)
OPEN (3} ACCESS
) International Journal of Innovations in Science & Technology

RESEARCH & INNOVATION ®
@
°

r
Er IJIS

Enhancing Mobile Efficiency: A Cloud-Powered Paradigm for

Extended Battery Life and Enhanced Processing Capabilities
Dua Agha', Veena Kumari', Areej Fatemah Meghji'
'Department of Software Engineering, Mehran University of Engineering and Technology
Jamshoro, Pakistan
* Correspondence: Areej Fatemah Meghii, areej.fatemah(@faculty.muet.edu.pk
Citation | Agha. D, Kumari. V, Meghji. A. F, “Enhancing Mobile Efficiency: A Cloud-
Powered Paradigm for Extended Battery Life and Enhanced Processing Capabilities”, IJIST,
Vol. 6 Issue. 1 pp 58-69, Feb 2024
DOI| https://doi.org/10.33411 /ijist/2024615869
Received| Jan 10, 2024 Revised | Feb 03, 2024 Accepted| Feb 05, 2024 Published | Feb
09, 2024.

NOISIAIQ

constraints of these devices in terms of processing power, memory, storage, and energy

efficiency are becoming increasingly apparent. This research introduces an innovative
solution by integrating Mobile Cloud Computing (MCC) to address these challenges. The
research focuses on the creation of an Android application called "ServiVerse" that efficiently
drains the phone's battery to imitate real-world conditions. The software is accompanied by a
Firebase-connected battery optimizer, which provides users with complete insights into battery
state, cleaning history, and graphical representations of performance. The system's
distinguishing feature is outsourcing power-intensive operations to a cloud server, resulting in
increased energy efficiency and battery life. The study demonstrated successful battery
optimization tactics adapted to individual users, such as the amount of cache and RAM deleted
and storage space freed up on the mobile devices. This strategy has proven to be vital in
addressing a key concern about background processing and the loss of power generation on
mobiles, which is providing users with more efficient and longer-lasting battery life.
Keywords: Cloud Computing, Mobile Cloud Computing, Battery Optimization, Offloading,
Firebase.

I n an interconnected world where mobile phones are essential to everyday operations, the

Author’s Contribution experimentation, Conflict of Interest:

Dua Agha: Writing — original | visualization, literature | The authors declare they
draft, methodology, | review, and result reporting. | have no conflict of interest in
experimentation, Areej Fatemah Meghji: | publishing this manuscript in
visualization, literature | Methodology, — writing — | IJIST.

review, result reporting. | editing and review, | Project details: This
Veena Kumari: Writing | validation, result reporting. research was not part of any
original draft, methodology, | Acknowledgement: Nil project.

) IPIndexing e=#:%
\ Indexing Portal . ‘

TOGETHER WE REACH THE GOAL

s ResearchGate
DRJI Crossref WIKIDATA

CiteFactor

i 3]
EI kiR st

RESEARCHEIB
ACADEMIC RESOURCE INDEX

ROT

e @lDEAs

@ Scilit

iNFOBASE INDEX

Feb 2024 | Vol 6 | Issuel

mailto:areej.fatemah@faculty.muet.edu.pk
https://doi.org/10.33411/ijist/2024615869

OPEN () ACCESS

International Journal of Innovations in Science & Technology

Introduction:

In today's dynamic world, mobile phones serve as essential tools for various daily tasks,
fostering communication, interactions, and modern learning experiences. The rise of Mobile
Cloud Computing (MCC), driven by widespread mobile service adoption and cloud integration,
addresses inherent limitations in mobile devices. These limitations include computational power,
memory, storage, and energy efficiency, requiring a nuanced approach for enhanced
functionality [1]. The synergy of mobile and cloud computing proves pivotal in overcoming
challenges, especially in the context of battery technologies lagging behind innovation [2][3]. To
improve smartphone battery efficiency, designers integrate hardware- and software-based energy
optimization approaches, evaluating components like Bluetooth, CPU, and camera consumption
[4]. The integration of cloud computing technology emerges as a solution to tackle these
challenges, gaining traction in research due to the widespread use of mobile phones [5][6].

Corporate productivity has significantly increased with the adoption of internet-based
cloud server infrastructures, meeting the demand for efficient data management and
accessibility. Cloud-based systems, offering virtual services, reduce dependence on physical
products and hardware, contributing to enhanced energy efficiency and reduced emissions [7].
Multiple tasks can be carried out concurrently through cloud computing's mobility, saving CPU,
storage, and battery power on the device. Computational offloading in mobile devices
streamlines background processing, enhancing server-based system performance and resource
utilization.

The rapid evolution of computational functionalities in mobile phones has raised user
expectations, leading to increased battery drainage and performance issues [8]. The decline in
processing power exacerbates battery life limitations, disrupting daily routines. Addressing this
challenge is imperative, necessitating a focus on lowering energy consumption at the software
level. This research undertakes the task of optimizing mobile phone power usage through cloud
computing, facilitating automatic adjustments without requiring manual intervention. A user-
friendly Android application is developed that analyzes and curtails battery-consuming
processes, including cache and background operations of intensive applications. The application
offers analytical insights and graphical representations of battery status, along with a list of
battery-consuming applications, helping users to identify potential drains and providing options
to halt unnecessary processes. This research seeks to bridge the gap between mobile technology
and efficient battery management, offering users a reliable solution to enhance their mobile
phone experience by creating an intuitive application that addresses battery consumption
effectively.

The paper is organized into the following sections: we start by presenting a "Literature
Review" which offers a comprehensive overview of pertinent literature to establish the context
for the current research. This is followed by the specific goals of the research outlined in
"Objectives", followed by "Material & Methods" which elaborates on the procedures and steps
followed during the research. The outcomes of the study are detailed in "Results and Discussion”
while "Conclusion" presents a summary of the research and also addresses the Limitations and
Future Directions providing insights into potential areas for further exploration.

Literature Review:

To improve mobile battery efficiency and processing power, several techniques and
methods have been carried out to address the issue. One of the used technologies is CloneCloud
technology, which presents an adaptable application partitioner and execution runtime that
allows unaltered applications to smoothly offload processing from mobile devices to computing
cloud-connected device clones. Clone Cloud optimizes and partitions programs using static
analysis and dynamic profiling, enabling efficient cloud integration. According to the analysis,
Clone Cloud may speed up smartphone applications by up to 21.2x and support various input
and network partitions [9]. Another study provides solutions with different aspects such as

Feb 2024 | Vol 6 | Issuel Page | 59

A
OPEN () ACCESS
International Journal of Innovations in Science & Technology

Mobile Edge Computing that provides remote computing capacity close to smart mobile devices
(SMDs). In this study, a single-cell Mobile Edge Computing system that supports multiple SMDs
is examined. Each SMD has a distinct task that can be delegated to a MEC server for processing.
In comparison to local execution and complete task offloading, the heuristic scheme known as
Overall Energy Minimization by Resources Partitioning (OEMRP) is evaluated. The proposed
solution also minimizes rejected SMDs with insufficient radio resources, saving approximately
48% of energy compared to local execution and 24% and 26% of energy compared to offloading
all tasks [10].

To increase battery life for mobile computing, the paper presents an energy-optimal
offloading technique that runs applications on remote servers. The study gives a mathematical
model for the issue and explores the use of HetNets for quick and easy wireless access. In
simulations, the optimal algorithm, which is based on combinatorial optimization, saves 43% of
energy. The O(N) complexity suboptimal algorithm comes close to the ideal solution.
Additionally, the article explains how energy conservation and SINR in LTE networks are
related, showing how the suggested algorithms can perform better under optimal wireless
conditions [11].

To improve response time and energy management for mobile cloud computing, the
paper proposed a framework that prompts for segregating mobile devices according to fuzzy K-
nearest neighbors and enhancing computational offloading with the Hidden Markov Model and
Ant colony optimization. When compared to existing techniques, the algorithm performs 89%
better in terms of response time, 95% better in terms of energy consumption, and 50% better
in terms of processing cost. This method shows the shortest route between resources and mobile
devices [12].

The Mobile Capabilities Augmentation using Cloud Computing (MCACC) framework,
which divides mobile applications into services for local or remote execution has been
introduced in [13]. The model considers real-time metrics like execution time, consumption of
energy, battery lasting, memory, and security. The results demonstrate that both heavy and light
applications can benefit from the MCACC model, saving energy and improving performance.
Network bandwidth affects offloading, with high bandwidth resulting in better offloading. The
experimental results show that executing the requested service on the mobile, especially with
low network bandwidth, saves mobile processing power [13]. In the area of Mobile Edge
Computing (MEC), a potential optimization model is proposed that considers task dependency
and dynamic energy harvesting using wireless power transfer to minimize task completion time
and includes a greedy algorithm for offloading subtasks with dependencies to the location with
the quickest turnaround time. Using a custom simulated annealing algorithm, the algorithm
outperforms task completion time, and algorithm running time drops by at least 9.32% on
different task graphs and by at least 11.47% after further optimization by the simulated annealing
algorithm [14].

Another research introduces a MEC architecture that combines computation offloading
and artificial intelligence technology. The LSTM algorithm performs task prediction based on
node performance and data size of tasks from mobile users. It also strategies migrations of tasks
for edge cloud scheduling. The architecture controls total task delay with growing data and
subtasks, ensuring the completion of prior tasks [15]. To obtain task optimization, a novel task-
scheduling algorithm is utilized with its dynamic decision-based methods to reduce energy
consumption and time execution along with a task scheduling server to offload computation to
the cloud, improving performance and resource utilization on mobile devices. Jobs beyond time
limits are moved to cloud VMs, saving mobile devices' limited battery power [16]. The
competence of mobile computing hybrid applications is evaluated at runtime in this research's
technique to address the issue of task-intensive applications allowing arbitrary configurations to
optimize the efficiency trade-off. The experimental analysis takes into consideration two MC

Feb 2024 | Vol 6 | Issuel Page | 60

OPEN () ACCESS

International Journal of Innovations in Science & Technology

hybrid applications that are both executed using a straightforward MC framework and are
modularized based on computationally demanding tasks. Results conclude that effective
configurations are manageable. Using a middleware-based task delegation from mobile to cloud,
the technique involves parsing down the source code of an application into smaller units based
on tasks that use battery power [17]. For scheduling tasks in a collaborative environment, a
ranking algorithm is proposed to evaluate peer devices' capabilities and send jobs to the most
appropriate devices using a tweaked Hungarian algorithm. For resource-intensive applications,
a local cloud architecture with scheduling plans is utilized to distribute workload and optimize
resource consumption. This collaborative environment enables all devices to work together to
overcome their limits and enable effective local operations without the need for external
assistance from cloud services [18].

The research by Kaur et al. concludes that to make your mobile phone more efficient
and to improve its processing capabilities cloud computing along with the data synchronization
between the mobile and cloud can be helpful. The data from a mobile phone can be
automatically synchronized to the user’s devices when they are connected to the internet along
with consuming minimum energy usage. Offloading meaningful data can be partial or complete
over the cloud reduces the workload of smartphone applications and it results in less battery
consumption with extended battery life along with more reliability [19].

Objectives:

The objective of this study is to investigate the integration of MCC as a solution to
mitigate mobile device limitations, specifically addressing issues related to battery drainage and
performance. To this end, the research aims to develop a custom power-intensive Android
application designed to efficiently drain a phone's battery, serving as a simulation tool.
Additionally, the research also aims to create a Battery Optimizer application connected to
Firebase to offer users insights into mobile battery life and consumption. The goal of the
Optimizer is to intelligently identify power-hungry components of the mobile phone, including
both the custom power-intensive app and mobile internal/external applications. The goal of the
optimizer is to offload the power-hungry components of the mobile phone to a cloud server
through the fusion of cloud computing. By executing resource-intensive applications on the
cloud server rather than the device, the aim is to significantly save power, extend battery life,
and enhance processing capabilities, thereby providing users with more effective and longer-
lasting battery performance.

Material and Method:

The current research aims to significantly save power, extend battery life, and enhance
processing capabilities, providing users with more effective and longer-lasting battery
performance. Figure 1 depicts the workflow diagram of the proposed system, outlining the
sequence of operations. It includes a customized, power-intensive application that integrates
Bluetooth, Wi-Fi, location services, sensors, and timers. Moreover, it identifies internal and
external applications running on the phone, all interconnected with a battery optimizer. The
battery optimizer is further linked to the cloud (Firebase), serving as a repository for cleanup
information specific to each user. Our research incorporates two main domains into the
development of the proposed model.

Mobile Cloud Computing:

Mobile Cloud Computing is designed to enable powerful mobile applications or services
to run on various electronic devices. Through the use of cloud platforms and the internet, this
technology expands data processing and storage capabilities beyond mobile devices [20].
Typically, mobile-cloud hybrid apps are managed by third parties in remote data centers,
handling data storage and computational responsibilities. This strategy guarantees data
integration, accessibility, security, and uptime [21]. These applications can operate over the
Internet but require regular updates. Mobile cloud computing offers a desktop-like experience

Feb 2024 | Vol 6 | Issuel Page | 61

OPEN ACCESS
8 International Journal of Innovations in Science & Technology

on mobile devices and tablets while maintaining portability. It enhances efficiency, reduces costs
for businesses by connecting to more network providers, and adds additional features to mobile
phones and other electronic devices.

» -

Bluetooth

A +—

Timer

<_>: Customized App

Location “ServiVerse”

®)

Sensors

@ \) l -J1L-
s’
‘ Battery Optimizer Offloaded to Cloud

Phone Internal &
External Apps

Figure 1: System Workflow Diagram
Firebase:

Firebase is a platform designed for the creation of mobile and web applications, offering
convenient access to data storage. It functions as a real-time database that is accessible through
the internet and offers effective data and binary file storage. Google's mobile platform, Firebase,
helps people and companies create high-quality applications and grow their operations [22]. Data
is handled as streams in Firebase, while Google Cloud Storage is used to manage file storage.
The process of storing the cache cleaning session in Firebase is executed in an encrypted format,
ensuring heightened user security when data is stored in the cloud.

Results and Discussion:

Our system comprises two key components: a custom power-intensive application
named "SERVIVERSE”, and a battery optimizer connected to Firebase for data storage.
Custom Power-Intensive Application:

ServiVerse, designed to drain the phone's battery efficiently, utilizes built-in Android
services such as Bluetooth, Wi-Fi, location services, sensors, and timers. Essential components
of the application interface include a splash screen that displays a graphical representation when
it launches, a home screen with a user-friendly dashboard made with grid layout and card views,
and specialized functionality for Bluetooth, Wi-Fi, location, sensors, and timers depicted in
Figure 2.

ServiVerse

All In One...

3 50O

BLUETOOTH LOCATION

=T @

WIFI SENSORS

o

TIME

Figure 2: ServiVerse Features

Feb 2024 | Vol 6 | Issue 1 Page | 62

International Journal of Innovations in Science & Technology

Users may communicate with associated devices, control Wi-Fi connections, obtain
textual map data with satellite views, retrieve different sensor readings, and use stopwatches and
alarms by using these functions. Our unique, resource-intensive program "ServiVerse" has
fundamental functions to provide users with a full user experience. To accurately achieve battery
depletion, it periodically modifies its power consumption patterns to simulate practical situations
when various processes run simultaneously in a mobile phone.

Use of Bluetooth feature to link devices for file transfer, the Wi-Fi module to mimic
data-intensive actions like downloading huge files or streaming high-definition media.
Furthermore, the app simulates ongoing GPS monitoring, giving important details about
location-based power usage. The sensors show the impacts of sensor-intensive applications on
battery life in addition to reading proximity, acceleration, temperature, humidity, brightness,
pressure, magnetic effects, and RGB data. Additionally, the timer function not only includes a
stopwatch but also integrates various alarms with diverse pre-installed ringtones, showcasing the
power usage implications of timer-based applications.

Battery Optimizer:

Although there are already mobile phone battery optimizers available that improve
performance by clearing cache, none of them include a built-in feature associated with the cloud.
Our optimizer has an integrated function linked to the cloud (Firebase), where all the cached
data is securely stored in encrypted format once it is offloaded. Figure 3 illustrates the phases
involved in the battery optimizer development process using Android Studio.

2

| Define the Purpose and Features

Y’

| Install Android Studio ii

Y’

| Design the User Interface (UI)]

’

[Using API's create Battery Optimizer

’

| Connected to Firebase |

T —

Retrieve battery status, charge level,
| charging status, and battery health

Y’

| Implement background tasks for periodic checks |

’

| Detect Power-Hungry Apps |

Y’

| Analyze apps and resource-intensive tasks |

v

| Transfer junk on cloud |

Y’

Close background apps,
adjust screen brightness, torch etc.

v

\" Optimized

=S

Figure 3: Battery Optimizer Development Procedure

In contrast, the battery optimizer, which is integrated with Firebase, comprises
numerous interactive screens. The splash screen serves as an introductory interface during
application loading, followed by a signup screen where users can register their personal
information, enabling seamless integration with the system. With the use of a username and
password, the login page guarantees safe user authentication. The optimizer offers
comprehensive information on the phone's charging state, including battery level, temperature,
voltage, health, and technology. Additionally, it also provides a list of internal and external

Feb 2024 | Vol 6 | Issuel Page | 63

OPEN ACCESS
8 International Journal of Innovations in Science & Technology

programs, giving users the option to authorize access or change settings for each one individually
as shown in Figure 4.
Battory Optimizer - All Appe)

P = (o) ™ ~ - L0)]

Apps 44 Froo RAM 100
@ -0.000 A
) 00 s @ S&?fcululo: -0

l *) & Temperotre zaz°c |

@ ComSconner . 0
¥ Voltage 4067v | N/A
Battery Optimizer
® Hoahh Good Chess G
AN 000 l e A 55 0
Signin X Technology Livion |
d Dotz . o
@
Doshboard =
' N/A O
)
& Drive - e
N/A
NEXT
'!fi' Google Podcosts . &

Oon’t have account? Croote one

Figure 4: Battery Optimizer-Fetching

The program data is saved chronologically, displaying the history of cleaning, together
with cache and RAM details. Although it was initially intended to transfer program components
to the cloud, Android constraints have limited what can be saved there to just useful information.
This includes information like the status of Bluetooth and torches, as well as wiping history,
clearing space, and background applications that have been stopped.

Moreover, to help users keep track of their device's performance, the optimizer also
provides graphical representations of battery status and temperature over the last 24 hours, 3
days, or 5 days. All of these details, such as cleaning history, cache removal, space freed up, and
the status of background programs, are meticulously logged and connected to specific user
accounts on Firebase as depicted in Figure 5.

Stotiatl -5
Hiotory € Hiotory Dotolla otfatics

Oate Time Auq00,0000 (3 - \O)]
ﬁ Battory lewel 79
Freb Metnary 9090 MO Battory Lovoel ('u) Lant 24h
Totol Xited App a4q oy meamn
Aug 00,0909 >
Bivetcoth tum olf
Tourch turnoff =
Jul 310115) Apps @
foul "
0410190 > G Calovlelor .
N/A "
Ju! 31,0110 > u
@ CamScanner = e
N/A
Jul 310123 :) Dattery Tamporature (°C) Lant 2an
Chess & i merien
Ju131.0150 > m N/A © e
Jul 31,0742 > Doraz
d N/A %
Jul 3. 07:47 >
. Dashboord -
N/A
& D”Ve _ a A2 C favrage 344 C May 34 5C
N/A ®) *

240 J dmo f

Figure 5: Battery Optimizer-History and Graphical Representation
When employing a battery optimizer to enhance mobile performance, various key pieces
of information are extracted. Firstly, the cleanup timestamps are logged to record the
optimization process. Additionally, the battery level after each cleanup is depicted, presenting

Feb 2024 | Vol 6 | Issue 1 Page | 64

International Journal of Innovations in Science & Technology

insights into the device's power status during this operation. The optimizer also reveals the
amount of memory that has been liberated, indicating the efficiency of the cleanup in optimizing
storage. It identifies background applications that were consuming battery resources, specifying
the total number of terminated apps that impact on overall battery. Notably, features like
Bluetooth or the torch are automatically turned off, contributing to a more comprehensive and
effective optimization approach. This makes certain efficient battery management and provides
users with valuable insights into their device's power consumption patterns.

Opverall, our research implementation not only focuses on draining the battery for
analysis but also delves deeper into real-world usage scenarios. Through interactive notifications
and detailed graphical representations, our system ensures active user participation, ultimately
leading to more effective battery optimization strategies tailored to individual user's needs and
habits.

Illustrated in Figure 6 is a thorough overview of the hierarchical organization within the
Battery Optimizer Backend, delineating the interconnections and structure among its various
components. Throughout the development process in Android Studio, the Main Activity class
of the battery optimizer assumes a pivotal role, with the ‘DataEstimator’ class estimating device
and battery-related data through the mApp object. The ‘NetworkWatcher’ class manages server
status, device registration, and data transmission to the Firebase server via the
‘CommunicationManager’ class. The ‘OnRefreshComplete’ method updates the UI after
completing a task list refresh, and loadComponents’ initialize necessary components and data
for the activity, such as setting up the database, services, permissions, and event listeners.

icati TakesU inf Infe
—> NetworkWatcher ——mp/ COMMunication | Tones eerilo Sorver Save Userinfo
lanager
Custom Power
Access Data Offload
I ive App f:loud
‘SERVIVERSE’ (Firebase)
Battery —> AppsFragment
Optimizer | —
(Main-Activity) Manage Mobile Phone’s-
Internal & External r——
Info
DataEsti DeleteSessions
— atal —_—
Backgroundtasks tasks
Save
n Save . .
HistoryFrag Historical App Data

Figure 6: Battery Optimizer-Backend Hierarchy

The ‘AppsFragment’ handles the power-intensive app "ServiVerse" along with managing
tasks related to phone internal and external information, such as running processes, killing apps,
and handling permissions for device resources using the ‘getMemory’ method. It includes a
cleanup process triggered by a clean button click, which disables Wi-Fi and Bluetooth, kills apps,
logs device information, and performs other operations like turning off the camera torch and
refreshing app data. The ‘DeleteSessionsTask’ class executes the deletion of outdated battery
sessions in the background, and the ‘HistoryFragment’ displays historical app data, allowing
users to view additional information by clicking on items.

The ‘CommunicationManager’ class orchestrates the uploading of data samples to the
firebase, managing communication flow and providing status updates to the UI The
‘RegisterDeviceHandler’ class is responsible for device registration, making API calls using
Retrofit, and gathering device-specific information for the registration payload, including model,
manufacturer, OS version, and root status. Overall, these classes work together to ensure
effective communication with Firebase, data estimation, and management of app-related tasks
on the Android device.

Feb 2024 | Vol 6 | Issuel Page | 65

OPEN ACCESS

International Journal of Innovations in Science & Technology

Discussion:

This system's standout feature is its ability to offload power-intensive mobile tasks to
Firebase, a cloud server. Firebase meticulously records and organizes information, tracking each
uset's phone cleaning activities. Figure 7 and Figure 8 visually represent the frequency of cleaning
sessions, the amount of cache and RAM eliminated, and the storage space freed up. The process
of storing the cache cleaning session in Firebase is executed in an encrypted format, ensuring
heightened user security when data is stored in the cloud. This not only enhances energy
efficiency but also extends battery life. The approach is sustainable, as it reduces user’s device
strain, ensures secure data storage, and maintains user privacy. The cloud infrastructure
incorporates a default safety mechanism to enhance security for its users. This implies that our
optimizer, seamlessly integrated with the cloud, ensures security for users. Each user undergoes
a distinct registration process within the optimizer, ensuring personalized and separate user
profiles. Once each user has performed their respective cleansing operations, the data is safely
offloaded to the cloud in an encrypted format, with each user's information stored separately.

The tracked user activity provides valuable insights for continuous optimization and the
visual feedback fosters transparency. The integration with Firebase streamlines data
management, ensuring immediate updates and accessibility. As the system promotes responsible
and efficient resource utilization, it contributes to better performance. The steady monitoring
of cleaning activities establishes a robust feedback loop for further developments. The system
also includes a feature that automatically turns off the Torch and Bluetooth connections within
the device, enhancing both security and energy efficiency. This comprehensive approach not
only ensures uset's devices are optimized for performance but also showcases valuable insights
into user behavior and preferences, aiding in continuous improvement and customization of the
optimization process.

This study holds significant implications across various domains. Firstly, it focuses on
mobile device optimization, which aims to improve mobile device performance and battery life.
The influence extends to user experience improvement, where graphical representations and
insights into energy utilization allow users to make educated decisions regarding their device's
performance. Furthermore, the study promotes energy efficiency by integrating cloud
computing for power-intensive tasks. The usage of Firebase demonstrates a priority on data
security and privacy, with default safety measures and individualized user profiles offering
comprehensive data protection for users. Overall, this study proposes a comprehensive
approach that seamlessly integrates cloud computing, data analytics, and user-friendly
applications to overcome the limits of mobile devices while improving overall performance
and battery life.

Feb 2024 | Vol 6 | Issuel Page | 66

OPEN 3ACCESS
C International Journal of Innovations in Science & Technology

“ Firebase BatteryOptimizer v Gotodocs M o
A Project Overview C|OUd FlreStore 0
Data Rules Indexes Usage
Build —
*: Prototype and test end-to-end with the Local Emulator Suite, now with Firebase Authentication Get started (4 X
Authentication
A > users > d
Realtime Database
A batteryoptimizer-41d4c ers i
Storage bt W =3 + 8
Hosting + Start collection <+ Add document <+ Start collection
Functions \ a
rrentApps dualgmail.com > + Add field
@ Machine Learning
users >

email: ‘dua@gmail.com

3 FExalN7PaF30sHSSIHU
Release and monitor

ame: 'dua

12345

& Extensions

Figure 7: Firebase-Individual User Details

“ Firebase BatteryOptimizer = Cloud Firestore Gotodocs M) o
Project Overview 2 batteryoptimizer41d4c |B currentApps = i B FriAug0609:39:29 GMT+05:00 202
Build <+ Start collection + Add document + Start collection
currentApps > Fri Aug 06 09:39:29 GMT+05
aa Authentication + Add field
Fri Jul 38 60:11:43 GMT+85
apps: 44" -
Realtime Database S bluetooth: “turn off
Fri Jul 30 00:36:63 GMT+85
Storage date: "Fri Aug0609:39:28 GMT+05:00 2021"
Eri Jul 38 13:21:26 CMT+05
Hosting : "Good"
Functions ’ WycoeeAIFol7DIXpSIBC"
Machine Learning o 79
o - list: "[{'mHasBackgroundService"true 'misAutoStarttrue,misCl

6GOqUF6KCMYJG37CGNhIeg\u003d\u003d/lib/arm64" né
6GOqUF6KCMYJG37CGNhOeg\u003d\u003d','sharedLibrar
edabb50a7d69", targetSandboxVersion':1,1argetSdkVersion
6 GMT+05 {'mHasBackgroundService"false,mIsAutoStart"true,'misCh
7 - - {'appComponentFactory":"androidx.core app.CoreCompone
& Extensions Sat Jul 31 13:19:41 GHT+85 ziewl7PyilgHnssmt7whaA\u003d\u003d/lib/arm6d’ nativel
W05 ziewl7PyilgHnssmt7whaA\u003d\u003d",'scanSourceDir™:"
S edabb50a7d69" "targetSandboxVersion™1,tarqetSdkVersion ™
»

Release and monitor

Spark

Upgrade

Cloud Firestore location: nams (us-central)

Figure 8: Firebase-Individual User Cleanup
Conclusion:

This research has effectively applied an approach to increase battery power in mobile
devices, which delivers a solution to continuous battery depletion amid improvements in mobile
technology. Our innovation is intelligently spotting power-consuming components in a mobile
phone and applying the code-offloading method to run the computation process on a cloud
server. This approach is achieved by the convergence of mobile computing with cloud
computing to ease the battery usage of the mobile itself. The proposed optimizer for mobile
phone applications leads to considerable power savings, extending battery life, and improving
processing capability. This tactic has proven crucial in solving the urgent problem of background
processing and power depletion on mobile devices, giving consumers a battery performance that
is more effective and lasts longer.

Feb 2024 | Vol 6 | Issuel Page | 67

A
OPEN () ACCESS
International Journal of Innovations in Science & Technology

We reported on manual, small-scale feasibility research and highlighted several potential
barriers to validate the implication of bandwidth and power consumption optimization in MC
hybrid systems. Firebase operates in an event-driven manner, calling the thread that started its
on-event handler whenever an event occurs. From the perspective of scalability, using Firebase
or other similar systems as middleware might not be the best option. The callback from the
Firebase handler will be stopped owing to an intrinsic feature of Android systems if the waiting
thread is the main thread to retrieve the results from the cloud. The alternative is to utilize
socket-based middleware, which operates in a suspend-migrate-receive-resume manner and
generates appropriate responses based on the sent request attributes within a timeframe. It is
essential to note that since the study is centered on Mobile Cloud Computing (MCC), the
availability and reliability of network connections may have an impact on its efficacy. Users in
places with inadequate network coverage may experience limitations in user experience and face
challenges in accessing cloud resources. In upcoming phases, when implementing the suggested
application, we might conduct a survey to gather feedback. This survey will be useful in
incorporating recommendations for data format, storage, and maintenance from various users.
Additional enhancements can be made by incorporating extra features like personalized power-
saving configurations or widgets for real-time monitoring. In forthcoming research endeavors,
Exploring and evaluating different optimization algorithms, including the integration of machine
learning, can enhance the system's adaptability to user behavior. Additionally, analysis of energy
consumption patterns, and evaluating the environmental impact in terms of green computing
contribute to the broader applicability and sustainability of the proposed solution.

References:

[1] H.K. Shaikha and A. B. Sallow, “Mobile Cloud Computing: A Review,” Acad. J. Nawroz
Univ., vol. 6, no. 3, pp. 129-134, Aug. 2017, doi: 10.25007/AJNU.V6N3A96.

[2] S. C.Toader, R. I. Ciobanu, and C. Dobre, “Smart Computation Offloading for Mobile
Clouds,” 2023 IEEE Int. Conf. Pervasive Comput. Commun. Work. other Affil. Events,
PerCom Work. 2023, pp- 6267, 2023, doi:
10.1109/PERCOMWORKSHOPS56833.2023.10150282.

[3] C. Nigam, G. Sharma, and E. Menghani, “Comprehensive Review and Analysis on
Mobile Cloud Computing and Users Offloading using Improved Optimization
Approach for Edge Computing,” Int. J. Intell. Syst. Appl. Eng., vol. 10, no. 1s, pp. 234—
242, Oct. 2022, Accessed: Feb. 006, 2024. [Online]. Available:
https:/ /ijisae.org/index.php/IJISAE /atticle /view /2286

[4] P. Eastham, A. Sharma, U. Syed, S. Vassilvitskii, and F. Yu, “Learning Battery
Consumption of Mobile Devices,” 2016.

[5] M. Al J. M. Zain, M. F. Zolkipli, and G. Badshah, “Mobile cloud computing & mobile
battery augmentation techniques: A survey,” 2014 IEEE Student Conf. Res. Dev.
SCOReD 2014, Mar. 2014, doi: 10.1109/SCORED.2014.7072944.

[6] M. R. Nakhkash, T. N. Gia, I. Azimi, A. Anzanpour, A. M. Rahmani, and P. Liljeberg,
“Analysis of performance and energy consumption of wearable devices and mobile
gateways in loT applications,” ACM Int. Conf. Proceeding Ser., vol. Part F148162, pp.
68-73, 2019, doi: 10.1145/3312614.3312632.

[71 “View of A Systematic Survey of Simulation Tools for Cloud and Mobile Cloud
Computing Paradigm.” Accessed: Feb. 06, 2024. [Online]. Available:
https:/ /jistc.szabist.edu.pk/ojs/index.php/jisrc/article/view/40/30

[8] V. DP. Estamsetty, “Cloud Computing , Mobile Cloud Computing and its Comparative
Study,” no. January, 2021, doi: 10.13140/RG.2.2.30812.41601.

[9] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud: Elastic execution
between mobile device and cloud,” EuroSys’11 - Proc. EuroSys 2011 Conf., pp. 301-
314, 2011, doi: 10.1145/1966445.1966473.

Feb 2024 | Vol 6 | Issuel Page | 68

Li’,‘
OPEN (3} ACCESS

International Journal of Innovations in Science & Technology

[10]

[11]

[12]

[13]

Y. Hmimz, M. El Ghmary, T. Chanyour, and M. O. Cherkaoui Malki, “Computation
offloading to a mobile edge computing server with delay and energy constraints,” 2019
Int. Conf. Wirel. Technol. Embed. Intell. Syst. WITS 2019, Apr. 2019, doi:
10.1109/WTTS.2019.8723733.

S. Cao, X. Tao, Y. Hou, and Q. Cui, “An energy-optimal offloading algorithm of mobile
computing based on HetNets,” 2015 Int. Conf. Connect. Veh. Expo, ICCVE 2015 -
Proc., pp. 254-258, Apt. 2016, doi: 10.1109/ICCVE.2015.68.

D. J. S. Raj, “Improved Response Time and Energy Management for Mobile Cloud
Computing Using Computational Offloading,” J. ISMAC, vol. 2, no. 1, pp. 38—49, Mar.
2020, doi: 10.36548/JISMAC.2020.1.004.

M. A. Elgendy, A. Shawish, and M. I. Moussa, “MCACC: New approach for augmenting
the computing capabilities of mobile devices with Cloud Computing,” Proc. 2014 Sci.
Inf. Conf. SAI 2014, pp. 79-86, Oct. 2014, doi: 10.1109/SA1.2014.6918175.

Y. Sun, J. Wu, L. Chen, T. Liu, M. Yao, and W. Sun, “Latency optimization for mobile
edge computing with dynamic energy harvesting,” Proc. - 2019 IEEE Intl Conf Parallel
Distrib. Process. with Appl. Big Data Cloud Comput. Sustain. Comput. Commun. Soc.
Comput. Networking, ISPA/BDCloud/SustainCom/Social Com 2019, pp. 79-83, Dec.
2019, doi: 10.1109/ISPA-BDCLOUD-SUSTAINCOM-
SOCIALCOM48970.2019.00022.

Y. Miao, G. Wu, M. Li, A. Ghoneim, M. Al-Rakhami, and M. S. Hossain, “Intelligent
task prediction and computation offloading based on mobile-edge cloud computing,”
Futur. Gener. Comput. Syst, vol. 102, pp. 925-931, Jan. 2020, doi:
10.1016/]J.FUTURE.2019.09.035.

A. Ali etal., “An Efficient Dynamic-Decision Based Task Scheduler for Task Offloading
Optimization and Energy Management in Mobile Cloud Computing,” Sensors 2021,
Vol. 21, Page 4527, vol. 21, no. 13, p. 4527, Jul. 2021, doi: 10.3390/S21134527.

A. Akbar and P. R. Lewis, “Towards the optimization of power and bandwidth
consumption in mobile-cloud hybrid applications,” 2017 2nd Int. Conf. Fog Mob. Edge
Comput. FMEC 2017, pp. 213-218, Jun. 2017, doi: 10.1109/FMEC.2017.7946433.

N. Dange, K. Devadkar, and D. Kalbande, “Scheduling of task in collaborative
environment using mobile cloud,” Proc. - Int. Conf. Glob. Trends Signal Process. Inf.
Comput. Commun. ICGTSPICC 2016, pp. 579-583, Jun. 2017, doi:
10.1109/ICGTSPICC.2016.7955367.

I. Kaur, S. Sharma, and M. Arora, “Research Paper on Enhanced Battery for Android
Phones using the Power of Cloud through Data Synchronization,” 2014.

A. Wajid, N. Nigar, S. Islam, and M. K. Shahzad, “A SURVEY ON MOBILE CLOUD
COMPUTING PROBLEMS AND SOLUTIONS,” Pak. J. Sci., vol. 75, no. 1, pp. 71—
77, Mar. 2023, doi: 10.57041/P]JS.V7511.824.

B. Assistant Professor, “Mobile Cloud Computing: Implementation using Android and
Firebase APL,” Int. J. Creat. Res. Thoughts, vol. 6, no. 2, pp. 2320-2882, 2018, Accessed:
Feb. 06, 2024. [Online|. Available: www.ijcrt.orgwww.ijcrt.org

A. B. Semma, M. Ali, M. Saerozi, Mansur, and Kusrini, “Cloud computing: google
firebase firestore optimization analysis,” Indones. J. Electr. Eng. Comput. Sci., vol. 29,
no. 3, pp. 1719-1728, Mar. 2023, doi: 10.11591/IJEECS.V29.13.PP1719-1728.

@ @ Copyright © by authors and 50Sea. This work is licensed under
Creative Commons Attribution 4.0 International License.

Feb 2024 | Vol 6 | Issuel Page | 69

