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NOISIAIQ

The use of multispectral Landsat images and deep learning models for desertification detection
has been reviewed in this research. The role of deep learning models is found to significantly
increase the identification accuracy of the researchers, complemented by the inclusion of
Landsat imagery to capture key desertification indicators. The research reviews difficulties
including geographical resolution, data variability, uncertainty, and validation, alongside different
desertification identification methods, techniques, advancement, and limitations. The research
also highlighted the necessity of historical data, data continuity, and data fusion, among other
issues on data availability and quality. The research advocates for the combination of high-
resolution photography, climate and weather data, and socioeconomic data for better
desertification detection while the research has identified more complex deep learning
architectures, better uncertainty estimation, explainability and interpretability improvement, and
the integration of process-based models as potential areas of research. The research concludes
by highlighting the importance of precise desertification identification in effective land
administration and ecological preservation.
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Introduction:

Desertification affects millions of hectares of dry, semiarid, and arid sub-humid lands
throughout the world [1]. It adversely affects biological ecosystems [2], biodiversity [3], and
human life [4]. It encompasses the deterioration of arid, semi-arid, and dry sub-humid areas,
primarily known as drylands [5], resulting from various factors, such as climatic variances and
human activities [6]. Consequently, It results in the loss of productive capacity of land, depletion
of vegetation cover, soil erosion, and increased evaporation of biomass and water reserves [7].

Desertification has emerged to be a huge issue in various regions worldwide, which is
escalating day by day. Ecosystems that are being altered due to desertification are incapable of
sustaining the life, they once thrived. Consequently, the destruction of the ecosystems and the
crops driven by desertification renders the soil barren eradicating the chances of any cultivation
in the future. These challenges have plunged communities to endure terrible living standards,
marked by the spectrum of famine. Over one billion people are estimated to experience a
vulnerability to desertification. According to Dash, J. this issue may potentially impact up to
30% of the Earth’s landmass. Effective identification and monitoring of desertification are
imperative for the implementation of mitigation and adjustment strategies [8]. Developing an
understanding of spatial and temporal patterns of desertification is effective for the development
of land management practices, and crafting effective public policies [9][10][11][12]. Early
detection and treatment of degraded land can have observable socioeconomic impacts
[13][14][15][16]. Advancements in remote sensing technology, specifically multispectral satellite
imagery [17][18][19]|20][21], have greatly assisted desertification assessment methods. Landsat
imagery captures a vast array of wavelengths, resulting in diverse information regarding the land
cover, vegetation, and soil properties. A considerable volume of information is crucial for
delineating the indicators of desertification and monitoring its progression over time
[22]23][24][25]]26]. In the domain of large-scale remote sensing using machine learning
techniques, deep learning models [27] have been recently proposed and have achieved incredibly
promising results [28][29][30][31]. Machine learning algorithms could be utilized to automatically
learn and infer useful information from the multispectral data to accurately qualify and detect
desertification indicators among other complex patterns [32].

Background on Desertification and its Significance:

Desertification is a form of land degradation associated with climate change, it is a
multifaceted process resulting from various causes [33]. Primarily affecting arid, semiarid, and
dry sub-humid regions, it represents a spectrum of climatic extremes inducing land degradation.
However, some sources attribute that it occurs predominantly due to the influence of climatic

factors, while other sources emphaslze the physlcal susceptlblhty to desertlﬁcatlon as well
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Figure 1: Desertification (LANDSAT Images) [34]

Figure 1 reveals the utilization of LANDSAT imaging to discern the extent of
desertification. Landsat is well-known for its capability to take multispectral photographs of the
earth's surface. By using LANDSAT imagery, the severity and prevalence of desertification can
be visualized in particular areas. The images depict changes in land use and plant health over
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time, identifying the desertification hotspots. The LANDSAT images depict a reduction in
vegetation cover; increased soil erosion and diminished fertility of agricultural land in dry sub-
humid, semiarid, and arid regions, by comparing the images from different periods. Such imagery
aids researchers, policymakers, and land managers in identifying desertification hotspots and
formulating effective mitigation strategies. By enabling monitoring and analysis of the
desertification process, these LANDSAT images enhance understanding of the spatial,
temporal, and dynamic aspects of desertification, fostering the preservation and responsible
management of fragile ecosystems. Desertification poses significant threats to ecosystems,
biodiversity, and human well-being, primarily due to several factors as follows:

Loss of Productive Land: Desertification causes soil deterioration and loss, making

the affected area unfit for agriculture and other land uses. As a result, food production

is impacted, threatening rural livelihoods and food security [35].

Ecosystem Disruption: Desertification exerts a detrimental impact on ecosystems by

reducing vegetation cover, changing soil composition, and decreasing biodiversity. It

leads to the destruction of plant and animal habitats, ultimately declining biodiversity

and causing ecological imbalance. [30].

Increased Vulnerability to Natural catastrophes: Desertification increases a region's

susceptibility to natural disasters including droughts, floods, and dust storms. The loss

of vegetation and soil erosion amplify the risk of soil degradation, erosion, and flash

floods in the impacted areas. [37].

Climate Change Feedback: Through several feedback mechanisms, desertification

accelerates climate change. The loss of vegetation cover reduces carbon sequestration

capacity, leading to increased greenhouse gas emissions. Additionally, the release of dust
particles from degraded soils can affect regional and global climate patterns

[381[39][40] [41] 42
Socio-Economic Implications:

Desertification poses significant socio-economic challenges, particularly in regions that
are heavily dependent on agriculture and natural resources [43]. It leads to rural-to-urban
migration, displacement of communities, and increased poverty levels. The social and economic
consequences of desertification can have long-term impacts on local and regional development
[44][45][40][47]148][49][50][51][52].

Importance of Accurate Desertification Identification and Monitoring:

Accurate identification and monitoring of desertification are crucial for effective land
management, environmental conservation, and sustainable development [53]. The accurate
desertification can be identified and monitored in more detail, through relevant equations.
Early Detection and Intervention:

Timely identification of desertification allows for eatly intervention and mitigation
measures. By detecting the onset of land degradation at an early stage, appropriate land
management practices can be implemented to prevent further deterioration [54]. Early
intervention can help protect valuable ecosystems, maintain soil fertility, and ensure the
sustainability of agricultural activities. Early detection and intervention are represented by the
equation below:

Early intervention = Timely desertification identification + Effective Mitigation
measures

Accurate identification and monitoring of desertification provides a comprehensive
understanding of environmental shifts resulting from land degradation, facilitating their
assessment. Changes in vegetation cover, land surface temperature, and soil moisture content
can be evaluated using multispectral Landsat images and deep learning models [54]. These
evaluations are useful for quantifying the severity of desertification. It can be represented as:

Environmental changes = Multispectral Landsat imagery + Deep learning models
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Figure 2: World Desertification Map [55]
Planning Land Management Strategies:

Accurate identification of desertification patterns assists in formulating targeted land
management strategies [560]. Policymakers and land managers can effectively prioritize regions
for action and allocate resources accordingly by mapping the extent and severity of
desertification. Reforestation, soil conservation methods, water administration, and responsible
land use planning are possible methods. The significance of precise desertification identification
in developing land management plans is captured by the following equation:

Land management strategies = Desertification mapping + Resource allocation
Providing Supporting Policy Decisions:

For evidence-based decision-making and policy creation, accurate data on desertification
is essential. Understanding the geographical and temporal dynamics of land degradation requires
accurate identification and monitoring of desertification trends [56]. This information is useful
for formulating policies that tackle the root causes of desertification, encourage sustainable
practices, and back the revitalization of arid regions. Correctly identifying desertification is a key
factor in facilitating policy choices, as shown in the following equation:

Policy decisions = Accurate desertification data + Evidence — based analysis
Goals for Sustainable Development:

Goal 15 (Life on Land), Goal 13 (Climate Action), and Goal 2 (Zero Hunger) as devised
by the United Nations' Sustainable Development Goals (SDGs) are all supported by accurate
desertification identification. To ensure environmental sustainability, combat climate change,
and guarantee food security, countries can monitor and mitigate desertification [57]. The value
of precise desertification identification to SDGs is highlighted by the equation below:

SDGs = Tracking Desertification + Preserving the Environment

Landsat imagery and deep learning algorithms enable the comprehensive analysis of
various factors contributing to desertification, including changes in vegetation cover, land
surface temperature, and soil moisture content [58][59][60]. Stakeholders can use these
instruments to encourage sustainable land management practices and fight desertification [61].
Role of Multispectral LANDSAT Imagery and Deep Learning Models:

In recent years, the combination of multispectral Landsat images and deep learning
models have emerged as powerful tools for detecting and tracking desertification. These
technologies enable the classification of land cover and land degradation patterns from massive
amounts of remotely sensed data. The functions of these methods are presented in a table of
popular deep-learning models in desertification analysis [62].
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Multispectral Landsat Imagery:
When looking at the causes and effects of desertification, multispectral Landsat imagery
is invaluable. Images taken by Landsat satellites span numerous spectral bands, allowing a wide
range of electromagnetic frequencies to be quantified. Types of land cover, plant health, and soil
qualities can all be determined using multispectral data. Changes in plant cover, land surface
temperature, and soil moisture content are all indicators of desertification that can be detected
and monitored through Landsat imagery analysis [63].
Deep Learning Models:

Deep learning models, a subset of machine learning algorithms, have revolutionized
remote sensing applications and have shown significant promise for detecting desertification in
satellite images. The algorithms enable accurate categorization, identification, and mapping of
desertification patterns to automatically learn and extract relevant characteristics from
complicated and high-dimensional data [64].

Objectives of the Systematic Review:

This paper aims to systematically explore the uses of deep learning models and
multispectral Landsat images for identifying desertification from satellite photographs. The
purpose of this review is to analyze and synthesize the existing literature to shed light on the
progress, difficulties, and potential of these technologies in the context of monitoring
desertification.

The objectives of this comprehensive study are as follows:

. Conducting a comprehensive search of scientific databases to identify relevant
studies that have employed multispectral Landsat imagery and deep learning models for
desertification identification and monitoring.

. Applying specific inclusion criteria to select studies that meet the predefined
standards, such as the use of Landsat imagery, deep learning models, and desertification
identification as the main focus.

. Extracting relevant information from the selected studies, including the study
objectives, methodology, remote sensing techniques, deep learning algorithms, data
sources, and key findings.

. Conducting a comparative analysis of the identified studies to identify common

trends, methodologies, and challenges in the application of multispectral Landsat

imagery and deep learning models for desertification identification.

. Identifying gaps in the existing literature and highlighting areas for future

research and development to address the challenges and limitations in desertification

identification and monitoring.
Challenges and Problems:

The current scrutiny presents several challenges despite the development of remote
sensing and deep learning algorithms.
Data Availability and Quality:

Consistent and high-quality satellite imagery, such as Landsat data, is crucial for precise
desertification mapping. Long-term monitoring and analysis are complicated by fluctuations in
image quality and consistency due to factors including sensor availability, cloud cover, and data
processing.

Complexity of Desertification Processes:

Desertification is a multidimensional process driven by a wide range of environmental,
anthropogenic, and socioeconomic variables. Comprehensive and integrated techniques that
combine remote sensing data with supplementary information are crucial for capturing the
complex relationships and dynamics associated with desertification.
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Algorithm Development and Validation:

Research is currently underway to develop accurate and generalizable deep-learning
models for desertification identification. These models need to be reliable enough to handle
varied landscapes and desertification dynamics, achieving this requires several key components
including sufficient training data, suitable feature selection, and validation procedures.

Scale and Resolution:

Desertification can take place on a various scale, ranging from neighborhoods to entire
countries or regions. The scale difference between remote sensing data and the geographical
scope of desertification processes presents a significant obstacle that must be overcome.
Additionally, there are technological and computational obstacles to data fusion and analysis
when higher-resolution photography is integrated with multispectral data. It is critical for
efficient land management, environmental conservation, and sustainable development that these
difficulties be overcome and the field of desertification diagnosis and monitoring using satellite
images be advanced.

LANDSAT Satellite:
Overview:

The United States Geological Survey and the National Aeronautics and Space
Administration run the LANDSAT program, which is a constellation of Earth observation
satellites. Since 1972, the LANDSAT program has been supplying the scientific community with
invaluable multispectral imagery of Earth's surface. This series of satellites is capable of capturing
images in a wide variety of spectral bands, providing wealthy data for a wide range of uses,
including the detection and tracking of deserts [65].

Role of LANDSAT Images in Desertification Identification:

The ability of LANDSAT images to capture spectral reflectance across various
wavelengths makes them invaluable for identifying desertification. Essential indicators of
desertification processes, such as land cover, vegetation health, and soil qualities can be gleaned
from these imageries. Changes in land cover, vegetation density, and land surface temperature
can all be assessed and monitored for desertification by analyzing the spectral features of the
collected picture [66].

Key Features of LANDSAT Images:

LANDSAT images are useful for spotting desertification because of many factors:
Multispectral Capabilities:

Images taken by LANDSAT satellites range from visible to infrared spectrum. This
multispectral data allows for the classification of land cover types, the determination of
vegetation indices, and the identification of desertification-related shifts [67].

Archive of Past Events:

The LANDSAT program, running for decades, has amassed a vast library of satellite
images. This archive information enables tracking of desertification over time and facilitates
trends and shifts in desertification patterns [68].

Moderate Spatial Detail:

The average spatial resolution of LANDSAT images ranges between 15 and 30 meters,
though this might vary from different satellite sensors. This level of detail is adequate for
resolving the scale-dependent heterogeneity of desertification processes [69].

Open-Source Data Policy:

As part of their open data policy, the US Geological Survey and NASA make their
LANDSAT image library available to the public at no cost. Because of this, the data can be used
for the detection and monitoring of desertification by academics and practitioners from a wide
range of fields [70]. This accessibility promotes widespread use and aids study.

Feb 2024 | Vol 6 | Issuel Page | 148



/)
OPEN (5 ) ACCESS . . . .
International Journal of Innovations in Science & Technology

Pre-Processing and Data Enhancement:

To maximize the utilization of LANDSAT images for spotting desertification, pre-
processing, and data improvement techniques are necessary. Radiometric calibration,
atmospheric correction, and geometric adjustment are typical pre-processing processes. The
geo-referencing, removal of atmospheric aberrations, and calibration of the data ensure reliable
quantitative analysis [71].

The interpretability and discriminatory potential of LANDSAT imagery for
desertification identification can be enhanced through the application of data enhancement
techniques such as image fusion, normalization, and feature extraction. These methods are
designed to highlight spectral differences linked to desertification indicators and enhance details
in certain types of land cover [72].

Integration With Ancillary Data:

Integration of supplementary data, such as climate records, topography information, soil
properties, and land use/land cover data, with LANDSAT imagery, is commonly practiced for
the accuracy and interpretability of desertification detection. By combining these perspectives,
desertification can be examined from every angle, down to the interactions between individual
causes of land degradation [73][74].

LANDSAT images are crucial for studying the processes of desertification due to their
multispectral capabilities, historical archives rate geographic resolution, and open data policy.
Their utility for a precise and thorough study of desertification patterns is improved through
pre-processing, data augmentation, and integration with supplementary data [74].

Figure 3 showcases the LANDSAT mission scheduled from 1970 to 2022 along with
their tentative/ expected/ planned life cycle. This graphic provides a visual breakdown of the
various satellites launched during the specified period and their respective mission durations
however, the actual life was not by the expected life cycle e.g, Landsat 6 exploded instantly at
the time of launch however its age was expected at 30 years. On the timeline, each satellite is
represented by a bar, and the bar's length corresponds to the length of the mission. The number
of years spent on the mission is plotted along the y-axis, while the years 1970-2022 are shown
along the x-axis. Figure 3 illustrates the launch dates and expected period of missions of the
satellites, which aids in comprehending the availability and consistency of LANDSAT satellite
data over time [75].

The influence of the LANDSAT data policy on its applications from 2010 to 2022 [45]
is depicted in Figure 4. It illustrates how the uptake and LANDSAT data utilization have evolved
in response to shifts in data policies like free and open access to data. Significant variables
including data users, data downloads, and publications through LANDSAT data contribute to
the total. This figure is useful for assessing the effects of policy shifts on the availability and
utilization of LANDSAT data, showcasing the rising demand for this resource across various
sectors.

The quantity of LANDSAT images is available at USGS (United States Geological
Survey) [20] as depicted in Figure 5, providing an overview of the number of LANDSAT images
the USGS has acquired, processed, and stored over time. Years are plotted on the x-axis, while
the total number of images in the USGS collection is on the y-axis. This timeline serves to
illustrate the expansion and accumulation of LANDSAT images in the USGS archive
throughout time, hence demonstrating the ever-increasing accessibility of archival and real-time
satellite data.
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Table 1 delineates desertification from the perspective of researchers along with the
indicators that were measured in various studies.
Table 1: The Concept of Desertification and Its Indicators

Study | Year | Study Area Detected Soil |Water|Vegetation | Forestry
Desertification |Erosion cover loss
[84] | 2015 | Sahel Region | The degradation of | v v v x
land in arid regions
[85] | 2016 | Middle East | Refers to  the| % v v v
process of land
degradation in dry
areas
[86] | 2017 | Central Asia | The transformation | v/ v x v
of productive land
into desert-like
conditions
[4] | 2018 | North Africa | the loss of soil | v x v v
productivity
[45] | 2019 South the deterioration of | v/ v x 4
America land quality
[28] | 2020 Australia The decline in land | v v v v
productivity
[51] | 2021 China The degradation of | % x x v
land caused by
human activities
[71] | 2022 | Mediterranean | The reduction of | % v x x
vegetation cover
[87] | 2023 | Sub-Saharan | Land degradation | % x v x
Africa leading to desert-
like conditions
Table 2 shows a comparative analysis of deep learning models in desertification
identification.
Table 2: Comparative analysis of deep learning models
Study | Year | Study Area Deep Training | Performance | Limitations
Learning | Dataset Metrics
Model
[89] | 2022 Various CNN | Microbiota |Accuracy: Limited
ecosystems composition | 88.7%, diversity  in
data Precision: 0.89, | study areas.
Recall: 0.86
[90] | 2022 Sloping Res Net | Soil Accuracy: Short-term
farmland, properties 92.3%, focus, climate
China data Precision: 0.91, | variability.
Recall: 0.94
[91] | 2022 Multiple LSTM |Remote RMSE: 4.2, R-|Limited
regions sensing squared: 0.76 ground
imagery validation,
and data
processing.
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[92] | 2021 | Mountainous | Random | Erosion RMSE: 10.3, | Simplified
and flat Forest |data, MAE: 7.5 erosion
regions in topography models,
Portugal regional
focus.
[93] | 2003 Global Decision | Soil Prediction Limited  to
Trees |databases accuracy: 85%, |decision tree
Kappa: 0.72 models.
[94] | 2009 Global Neural |Global soil | Global soil | Data
Networks |data mapping resolution
achievement. limitations.
[95] | 2016 Global Bayesian | Soil property | Accuracy varies | Insights into
Networks |datasets with regions. the  history
and lessons in
digital ~ soil
mapping.
[96] | 2020 Global Random |Remote Accuracy: Model
Forest, |sensing data |87.6%, F1- | selection bias,
SVM Score: 0.88 data  quality
issues.
[97] | 2022 | Various land SVM, |Sentinel-2 | Accuracy: Limited  to
cover types SHAP |data 82.4%, texture
Precision: 0.83 | classification.
Methodology:

Systematic Review Methodology:

A systematic review methodology was employed to conduct a comprehensive and
rigorous analysis of the literature on desertification identification using multispectral Landsat
imagery and deep learning models. This methodology ensures a systematic and transparent
approach to identifying, evaluating, and synthesizing relevant research studies in a standardized
manner.

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
framework was used to guarantee transparency and rigor throughout the systematic review
procedure. The systematic review process encompassed study selection, screening, eligibility
evaluation, data extraction, and synthesis.

Inclusion and Exclusion Criteria:

Inclusion and exclusion criteria were established to restrict the scope of the review to
relevant research. Research analyzing desertification detection with multispectral Landsat
imagery and deep learning models was considered for inclusion. The research was given more
weight if it included clear descriptions of its methods, data sources, and assessment metrics.

Figure 7 illustrates the process of article selection using the PRISMA pie chart. PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) is a widely used
framework for conducting systematic reviews. It shows the different stages of article selection,
starting from the initial database search to the final inclusion of relevant articles in the systematic
review. The pie chart provides a visual representation of how many articles were identified,
screened, assessed for eligibility, and finally included in the review based on specific criteria.
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Figure 8 displays a bar graph showing the distribution of Landsat change detection
articles across five renowned journals. It highlights the publication frequency of articles related
to Landsat-based change detection in these specific journals. The bars indicate the number of
articles published in each journal, providing insights into the prominence of this topic within
the academic community and the level of interest in different journals.

Figure 9 presents the frequency, time, and size of Landsat change detection studies over
time. The increasing trend in the frequency of studies suggests a growing interest in
desertification identification using Landsat imagery and deep learning models. The variations in
the study duration and spatial extent indicate the diversity of research objectives, with some
studies focusing on specific localized areas and others highlighting larger regions.

120 1

100 1

Total Number of Articles

PSS SO »&”; F 55
Figure 9: Research Articles on Landsat Change Detection since 2000.

Figure 10 displays the geographical distribution of the selected studies on desertification
identification using Landsat imagery. The wide coverage of regions from different continents
indicates the global significance and applicability of the research in tackling desertification issues
worldwide. It also reflects the diversity of environments and challenges faced in different
geographical regions, making the development of robust and adaptable models crucial.

Search Strategy and Database Selection:

To find applicable research, a thorough search technique was designed. Keywords and
search terms relating to desertification, Landsat imagery, and deep learning models were
systematically used to hunt research papers on electronic databases like Google Scholar,
PubMed, Scopus, and Web of Science. The search was confined to a time frame of 2000-2022.
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Additional searches were undertaken in relevant conference proceedings, dissertations, and grey
literature to increase the scope of the review.

Data Extraction and Analysis:

A standardized data extraction form was developed to compile essential information
from the selected research studies. This included study characteristics (e.g., title, authors, and
publication year), study location, data sources, deep learning model(s), assessment metrics, and
major findings relating to desertification identification.

B Study Areas
B |mages Used

1400

1200 1

1000 A

800

Number

600

400

200 A

Africa Asia Europe MNorth America South America
Continents

Figure 10: The Global Sum of Landsat Change Detection Study Areas and Images from Each
Continent.
Results and Discussion:

This section provides a summary of the selected studies, highlighting their most salient
features and findings. These studies employed a wide range of approaches, data sets, and success
metrics, providing valuable insights into optimizing deep learning models and multispectral
Landsat imagery for this purpose. An understanding of the depth and breadth of the field's study
can be gained from reading this summary.

Analysis of Multispectral LANDSAT Image Analysis Techniques:

The selected studies utilized various methods to process and analyze Landsat imagery
for desertification diagnosis, as dissected in an analysis of multispectral Landsat image analysis
techniques. Pre-processing, feature extraction, and classification are just some of the many facets
covered by these techniques [98].

Atmospheric correction, radiometric calibration, and geometric correction were used in
the pre-processing stages of the research that were chosen. These methods are crucial for
improving Landsat image quality and eliminating artifacts or distortions that could compromise
the reliability of desertification diagnosis [99].

Selected studies employed feature extraction techniques like texture analysis, spectral
signature analysis, and the calculation of vegetation indices (such as NDVI and EVI). Important
indications of desertification such as vegetation cover, soil properties, and land surface
conditions can be gleaned using these methods [100].

The investigations used a wide variety of classification techniques, including both classic
ML algorithms and more recent DI models. Maximum Likelihood, Support Vector Machines,
and Random Forests are just a few of the classic techniques that have been utilized in the
identification of desertification. Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) are two examples of deep learning models that have gained popularity in
recent years because of their capacity to automatically learn and extract complicated patterns
from Landsat imagery. The strengths and weaknesses of various methods for analyzing
multispectral Landsat images are shown, allowing for a comparison of how well they perform
in identifying desertification.
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Evaluation of Deep Learning Models for Desertification Identification:

Performance and accuracy in identifying desertification are two aspects of deep learning
models that are evaluated. Selected studies have used a variety of evaluation criteria to quantify
the performance of deep learning models [101], including accuracy, precision, recall, F1-score,
and area under the receiver operating characteristic curve.

The evaluation results suggest that deep learning models perform well in identifying
desertification. These models successfully capture complex patterns and transitions associated
with desertification processes, demonstrating their use in accurately classifying decertified and
non-decertified regions. When dealing with complex and varied environments, the use of deep
learning models enables increased precision, particularly in complex and varied environments
[102].

Furthermore, the evaluation of deep learning models highlights the importance of
appropriate training datasets and model fine-tuning. The studies showcased leveraging large-
scale and diverse training datasets, along with transfer learning techniques, enhances the

generalization and robustness of the models in desertification identification.

Geographic Distribution of Landsat Change Detection Studies
for Different Applications Across Continents
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Figure 11: Geographic Distribution of Landsat Change Detection Studies

Figure 11 displays the geographic distribution of Landsat change detection studies
conducted for desertification identification. The map highlights the regions across the globe
where these studies have been undertaken, indicating the global relevance and significance of
desertification monitoring. Additionally, it highlights the areas of particular concern, such as arid
and semi-arid regions, where desertification is a prevalent issue.

Figure 12 illustrates the sources of Landsat data used in change detection studies for
desertification identification. The figure shows that the majority of studies rely on Landsat data
obtained from various official sources, such as the USGS Earth Explorer or other national data
centers. This highlights the wide availability and accessibility of Landsat data for researchers,
facilitating global studies on desertification.

Sources of Landsat Data for Change Detection Studies
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Figure 12: Sources of Landsat Data for Change Detection Studies
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Usage of Different Landsat Sensors in Studies Over Time (2000-2022)
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Figure 13: Usage of Different Landsat Sensors in Studies Over Time for Desertification
Ancillary Data Used in Landsat Change Detection Studies
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Figure 14: Ancillary Data Used in Landsat Change Detection Studies

Figure 13 presents the usage of different Landsat sensors over time in desertification
identification studies. The figure showcases the evolution of Landsat missions and their
contributions to desertification monitoring. Landsat 5 and 7 were widely used in the early years,
while Landsat 8 gained prominence in recent years due to its enhanced capabilities, such as
improved spatial resolution and additional spectral bands.

Figure 14 provides an overview of the types of ancillary data integrated into Landsat
change detection studies for desertification identification. Ancillary data includes various
additional datasets that supplement Landsat imagery to enhance the understanding of
desertification processes. Common ancillary data types used in these studies include climate data,
socioeconomic data, and high-resolution imagery, allowing researchers to consider multiple
factors influencing desertification.

Figure 15 depicts the usage of Earth Observation (EO) data sources in conjunction with
Landsat data for desertification identification. This figure demonstrates the integration of
diverse EO data, such as Sentinel-2, MODIS, LiDAR, and climate data, to provide a more
comprehensive understanding of desertification dynamics. By combining different datasets,
researchers gain valuable insights into various aspects of desertification, including land cover
changes and vegetation dynamics.

Figure 16 presents the accuracy percentage of studies conducted per year for
desertification identification. This figure reflects the performance of various methodologies and
models employed in these studies. The increasing trend in accuracy over time suggests

30

b T T
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advancements in data processing techniques, feature extraction methods, and the use of
sophisticated deep learning algorithms, leading to improved identification of desertification

patterns.
Usage of Other EO Data Along with Landsat Data in Reviewed Studies
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Figure 15: Usage of EO Data Along with Landsat Data
Trends and Advancements in Desertification Identification:

The analysis of the selected studies revealed several trends and advancements in
desertification identification using multispectral Landsat imagery and deep learning models
[103][104][105][106][107]. These include:

Integration of Multiple Data Sources:

Many studies have explored the integration of additional data sources, such as climate
data, socioeconomic data, and high-resolution imagery, to improve the accuracy and
comprehensiveness of desertification identification [89)].

Temporal Analysis:

The utilization of Landsat time series data and the incorporation of temporal
information have become more prevalent, allowing for the detection of long-term trends and
changes associated with desertification [90].

Spatial Scale Consideration:

Studies have emphasized the importance of considering multiple spatial scales in
desertification identification, ranging from local-scale analysis to regional-scale assessments.
This acknowledges the heterogeneous nature of desertification processes and the need to
capture spatial variations [91].

Effect of Number of Landsat Imagery per Year on Accuracy
of Change Detection Studies

&
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Figure 16: Accuracy % of Studies per Year
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Transfer Learning and Deep Feature Extraction:

Transfer learning techniques and deep feature extraction methods have shown
significant potential in enhancing the performance of deep learning models in desertification
identification. Leveraging pre-trained models and extracting deep features allow for improved
generalization and better representation of complex patterns [92]. Desertification identification
methods using multispectral Landsat images and deep learning models are continuously being
refined to improve their accuracy, efficiency, and application, as seen by the trends and

advancements observed in the analysis [93].
Trend in the Use of Different Preprocessing Strategies over Time
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Figure 17: Pre-processing Techniques over Time
Figure 17 presents the trends in pre-processing techniques used in desertification
identification studies over time. The figure shows cases of the evolution of pre-processing
methods employed to enhance Landsat imagery for accurate desertification detection. It reveals
the shift from basic pre-processing techniques in the eatly years to more sophisticated
approaches, such as atmospheric correction, radiometric calibration, and geometric correction,
in recent studies. These advanced techniques aim to minimize the impact of atmospheric and

radiometric distortions, ensuring the reliability of desertification identification results.
Trends in Different Landsat Change Detection Method Categories over Time
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Figure 18: Trends in Detection Methods over some time
Figure 18 illustrates the trends in Landsat Change Detection methods utilized for
desertification identification over time. The figure demonstrates the shift in methodologies from
traditional machine learning algorithms, such as Maximum Likelihood and Support Vector
Machines, to the increasing popularity of deep learning models like Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNSs). This trend highlights the growing
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recognition of deep learning's ability to automatically learn complex patterns and features from

Landsat imagery, leading to improved accuracy in desertification detection.
Landsat Change Detection Methods and Overall Accuracies over Time
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Figure 19: Landsat Methods Accuracies over Time
Figure 19 showcases the improvements in accuracy achieved by various methodologies
and models utilized in these studies. As technology advances and researchers refine their
approaches, the accuracy of desertification identification increases, providing more reliable and
precise assessments of desertification processes.
Prospects for Future:
Limitations of Current Approaches:

Despite the advancements made in desertification identification using
multispectral Landsat imagery and deep learning models, there are still limitations and
challenges that need to be addressed. Some of the limitations include:

Limited Spatial Resolution:

Landsat imagery has a moderate spatial resolution of 30 meters, which may not
be sufficient to capture small-scale desertification processes and changes. Higher-
resolution data sources, such as Sentinel-2 or commercial satellites, can complement
Landsat data in capturing fine-scale desertification patterns [93].

Data Variability and Heterogeneity:

The capacity to accurately capture and model these variations is hampered by
the geographical and temporal variability of desertification processes. Flexible and
dynamic modeling approaches that consider variations in landscape and environmental
conditions are needed to address the multifaceted nature of desertification [94][95].
Uncertainty and Validation:

Determining the certainty or uncertainty of desertification identification
procedures remains challenging. Validating results can be difficult due to the limitation
of ground truth data, particularly in rural and inaccessible places. The reliability of
desertification identification results can be increased through the creation of strong
validation frameworks and the integration of numerous validation methodologies
[96][97].

Data Availability and Quality Issues:

The precision and dependability of desertification identification are significantly
impacted by the availability and quality of data. Problems with data accessibility and
quality encompass:

Historical Data Accessibility: For conducting long-term desertification studies, access
to historical Landsat data is crucial. Historical data from previous Landsat missions
facilitates a more thorough and consistent analysis [29][31][32].
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Temporal Resolution and Data Continuity Landsat data may not be able to
detect rapid changes in desertification because of its limited temporal resolution (16-day
revisit time). More frequent observations and improved monitoring of dynamic
desertification processes are possible with the use of data from other satellite missions
with higher temporal resolution [41].

Integration and Data Fusion Sentinel-2, MODIS, LiDAR, and climate data are
some of the sensors that can be integrated to improve the accuracy and breadth of
desertification identification. However, challenges emerge during the fusion and
integration of data due to disparities in data types, the absence of standardization, and
inadequate processing methods [53].

Integration of Other Data Sources:

Future studies should concentrate on combining additional data sources to
enhance desertification identification to compensate for the shortcomings of Landsat
data. The following are examples of possible data integration sources:

Detailed information on land cover shifts, vegetation dynamics, and soil qualities
can be gleaned from high-resolution photography. The accuracy of desertification
diagnosis can be improved by combining high-resolution photography with Landsat
data, especially in varied areas [59].

Incorporating climate and weather data is essential for understanding the
climatic factors and implications on desertification processes can be aided by including
climate and weather data. Desertification patterns can be better characterized and
predicted by analyzing climate factors including temperature, precipitation, and drought
indices [70].

Data from the social sciences shows that understanding the causes and effects
of desertification requires looking at things like population growth, land use shifts, and
human activities. The social-ecological dynamics of desertification can be better
understood by combining socioeconomic data with remote sensing data [10].

Potential Advancements and Future Research Directions:

There are many potential applications and areas of study for deep learning
models trained using Landsat data.
Deep Learning Architectures:

Improved performance and interpretability of deep learning models in
desertification identification can be achieved by exploring more advanced deep learning
architectures such as attention mechanisms, graph convolutional networks, and
transformer-based models [48].

Uncertainty Estimation:

It is critical to create strategies for quantifying and representing the uncertainty
in desertification identification outcomes. Bayesian deep learning and ensemble methods
are two uncertainty estimation strategies that can shed light on the accuracy and stability
of the predictions [19].

Improving deep learning models to explainability and interpretability will help
researchers better comprehend the features and patterns underlying desertification
identification outcomes. Important aspects and regions contributing to the predictions
can be identified and visualized using methods like model interpretability techniques and
attention processes [28].

Process Model Integration:

A greater mechanistic knowledge of the processes underlying desertification can
be attained through the integration of process-based models like ecosystem models or
hydrological models with remote sensing and deep learning technologies. This
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integration enables the modeling and prediction of future desertification scenarios under

diverse environmental and climatic conditions [82].

Transferability and Generalization:

It is crucial to ensure that generated models may be applied to a variety of
settings and contexts. Knowledge and models can be easily transferred to new study
areas by developing transfer learning techniques and domain adaption methods, thereby
eliminating the need for substantial data gathering and training.

Conclusion:

Understanding and tracking the decline of arid and semi-arid ecosystems requires an
accurate diagnosis of desertification. This article focuses on how multispectral Landsat images
can be combined with deep learning models to detect desertification. Key findings and insights
were retrieved through a systematic assessment of the literature to provide a thorough overview
of the status of research in this area. Indicators of desertification such as vegetation health, land
surface conditions, and changes in land cover were among those cited in the assessment as prime
examples of the value of multispectral Landsat imagery. Utilizing deep learning models, complex
patterns and features were automatically extracted from Landsat data, resulting in improved
accuracy in identifying desertification. The review shed light on the methodology, techniques,
and advancements in desertification identification, through a comparison of the chosen research.
The variety of pre-processing methods, feature extraction strategies, classification algorithms,
and evaluation criteria was laid bare. Data availability and quality difficulties, integration with
other data sources, and the need to handle uncertainty and validation are only some of the trends,
constraints, and challenges uncovered by the investigation. The investigation offered several
promising avenues for further research and development. These include the advancement of
strategies for estimating uncertainty, boosting the transferability and generalizability of models,
and investigating state-of-the-art deep learning architectures. Using multispectral Landsat images
and deep learning models, this review paper provides a thorough overview of identifying
desertification. It emphasizes the need for precise and timely desertification process detection
for efficient land management and ecological preservation. The results of this review contribute
to the advancement of knowledge in this field and offer useful guidance to future academics,
policymakers, and practitioners in the field of desertification monitoring and management.
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