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he objective of this study is to generate and compare prospectivity maps that show the 
presence of Limestone in a specific area using remotely sensed data and machine learning 
techniques, in order to determine the most precise map that accurately depicts the 

presence of Limestone in that area. Remotely sensed data often utilize machine learning 
techniques to identify mineral formations and map geological features. Furthermore, machine 
learning techniques can also be used to generate prospectivity maps for mineral exploration. In 
this study, we utilized band ratios and principle component analysis (PCA) in conjunction with 
machine learning techniques to effectively identify Limestone formations and generate 
prospectivity maps for Limestone exploration using satellite imagery. Support Vector Machines 
(SVM) and Neural Networks (NN) were the machine learning techniques utilized on 
multispectral imagery from Sentinel-2 and Landsat-8. To assess the accuracy of the 
identification, the confusion matrix and kappa coefficient were employed. It was determined 
that the accuracy of the Neural Networks (NN) techniques was significantly better than the 
accuracy of the Support Vector Machines (SVM) techniques. The Neural Networks (NN) 
achieved an accuracy of 94.92% with a kappa value of 0.929, whereas the Support Vector 
Machine (SVM) had a maximum accuracy of 88.39% with a kappa value of 0.845. These high 
levels of accuracy and kappa coefficient values suggest that these machine techniques hold great 
potential for geological mapping and mineral exploration. The generated prospectivity maps can 
assist geologists and mining companies in identifying areas with a high potential for Limestone 
exploration, thereby reducing exploration costs and time. 
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Introduction: 
Remote sensing is a revolutionary technology. It has changed the way we observe and 

understand the Earth remotely. Remote sensing has a wide spectrum of applications one of 
which is to detect and map various types of minerals, including metallic minerals such as gold, 
copper, iron, carbonate (Limestone, dolomite, gypsum), and non-metallic minerals such as 
phosphate, gypsum, and salt. Similarly, machine learning is an effective method for deriving 
conclusions from data and addressing complicated issues in a variety of fields, such as computer 
vision, natural language processing, recommendation systems, and predictive analytics. The 
availability of remote sensing data that encompasses multi and hyper-spectral capabilities, 
providing extensive resolutions in spatial, spectral, and temporal domains, together with recent 
advancements in image processing, have made remote sensing a powerful tool for geological 
research. Along with other geological uses, remote sensing has the capability to detect a range 
of minerals, including metallic minerals such as gold, copper, and iron, carbonate/calcite 
minerals like Limestone, dolomite, and gypsum, and non-metallic ones like phosphate, gypsum, 
and salt. Calcite minerals are highly valuable economically and exhibit unique 
reflection/absorption signatures [1]. Absorption features exhibited by carbonate minerals, 
including calcite, gypsum, and dolomite are in the range of 2.1-2.5 micrometers, and their 
reflectance typically occurs in the range of 1.55-1.75 micrometers in the SWIR region. These 
characteristics match closely with the characteristics of multispectral Landsat-8 imagery bands, 
specifically bands 7 (2.11-2.29μm) and 6 (1.57-1.65μm), as well as Sentinel-2 bands 12 (2.100–
2.280 μm) and 11 (1.565–1.655 μm). Landsat-8 is widely recognized for its enhanced spectral 
and spatial characteristics in identifying mineral deposits and mineral exploration applications 
[2]. 

The utilization of band ratios and principal component analysis (PCA) methodologies 
are used to process and enhance the features of remotely sensed data [3][4]. Band ratio 
combinations are potential image processing methods for identifying different lithologies and 
effective methods for lithological discrimination. Additionally, it aids in minimizing illumination. 
The shadowing effect is very eminent in hilly areas which can also be reduced using band ratios 
[5][6]. 

For minimizing the number of image bands /dimensions and producing a color 
composite image for mapping hydroxyl-bearing Principal Component Analysis (PCA) is utilized 
[7]. Moreover, the use of band ratios (12/8, 2/5, (2+11+6)/ (3+4), and (4+6)/ (7+8)), and the 
PCA method with Sentinel-2A data has proven to be successful in identifying and distinguishing 
between various rock types in complex terrains [8]. The use of band ratios and PCA combined 
with machine learning algorithms can be an effective approach for accurately detecting different 
mineral formations from satellite imagery [9]. The RF model was able to generate better results 
than other models e.g., SVM and ANN and generated a prospectivity map indicating areas with 
high, medium, and low potential. 

In order to distinguish between various subclasses of Limestone multispectral remote 
sensing data was evaluated, using different machine learning algorithms including naïve Bayes 
(NB), random forest (RF), classification, and regression tree (CART), and support vector 
machine (SVM) [10]. The RF algorithm achieved the highest accuracy of 96.36% compared to 
others. To evaluate which machine learning approach is more effective for locating carbonate 
outcrops in Landsat-8 data. The ANN MLP approach led with an F1 score of 0.823 while SVM 
and Random Forest (RF) had F1 scores of 0.810 and 0.812, respectively [11]. 

Similarly, the supervised classification approach has enhanced the lithological map of 
southern Morocco's Souk Arbaa Sahel area. Support vector machines (SVM) and ANN were 
used to process data, and the efficiency of both approaches was evaluated [12]. It was found 
that 85% of the formations were correctly classified including Limestone with SVM. In terms 
of classification accuracy, the SVM technique was found to perform better than artificial neural 
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networks (ANN) [13]. 
This study will focus on carbonate exploration, particularly Limestone from 

multispectral satellite imagery of Landsat-8 and Sentinel-2 using Band ratio (BR), Principle 
Component Analysis (PCA) in combination with Support Vector Machine (SVM), and Neural 
Networks (NN), machine learning techniques. 
Objectives: 

To generate Prospectivity maps that indicate the presence of Limestone in a particular 
area using different satellites and different machine learning techniques and comparison of 
results(maps) that best fit the problem at hand. This study will assist geologists and mining 
companies in identifying areas with high mineral potential. It will also reduce their exploration 
cost and exploration time. 
Novelty Statement: 

In the domain of mineral mapping researchers have done a lot of work in the exploration 
of various minerals such as copper and gold (Au), in conjunction with the application of diverse 
machine learning models, including Support Vector Machines (SVM), Neural Networks (NN), 
Random Forest (RF), and Convolutional Neural Networks (CNN ) [14][15][16][17][18] but no 
significant literature is available targeting Limestone for perspectivity mapping. In this study, we 
are targeting Limestone to generate its prospectivity maps using different machine learning 
techniques and compare the techniques in order to find the technique with better accuracy. 
Additionally, we are not using traditional survey methods for data collection we are employing 
a Geo Survey application to collect data. 
Material and Methods: 
Study Area: 

The study area falls in the territory of Mardan situated within Pakistan's Khyber 
Pakhtunkhwa province and is known for its rich mineral resources, including Limestone. 
Limestone is an important natural resource in the Mardan area and plays a significant role in the 
local economy. The area selected comes under the umbrella of 34°23'02.1"N, 72°07'27.1"E, as 
shown in Figure 1. A complete detail of the methodology is shown in Figure 2. 

 
Figure 1: Generalized Location of Study Area on Map 

Data Acquisition: 
Remote sensing multispectral data acquisition is the process of collecting data from 

remote sensing platforms, such as satellites, aircraft, drones, etc., using sensors that capture 
information in multiple spectral bands. We will use multispectral data from the Landsat-8 
satellite, sentinel-2 satellite, and ground data samples [19]. Table 1 shows the acquisition details 
of both the satellites. 

Table 1: Acquisition details of satellite Images 

Satellites Sensor Resolution Acquisition Date 

Landsat-8 OLI 30m 25/05/2022 
Sentinel-2 MSI 10-20m 25/05/2022 
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Figure 2: Methodology Flow Diagram 

Ground Survey for Data Collection: 
Training data is very necessary while developing a robust machine learning model for 

remote sensing multispectral data. To collect Limestone training samples Geo Survey App was 
utilized. Geo survey app is designed and developed by the National Center of Big Data and 
Cloud Computing to help surveyors/scientists/researchers collect data using their smartphones 
[20]. Figure 3 provides a visual overview of the application, with Fig 3(a) showing the main menu 
having several survey methods. By tapping the desired method in the main menu, a 
polygon/polyline can be drawn around the survey area, as illustrated in Fig.3(b)(c)(d). The 
application was programmed using JAVA language and saved the survey data in Google’s 
database. Google’s database then provides data in JSON format which is then further converted 
into KML using Python language. ENVI was employed to convert the KML into shapefiles for 
testing and training the proposed technique’s/Model's performance.  

 
Figure 3: (a) Main menu of application (b) Polygon drawn by tapping (c) View of survey data 

on map (d) List view of collected data 
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Data Processing: 
Data processing involves the extraction of useful information by manipulation and 

analysis of data acquired from remote sensing instruments. The multispectral data processing is 
divided into the following steps: 
Spatial Resampling: 

Resampling is commonly performed in order to adjust the spatial resolution of satellite 
images. Depending on the specific requirements of the analysis or application either increase or 
decrease the spatial resolution of the image. In this study, we have increased image resolution, 
by using Bi-linear interpolation, as it creates new pixel values based on the weighted average of 
the surrounding pixels in a 2x2 neighborhood. 
Layer Stacking: 

Layer stacking creates a single image with multiple bands from multiple satellite images 
or raster layers. Each band in the stacked image represents a different spectral band or data layer 
from the original images. In this study, we have stacked the required bands from Landsat-8 and 
Sentinel-2 images for our analysis. Sentinel-2 data information is confined in a distinct spectral 
band which is 13 in number, similarly, Landsat-8 data information is loaded in 11 of its distinct 
spectral bands. Spectral bands were chosen while taking into account the depth, relevance, and 
extent of information they present. Keeping in view our study targets only 10 bands from 
Sentinel-2 were selected with a resolution of 10-20m      and 7 bands of Landsat-8 were chosen with 
a resolution of 30m [21]. 
Temporal Stacking: 

The process of temporal stacking involves aligning the images or raster layers, adjusting 
their spatial resolution, and assigning each layer to a separate band in the final stacked image. 
This allows analysts to visualize and analyze temporal changes in the landscape or the 
environment. Sentinel-2 and Landsat-8 images are temporarily stacked for this study. The 
resultant temporal stacked image (Composite Image) consists of a total of 17 bands of which 8 
bands are from Lansat-8, and the remaining 9 are from Sentinel-2 [22]. 
Enhancement and Analysis: 

The image enhancement techniques improve the visual quality of the data. The most 
common techniques for image enhancement are Principle Component Analysis (PCA) and Band 
Ratios, while for image analysis machine learning models are used. 
Data Splitting: 

A field survey of the proposed area was conducted to gather the samples using the Geo 
Survey Application. The samples were then segregated into a training dataset and a testing 
dataset having percentages of 70% and 30%.  
Selection of Model: 

Support Vector machines and Neural Networks are the two well-known machine 
learning algorithms/models that we have employed [23]. 
Support Vector Machines (SVMs): 

 
Figure 4: Classification Using SVM 

 
Figure 5: Simple Output Function of 
Neural Network with Weighted Inputs 
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Support Vector Machines (SVMs) fall into the category of supervised machine learning, 
known for solving the complex problems of regression and classification. SVM separates data 
into different categories using the best hyper-plane in a high-dimensional space [24]. The hyper-
plane is chosen such that it maximizes the distance between the classes, which is known as the 
margin. In binary classification, two classes are separated by margins, their distance is further 
maximized to generate the hyper-plane shown in Figure 3. The same is the case with multiclass 
classification, multiple classes are separated by margins, and their distance is further maximized 
to generate a hyperplane shown in Figure 4. This hyperplane can be linear or non-linear, 
depending on the kernel used [25][26]. 

Once the SVM Model is trained, it has the capability to label the new unlabeled data into 
different classes. The SVM model maps the new data points into the same feature space as the 
training data and then predicts the class label. Handling high-dimensional data, non-linearly 
separable data, and avoiding overfitting are the few key features SVM offers over other machine 
learning techniques [27].  
Neural Network: 

A neural network Model is a complex machine-learning model designed after observing 
keenly the functional structure of the human brain [28]. Neural networks learn from the patterns 
found in data and then apply this learning to deal with real word problems e.g. image 
classification and pattern recognition, natural language processing, and predictive analytics [29]. 

Neural network architecture is divided into layers with interconnected neurons, the 
building block of a neural network. The neurons in the input layer receive training/testing data, 
and each subsequent layer hierarchically processes the data, extracting higher-level features as the 
data passes through the network. The output layer generates the output which can be a 
prediction, classification, or pattern based on the data fed into the input layer. 

Each neuron performs its predefined computation as it receives inputs and then passes 
on to the next neurons in the next layer, where it is combined with the outputs of other neurons 
to produce a new set of outputs. Each neuron is assigned a weight which further helps in the 
interconnection of neurons. These weights can be adjusted, to minimize the error between the 
predicted output and the actual output, accordingly. During the training phase labeled data is fed 
into the input layer and weights are adjusted to achieve the maximum accuracy [30]. 

Neural networks have several different types, each has its own architecture and area of 
application. Feed-forward neural networks are considered the simplest, having a single layer of 
neurons that takes the input data and supplies output accordingly as shown in Figure 6. Neural 
networks are preferred over traditional machine learning models because of their complex 
nonlinear learning ability, which helps handle large datasets. 
Model Evaluation: 

The model is evaluated using the test data. Furthermore, the metrics that are used for 
model evaluation are overall accuracy, user accuracy, and producer accuracy [31]. The value of 
these metrics helps us identify if any problem lies in model training or parameter tuning. 
Classification performance has been evaluated using the following parameters. 
Confusion Matrix: 

To evaluate the performance of a machine learning model confusion matrix is used. A 
confusion matrix is a table that provides a detailed view of classification models [32]. It specifies 
the classes where the model has promised results and the classes with dismal results. The 
confusion matrix can be extended to calculate other evaluation metrics, such as overall accuracy, 
user accuracy, and producer accuracy. 

Some commonly used metrics calculated based on the confusion matrix include Overall 
Accuracy: The proportion of properly identified observations, calculated as; 



                              International Journal of Innovations in Science & Technology 

Dec 2023|Vol 5 | Issue 4                                                                                  Page |683 

Overall Accuracy =
 Number of all correctly classified samples 

 Total number of samples 
∗ 100 

 
Figure 6: A Simple Feed-Forward Neural Network Architecture 

User Accuracy: 
It is a measure of the probability that a specific class on the map corresponds to the 

same class on the ground, it assesses how well a particular land cover class is correctly identified 
or classified by the algorithm. High user accuracy indicates a low rate of false positives or 
misclassifications. Calculated as; 

User Accuracy =
 Number of Correctly Classified 

 Total Number of Pixels Classified as that Class 
 

Producer Accuracy: 
It is a measure of the probability that a specific class on the ground is correctly classified 

on the map. It evaluates how well the model correctly detects and classifies a specific land cover 
type. A high producer's accuracy indicates a low rate of false negatives or omission errors. 
Calculated as; 

Producer Accuracy =
 Number of Correctly Classified Pixels for a Specific Class

 Total Number of Ground Truth Pixels for that Class
 

Kappa Coefficient: 
The kappa coefficient is a statistical tool used to evaluate the degree of concurrence 

between two raters or classifiers [33]. The kappa coefficient is calculated by comparing the 
observed degree of concurrence between two raters or classifiers with the expected degree of 
concurrence that would occur by chance. Its value varies from -1 to 1, as the value goes towards 
1 the degree of concurrence increases, and as the value moves towards 0 the degree of agreement 
falls which can be called by chance. Negative values indicate that the level of agreement is worse 
than the chance agreement. The kappa coefficient value is calculated: 

K =
P0 − Pe
1 − Pe

 

Where Po is the observed degree of concurrence between the two raters or classifiers. 
Pe is the expected degree of concurrence by chance. The expected level of agreement by chance 
is calculated as follows: 

Pe =
a1 ∗ b1 + a2 ∗ b2 +⋯+ an ∗ bn

n∧2
 

Where a1 to an and b1 to bn are the marginal totals of the contingency table (the total 
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number of times each rater/classifier assigns each category),n is the sum of all the observations. 
Training and Testing of Model: 

Models (SVM, NN) were trained and tested using the ground samples collected via the 
Geo Survey App. The data was categorized into training and testing samples. Each Category has 
four classes namely Limestone, Urban, Barren, and Vegetation. Each class was indicated with 
different colors, red indicates the Limestone, blue indicates the urban, brown indicates the 
barren, and green indicates vegetation. After successful training of the model, we tested the 
model using test samples collected from the ground survey. Training and testing lead to the 
generation of prospectivity maps which show the detailed contribution of each class in the pilot 
region. 
Results and Discussion: 

Prospectivity map generation techniques greatly assist geologists and mining companies 
in identifying areas with high mineral potential without physically visiting that area. It reduces 
their exploration cost and exploration. In this study, we have targeted the Limestone, a rich 
mineral resource found in Mardan, within Khyber Pakhtunkhwa province, Pakistan. We used 
different techniques to analyze this area while considering different datasets/imageries. Sentinel-
2 and Landsat-8 data were considered for the prospectivity maps generation using machine 
learning models. Data was collected as different samples labeled into four classes namely 
Limestone, Urban, Barren, and Vegetation using the Geo Survey App. Data was trained and 
then tested using different machine-learning models with different kernel functions. After 
applying machine learning we came up with detailed maps showing the prospectivity of each 
class in that particular area.  The detailed data of each model with its accuracy and kappa 
coefficient is shown in the tables below.  
Band Ratios and Principle Component Analysis: 

The results of different band ratios and PCA techniques highlight a certain area where 
there is a probability of the presence of Limestone. The different band composites using False 
Color Composite (FCC) are very helpful in lithological mapping. FCC of the ratio of 7/5, 6/4, 
and 4/2 band combinations are indicated in Figure 7(b). The plum color as highlighted shows 
an area that that has the possibility of the presence of Limestone. Similarly, the RGB of the ratio 
of 7/5, 3/2, and 4/5 band combinations is indicated in Figure 7(c). The pinkish color Limestone 
shows the possibility of the presence of Limestone [34]. 

In the same way, PCA is known for enhancing the image details adding more clarity, and 
highlighting the area that contains the Limestone. PC1, PC4, and PC3 are selected that contain 
more relevant information regarding carbonates [35]. PC1 has more bending towards 
carbonates. FCC of PC1, PC3, and PC4 was generated using RGB color composite and the 
result is displayed in Figure 7(d). In this analysis, the dark reddish area has the possibility of the 
presence of Limestone. 
Support Vector Machine Analysis: 

Remote sensing multispectral data is used to generate prospectivity maps, which identify 
areas that are likely to contain specific mineral or geological resources. After training the machine 
learning models on the prepared training data prospectivity maps are generated to highlight areas 
having the possibility to contain the Limestone. The Perspectivity maps against each technique 
using remotely sensed data are shown below in detail. In the maps below red area highlights the 
Limestone, blue highlights the Urban, green highlights the vegetation, and brown highlights the 
barren. The perspectivity map and accuracy of Sentinel-2 using SVM with different functions 
are shown in Figure 8 and Table 2. After testing SVM using different functions like linear, 
polynomial of degree 2, and radial basis, on the Sentinel-2 data, we have achieved the maximum 
accuracy of 88.38% using the radial basis function. SVM using different functions like linear, 
polynomial of degree 2, and radial basis on Landsat-8 data, also tested on Landsat-8, we have 
achieved the maximum accuracy of 80.57 using a linear function shown in Table 2. The 
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prospectivity maps for the same are shown in Figure 9. The model is lagging accuracy when 
compared with the accuracy achieved in finding Limestone outcrop in the southwestern portion 
of the Potiguar Sedimentary Basin, Brazil [11]. The study was conducted using multispectral data 
from Landsat-8 employing machine models like MLP, SVM, and RF. The model was evaluated 
using the Confusion matrix and Mathews correlation coefficient (MCC). After proper training 
and testing of an SVM model, they achieved an accuracy of 91.87%. In the same way, SVM was 
applied on the Landsat-8 integrated with DEM of ALOS/PALSAR data for mapping Limestone 
at Souk Arbaa Sahel, Western Anti-Atlas, Morocco [12]. SVM with radial basis function was 
considered for this study because it carries good interpolation capabilities. An accuracy of 85% 
with a kappa value of 0.83 was achieved. It was also observed that our accuracy was leading 
when compared with another study conducted for the region, Bas Drâa inlier, Moroccan Anti 
Atlas. They used multispectral Landsat-8 data to map Limestone [36]. The model they selected 
was SVM. After proper training and testing of the model, they achieved an accuracy of 60.19% 
with kappa coefficients of 0.53. The detailed accuracy of each SVM function with its user and 
producer accuracy is shown in Table 2. 

 
Figure 7: (a) Original Landsat-8 Image (b) FCC Image using band ratios 7/5,3/2, and 4/5 (c) 

FCC Image using band ratios 7/5, 6/4, and 4/2 (d) FCC Image Using PC1,PC4, and PC3 
Table 2: Detailed training data of SVM model using Sentinel-2 data with its accuracy and 

kappa Coefficient 

Types of Training 
Testing Results of Support Vector Machines 

Satellites Data Sentinel-2 Landat-8 Composite 

Linear 

Overall Accuracy 87.03% 82.68% 71.95% 

Users Accuracy 99.65% 100% 99.48% 

Producers Accuracy 99.83% 98.99% 98.97% 

Kappa Coefficient 0.8359 0.7763 0.651 
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Polynomial 

Overall Accuracy 88.28% 79.11% 71.57% 

Users Accuracy 99.4% 98.99% 99.48% 

Producers Accuracy 99.91% 98.99% 98.45% 

Kappa Coefficient 0.844 0.733 0.6469 

Radial Basis 

Overall Accuracy 88.39% 82.29% 71.90% 

Users Accuracy 98.89% 100% 99.48% 

Producers Accuracy 100% 98.99% 98.97% 

Kappa Coefficient 0.8454% 0.7434% 0.651% 

Neural Network Analysis: 
The same data, Landsat-8 and Sentinel-2, were then trained and tested using a Neural 

Network (NN) model on different iterations like 50,100,200,300. We have used the single hidden 
layer of NN for this analysis. After proper parameters tunning we achieved the maximum 
accuracy of 94.92% on 50 iterations which is shown in Table 3. The maps against each iteration 
were generated and shown in Figure 11 and Figure 12. The results of this technique are leading 
in terms of accuracy when compared with accuracy in finding Limestone outcrop in the 
southwestern portion of the Potiguar Sedimentary Basin in Brazil [11]. The study was conducted 
using multispectral data of Landsat-8 data employing machine models like MLP, SVM, and RF. 
The model was evaluated using the Confusion matrix and Mathew’s correlation coefficient 
(MCC). After proper training and testing of an MLP model, they achieved an accuracy of 
92.14%. In the same way, NN was applied to the Landsat-8 data for mapping Limestone in Souk 
Arbaa Sahel Western Anti-Atlas, Morocco, the region [12]. The NN with a single layer was 
considered for training and testing and reached an accuracy of 68.40% with a Kappa coefficient 
of 0.65%, respectively. 

 
Figure 8: (a)The Original Sentinel-2 Image (b) Perspectivity Map of Sentinel-2 Image Using 

SVM Linear Function (c) Perspectivity Map of Sentinel-2 Image Using SVM Polynomial 
Function (d) Perspectivity Map of Sentinel-2 Image Using SVM Radial Basis Function 
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Figure 9: (a) The Original Landsat-8 Image (b)Perspectivity Map of Landsat-8 Image Using 

SVM Linear Function (c) Perspectivity Map of Landsat-8 Image Using SVM Polynomial 
Function (d) Perspectivity Map of Landsat-8 Image Using SVM Radial Basis Function 

 
Figure 10: (a)The Original Composite Image (b)Perspectivity Map of Composite Image Using 

SVM Linear Function (c)Perspectivity Map of Composite Image Using SVM Polynomial 
Function (d)Perspectivity Map of Composite Image Using SVM Radial Basis Function 

The detailed accuracy of each iteration with its user’s and producer’s accuracy is shown 
in Table 3. From the above discussion, we could say that SVM itself is an effective model and 
has capabilities to predict and map different minerals remotely and NN is also known most 
complex problem-solving model in the domain of pattern recognition, pattern identification, 
and classification. But, the accuracy or the performance of a model varies with its area of 
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application. The geography of the area greatly affects the model performance as we discussed 
earlier both models (SVM, NN) were tested for mapping Limestone using different 
areas/regions but the performance of the model was different on each pilot region. The 
accuracy/performance of a model also depends on the data on which the model was trained and 
tested. In the above discussion of SVM, we have tested the model for both Sentinel-2 and 
Landsat-8 data but SVM was performing well on Sentinel-2 data and an accuracy of 88.39% was 
achieved. Then, we changed the model from SVM to NN and tested the model for both 
Sentinel-2 and Landsat-8, it was performing well on Landsat-8 and gave the maximum accuracy 
of 94.92%. In the context of our study, we suggest that NN when trained on Landsat-8 data 
produces the best results.   

To study the behavior of these models we have generated another image by temporarily 
stacking Sentinel-2 and Landsat-8 data bands. The resultant temporal stacked image (Composite 
Image) consists of a total of 17 bands of which 8 bands were from Landsat-8, and the remaining 
9 were from Sentinel-2. The composite image was then used to train the SVM and NN models. 
The perspectivity map and accuracy of Composite image data using SVM with different 
functions are shown in Table 2 and Table 3. The prospectivity maps of the same composite 
image were generated and shown in Figure 10 and Figure 13. 

With SVM on Composite image data, we have achieved the maximum accuracy of 
71.95% using a linear function, and with the same data when classified using a Neural Network 
(NN), we have reached the maximum accuracy of 92.64% on 50 iterations. The results of this 
Composite image data show that SVM is still not performing well on this composite image data, 
but NN is still leading in performance. Although the performance of NN on composite image 
data is less than the performance of Landsat-8 it's still much better than Sentinel-2's 
performance. 

Table 3: Detailed testing data of SVM Model using Sentinel-2 Image with its accuracy and 
kappa Coefficient 

No of Iterations 
Testing Results of Neural Network 

 Sentinel-2 Landat-8 Composite 

50 

Overall Accuracy 90.47% 94.92% 92.64% 

Users Accuracy 95.41% 91.67% 96.43% 

Producers Accuracy 98.28% 92.96% 97.42% 

Kappa Coefficient 0.87 0.9295 0.9007 

100 

Overall Accuracy 91.56% 91.18% 91.50% 

Users Accuracy 97.7% 93.1% 92.79% 

Producers Accuracy 94.92% 76.06% 99.48% 

Kappa Coefficient 0.885 0.8771 0.8848 

200 

Overall Accuracy 91.06% 90.37% 92.13% 

Users Accuracy 95.63% 97.87% 92.79% 

Producers Accuracy 99.9% 64.79% 99.48% 

Kappa Coefficient 0.8765 0.8656 0.8937 

300 

Overall Accuracy 87.56% 85.56% 90.61% 

Users Accuracy 76.85% 95.24% 92.82% 

Producers Accuracy 100% 56.34% 100% 

Kappa Coefficient 0.8282 0.7955 0.8729 
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Conclusion: 
In this paper, we have used remotely sensed data of Mardan region, a district of Khyber 

Pakhtunkhwa province of Pakistan for Limestone perspective map generation using machine 
learning techniques. Remotely sensed data from Landsat-8, and Sentinel-2 satellites were utilized 
for analysis and map generation. Field data was taken using the Geo Survey App. Supervised 
Machine learning models, SVM and NN were used for training and testing of satellite data, and 
finally, the results of both models were compared. Results showed that SVM with Radial Bias 
performs effectively on Sentinel-2 data for Limestone detection both visually and in terms of 
accuracy. An accuracy of 88.39% with a kappa coefficient of 0.85 was observed. User’s and 
producer’s accuracy also show a good contribution towards Limestone detection, 99.91%, and 
98.89%. In the same way, the results of the Neural Network with 50 iterations perform actively 
on Landsat-8 data both visually and in terms of accuracy. An accuracy of 94.92% with a kappa 
coefficient of 0.9295 was observed. User’s and producer’s accuracy also shows a good 
contribution towards Limestone detection, 100, and 96.67. 

So, in comparison to SVM and NN, NN outperforms SVM. The overall training and 
testing accuracy of satellite data is shown graphically in Figure 14. Additionally, band ratio and 
PCA are the two techniques utilized for detecting Limestone in the pilot area directly from 
satellite data. These techniques show good contribution towards Limestone detection and 
indicate the area that closely resembles the area indicated in maps generated by machine learning 
models. These techniques can further be applied to detect other minerals. 

Figure 11: (a)Perspectivity Map of Sentinel-2 Image Using NN with 50 Iterations 
(b)Perspectivity Map of Sentinel-2 Image Using NN with 100 Iterations (c)Perspectivity Map of 
Sentinel-2 Image Using NN with 200 Iterations(d)Perspectivity Map of Sentinel-2 Image Using 

NN with 300 Iterations 
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Figure 12: (a)Perspectivity Map of Landsat-8 Image Using NN with 50 Iterations 

(b)Perspectivity Map of Landsat-8 Image Using NN with 100 Iterations (c)Perspectivity Map 
of Landsat-8 Image Using NN with 200 Iterations(d) Perspectivity Map of Landsat-8 Image 

Using NN with 300 Iterations 

 
Figure 13: (a) Perspectivity Map of Composite Image Using NN with 50 Iterations (b) 

Perspectivity Map of Composite Image Using NN with 100 Iterations (c)Perspectivity Map of 
Composite Image Using NN with 200 Iterations (d)Perspectivity Map of Composite Image 

Using NN with 300 Iteration 
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Figure 14: Overall Training and Testing Accuracy Comparison Sentinel-2, Landsat-8, and 

Composite Image Classification 
Future Work: 

The field of remote sensing in minerals exploration is continually evolving, and several 
potential future directions and advancements can be anticipated. We can also extend the scope 
of this study in the following different ways; Advanced Remote Sensing Technologies as 
synthetic aperture radar (SAR) and unmanned aerial vehicles (UAVs), can be used to enhance 
the accuracy and resolution of Limestone detection and mapping. Advanced machine learning 
models e.g., Deep Learning can enhance the detection of Limestone deposits from remote 
sensing data by training models on annotated datasets to classify and map Limestone areas 
efficiently. 3D Modeling and Visualization utilizing remote sensing data, such as LiDAR, can 
create three-dimensional geological models of Limestone formations. This can aid in 
understanding the subsurface structure and potential mining implications. Mineral Mapping for 
Identification of specific minerals including Limestone formations can be enhanced using 
hyperspectral data. Hyperspectral data provides more insight into details about a particular area.  
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