilization of gates. These gates act as crucial control mechanisms, determining 
whether to preserve or update new features based on the model's requirements. 

+x

tanhσ σ 

σ x

tanhx

Forget Gate

Current 

Input x(t)

Long 

Memory 

(Cell Stat)

Input Gate

Output Gate

h(t)

c(t)
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+ : Addition
h(t): Hidden State
c(t): Long Memory

Previous Stat 

h(t-1)

C(t)

i(t)

 
Figure 4. Schematic diagram of LSTM 

Convolutional LSTM: 
In the realm of image processing, a commonly employed technique to enhance or refine 

images and achieve specific desired results involves the application of filters [34]. These filters 
function as tools for emphasizing features or extracting valuable information from images 
(Figure 5). The process begins with the creation of a filter, such as a high-pass filter, which is 
then systematically applied to the image. The result is an image that retains only the relevant 
information while filtering out low-frequency pixels. Typically, these filters are configured as 
windows with dimensions NxM, where N represents the number of rows, and M represents the 
number of columns. 

In the context of NN these filters are employed for feature extraction from images [35]. 
These extracted features often encompass attributes like edges, textures, and patterns, serving 
as distinctive markers for objects within the image under consideration.  
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Figure 5. Image convolution using a 3x3 kernel (Courtesy of Bi-Min Hsu) 

Convolutional LSTM is an ANN architecture that blends convolutional and LSTM 
layers to model spatial and temporal dependencies in data. It is a modified version of the 
conventional LSTM network and is employed for processing sequential data such as time series 
or videos. The convolutional layer within the network is used to process the spatial details of 
the input data, whereas the LSTM layer is responsible for capturing temporal dependencies over 
time (Figure 6). The integration of these layers enables the Convolutional LSTM to process 
intricate sequences of spatial and temporal data with improved precision and efficacy, making it 
an extremely useful tool in various applications such as speech recognition, autonomous driving, 
and video analysis. The employed model for ConvLSTM is provided below in Figure 6. 

 
Figure 6. Designated model of ConvLSTM 
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Result and Discussion: 
 This section represents the impactful results obtained from our experiments conducted 

on the datasets central to our study, listed in Table 1 Datasets are used with ConvLSTM and 
their results are compared systematically. The collected GTD is split into training and testing 
data with a ratio of 70% and 30% for training and testing data respectively (Table 2). The testing 
data is completely unseen for the model and thus represents separate crop fields instead of 
pixels. This measure is taken to ensure generalization in the model.  

As illustrated in Figure 7 below, Setup-PS-S2cat outperforms Setup-S2only, attaining an 
overall training and testing accuracy of 98.09% and 96.22% respectively. Looking at the training 
and testing accuracy of Setup-S2only, it can be observed that  96.18% and 93.43% accuracies are 
achieved respectively.  
Accuracy Metrics Employed for Assessment: 

Classification evaluation criteria employed are listed in  
Table 3. 
Table 3: Evaluation criteria for classification of  results 

Criteria Definition Formula 

Precision Precision assesses the classifier's accuracy 
by comparing the true positive results with 
the total of true positives and false 
positives. 

Precision =
 True Positive 

 True Positive +  False Positive 
 

Recall Recall essentially evaluates the classifier's 
performance by calculating the proportion 
of true positives to the combined total of 
false negatives and true positives for each 
class. 

Recall =
 True Positive 

 True Positive +  False Negitive 
 

F1-Score The F1 score, which exists on a scale from 
0.0 to 1.0, is calculated as the weighted 
harmonic mean of precision and recall. A 
high F1 score of 1.0 indicates strong 
performance, whereas a low score of 0.0 
reflects poor performance. 

F1 Score = 2 ∗
( Recall ∗  Precision )

( Recall +  Precision )
 

Overall 
Accuracy 

It represents the ratio of accurately 
classified training data pixels, computed by 
dividing the sum of all correctly classified 
pixels by the total count of training data 
pixels. 

Overall Accuracy 

=
( Number of all correctly classified pixel )

 (Total number of Pixels )
∗ 100 

 
Figure 7. Overall accuracies of ConvLSTM for Setup-PS-S2cat and Setup-S2only 
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(a)  

(b) 

 

Figure 8. Model accuracy and model loss for Setup-S2only 
Table 4. Classification report of testing data for Setup-S2only 

Setup-PS-S2cat: 
Throughout the 30 epochs of training depicted in Figure 9(a) and Figure 9(b), the model 

demonstrated consistent improvement. It began with an initial loss of 0.5106 and an accuracy 
of 78.50%, steadily progressing to an impressive accuracy of 98.09% by the end of the training 
process. Concurrently, the loss steadily decreased from 0.5106 to 0.0541, highlighting the 
model's improved performance. This progress extended to the validation set as well, where 
accuracy increased from 85.49% to 96.22%. In tandem, the validation loss dropped significantly 
from 0.3539 to 0.1325, indicating enhanced generalization. The model's training journey 
showcased consistent enhancements in accuracy and reduced loss, affirming its effective 
learning and robust performance. The classification report in Table  assesses four classes: FCV, 
OT, Urban, and Water. Notably, precision values are high, ranging from 0.95 to a perfect 1.00, 
indicating accurate positive predictions. The model's recall values, ranging from 0.92 to 0.98, 
show its ability to correctly identify actual instances. Balanced precision and recall result in 
impressive F1-scores between 0.95 and 0.97, affirming overall effectiveness in classification. The 
model's accuracy is strong at 0.96, indicating 96% correct classifications. The classification 
accuracy value of 0.962187 underscores its reliability in predicting class labels. 

Classification Report: Precision Recall f1-Score Support 

FCV 0.93 0.96 0.95 22835 
OT 0.96 0.96 0.96 59057 

Urban 0.95 0.96 0.95 19425 
Water 1.00 0.86 0.93 3965 

accuracy   0.96 105282 
Macro avg 0.96 0.94 0.95 105282 

Weighted avg 0.96 0.96 0.96 105282 
Classification accuracy 0.955605                  
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(a) 

 
(b) 

Figure 9. Model Accuracy and Model Loss for Setup-PS-S2cat 
Table 5. Classification report of testing data for Setup-PS-S2cat 

Setup-PS-S2cat vs Setup-S2only: 
 In the comparison between Setup-S2only and Setup-PS-S2cat, especially concerning the 

FCV class, it becomes evident that Setup-PS-S2cat boasts several advantages. First, Setup-PS-
S2cat exhibits a higher precision (0.97) compared to Setup-S2only (0.93), indicating its superior 
ability to make accurate positive predictions for the FCV class. Additionally, both models share 
the same recall (0.96), which means they correctly identified an equal proportion of actual FCV 
instances. However, the strong point for Setup-PS-S2cat becomes more apparent when 
considering the F1-score, where it achieves 0.96, indicating a better balance between precision 
and recall. In contrast, Setup-S2 only has an F1-score of 0.95 for the FCV class. Setup-PS-S2cat 
demonstrates stronger performance in accurately identifying and classifying instances of the 
FCV class, as it achieves higher precision and a slightly better F1-score compared to Setup-S2only. 
The classification map of Dobain (Yarhussain) is provided in Figure 11. 
Significance of the results achieved through Setup-PS-S2cat: 

The effective utilization of multi-satellite data in our experimental setup lay out a plan 
for accurate estimation of tobacco crop acreage in a vast geographical area. In addition, the usage 
of temporal data from Sentinel-2 and Planet-Scope enhances the classification results with 
efficiency. To ensure further validation of our classification results (depicted in Figure 11) 
validation surveys have been carried out in the pilot region for pinpointing False positives and 
True Negatives. The classification map provided in Figure 11 presents ConvLSTM results with 
4 classes; Tobacco (Red), Other Vegetation (Green), Urban (White), and Water (Blue). It can be 
seen from the figure that Tobacco plantations are clearly distinguishable from other classes. Our 
findings from the validation surveys validate DL model results with the same accuracy as 
presented in Table .  

Classification Report: Precision Recall f1-Score Support 

FCV 0.97 0.96 0.96 22835 
OT 0.95 0.98 0.97 59057 

Urban 0.97 0.92 0.95 19425 
Water 1.00 0.93 0.97 3965 

Accuracy   0.96 105282 
Macro avg 0.97 0.95 0.96 105282 

Weighted avg 0.96 0.96 0.96 105282 
Classification accuracy: 0.962187 
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1. A brief overview of the modus operandi can be summarized in the following stages; 
2. GTD is collected using the Geosurvey mobile application. 
3. The data is split into training and testing with a 70/30 split ratio. 
4. A synergy of Sentinel-2 and Planet-Scope is created to extract pixel information. 
5. Temporal data of Sentinel-2 and Planet-Scope is taken for crop classification. 
6. DLM-based ConvLSTM (A type of RNN) is developed. 
7. During model training accuracy metrics are employed for measuring the performance of 

ConvLSTM.  
8. The trained model is used for crop map generation.  
9. The generated crop map consists of Tobacco plantation with a testing accuracy of 96.2% 
10. Ground truth validation survey is also performed in the region of interest to ensure 

accurate classification results. 
The summary or the formulation of the ConvLSTM model is given in Table . 

Table 6. Model summary for ConvLSTM. 

Layer (type) Output Shape Param # 

input_1 (Input Layer) [(None, 11, 5, 1, 1)] 0 
conv_lst_m2d (ConvLSTM2D) (None, 11, 32, 1, 1) 42752 

flatten (Flatten) (None, 352) 0 
dense (Dense) (None, 128) 45184 

dense_1 (Dense) (None, 64) 8256 
dense_2 (Dense) (None, 32) 2080 
dense_3 (Dense) (None, 256) 8448 
dense_4 (Dense) (None, 64) 16448 
dense_5 (Dense) (None, 4) 260 

Total params: 123,428 
Trainable params: 123,428 

Non-trainable params: 0 

The methodology is implemented in our developed land cover land use system 
“Agriltytics” (Figure 10). More details about the system can be obtained from the website 
ncbcpeshawar.com. 

 

Figure 10: A product derived from the conducted research. 

Conclusions: 
Tobacco, a significant cash crop in the province of KP, is facing a growing challenge 

due to illicit cultivation, leading to substantial economic losses for the government due to tax 
evasion. The current methods used to estimate tobacco crop yields in the field rely on outdated 
measurement techniques. This research explores the application of advanced AI algorithms, 
specifically RNNs, to accurately identify tobacco crops. The study takes a collaborative 
approach, combining the capabilities of two prominent remote sensing satellite systems: the 
multispectral Sentinel-2 from the European Space Agency and Planet Scope by Planet Inc.  
Extensive surveys were conducted across four districts of KP over multiple tobacco growing 
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seasons to collect GTD for obtaining necessary datasets required for training a neural network. 
Our developed RNN-based model, ConvLSTM, demonstrates positive results in the synergy of 
Sentinel-2 and Planet-Scope images, providing higher overall accuracy, as well as improved 
precision and recall scores for identifying tobacco plantations, compared to using Sentinel-2 
alone. We believe that the implementation of the proposed approach on a larger scale can play 
a significant role in detecting illegal tobacco cultivation in the field, prompting timely action by 
government departments. Government should regulate policies for implementation of modern 
technologies for crop monitoring and acreage estimations and ensure funding and human 
resource development in these fields. 

 
Figure 11. Classification map of area of interest (Dobian) 
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